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Stability of Stratified Gas-Liquid Flow in Horizontal and Near 
Horizontal Pipes* 
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Abstract  A viscous Kelvin-Helmholtz criterion of the interfacial wave instability is proposed in this paper based 
on the linear stability analysis of a transient one-dimensional two-fluid model. In this model, the pressure is evalu-
ated using the local momentum balance rather than the hydrostatic approximation. The criterion predicts well the 
stability limit of stratified flow in horizontal and nearly horizontal pipes. The experimental and theoretical investi-
gation on the effect of pipe inclination on the interfacial instability are carried out. It is found that the critical liquid 
height at the onset of interfacial wave instability is insensitive to the pipe inclination. However, the pipe inclination 
significantly affects critical superficial liquid velocity and wave velocity especially for low gas velocities.  
Keywords  two-fluid model, Kelvin-Helmholtz criterion, interfacial instability, gas-liquid stratified flow 

1  INTRODUCTION 
Stratified two-phase flow is one of the most 

commonly observed flow patterns in chemical indus-
try and hence has been of continuing interest from 
both the practical and theoretical points of view[1—5]. 
Many pipeline systems are designed to operate in the 
stratified flow regime due to the lower pressure gra-
dient and to avoid intermittent behavior. In horizontal 
and nearly horizontal pipes, the onset of interfacial 
wave instability for a gas-liquid stratified flow is usu-
ally related to the stratified-slug flow regime transi-
tion[6—9]. For most practical situations, the occur-
rence of slugs in pipes leads to negative effects. 
Therefore, it is important to study the instability of 
gas-liquid stratified flow for the design and operation 
of pipeline systems. 

Considerable progress has been made in theo-
retical study of the instability of stratified flow. The 
classical inviscid Kelvin-Helmholtz instability analy-
sis for gas-liquid interface in a horizontal rectangular 
pipe was first performed by Milne-Thomson[10] and 
Yih[11]. However, Wallis and Dobson[12] found that 
the critical liquid velocity predicted by the classical 
inviscid K-H instability analysis was about twice the 
experimental data. Taitel and Duckler[13] extended 
the K-H analysis to the case of a finite wave on a flat 
liquid sheet in horizontal channel flow and then to 
finite waves on stratified liquid in an inclined pipe, in 
which the criterion was also derived from the inviscid 
fluid theory. 

Lin and Hanratty[14], Barnea[15], Barnea and 
Taitel[16] presented viscous K-H analysis using 
one-dimensional averaged two-fluid models. In their 
models, the effects of viscosity were introduced in 
through empirical walls and interfacial friction corre-
lations. Compared to the experimental data, viscous 
analysis provided more accurate results than the invis-
cid analysis[7]. But all these authors neglected the 

normal component of viscous stress. Recently, Funada 
and Joseph[17] proved that the effect of normal stress 
was always important and played a role in determining 
the stability limits when the volume fraction of gas 
was not too small.  

In this study, a new two-fluid model is developed 
to describe stratified flow in horizontal and near hori-
zontal pipes, in which the effect of normal stress in 
each phase is taken into account. The criterion of on-
set of interfacial wave instability is derived based on 
linear analysis of the model. Then the characteristics 
of the interfacial wave of stratified flow in the hori-
zontal and near horizontal pipes are investigated ex-
perimentally and compared to the criterion derived in 
this paper. 

2  ONE-DIMENSIONAL TWO-FLUID MODEL 
2.1  Governing equations  

The one-dimensional transient two-fluid model is 
formulated by considering each phase in terms of 
cross section averaged governing equations of the 
balance of mass and momentum of each phase in the 
inclined pipe (Fig.1) as follows[15]: 
Continuity equation: 

( ) ( )
0l l l l lA A U

t x
ρ ρ∂ ∂

+ =
∂ ∂

          (1) 

 
( ) ( )g g g g g 0
A A U

t x

ρ ρ∂ ∂
+ =

∂ ∂
         (2) 

Momentum equation: 

( ) ( )

( )

2

i i i l sin

l l l l l l

l l l
l l l l

A U A U
t x

A A
p S S A g

x x

ρ ρ

ρ
τ τ ρ θ

∂∂
+ =

∂ ∂
∂ ∂

− + + − −
∂ ∂

      (3) 

 
Received 2006-12-20, accepted 2007-05-05. 

*  Supported by the National Natural Science Foundation of China (No.50521604) and Shanghai Jiao Tong University Young
Teacher Foundation. 

** To whom correspondence should be addressed. E-mail: guhanyang@sjtu.edu.cn 



Chin. J. Ch. E. (Vol. 15, No.5) 

October, 2007 

620 

( ) ( ) ( )2
g g gg g g g g g

ig

i i g g g g sin

A UA U A P A
p

t x x x
S S A g

ρρ

τ τ ρ θ

∂∂ ∂ ∂
+ = − + −

∂ ∂ ∂ ∂
− − (4) 

Here, each phase is assumed to be incompressible, and 
the heat and mass transfer between the two phases is 
ignored. 

2.2  Closure relation 
Former researchers obtained the following relations 

by adopting hydrostatic approximation[13—16] and ne-
glecting the transverse component of the phase velocity: 
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However, Funada and Joseph[16] and Liu[18] found 
that the variance of the transverse component of the 
phase velocity played an important role in the interfa-
cial wave propagation and development. In the fol-
lowing, a closure relation with the transverse compo-
nent of phase velocities taken into account is deduced. 

Starting with the definition of the cross-averaged 
pressure: 

( ) ( )
0

dlh
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and introducing ( )lp y  as 
( ) ( )il l l'p p py y= +             (7) 

the needed pressure term can be expressed as a func-
tion of ( )lp y  using the Leibniz rule of derivation:  
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Then modeling of ( )l'p y  in the right side of Eq.(8) has 
to be done next. Using the local momentum balance in 
the y-direction: 
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So pressure ( )l'p y  can be expressed by 
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Then using Leibnitz rule yields: 

 
I1 is easily obtained by integration as 
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which is the hydrostatic term. The other two terms in 
the right side of Eq.(12) contain the contribution of 
the transient transverse acceleration. Following the 
approximations presented by the Barnerjee[19] leads 
to (Appendix A) 
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Figure 1  Gas-liquid stratified flow in a circular pipe 
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So the following momentum equation for the liq-
uid phase is obtained: 
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Similarly, the following momentum equations for the 
gas phase is obtained: 
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The following approximation is made to express the 
difference between liquid and gas interfacial pressure 
terms and end up with one pressure variable: 
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Taitel and Dukler’s model[13] is used to calculate the 
liquid-wall, gas-wall and interfacial shear forces τ. 

3  LINEAR STABILITY ANALYSIS 
The transient of the system is formulated by 

Eqs.(1), (2), (16) and (17). Using the general approach 
presented by Barnea and Taitel[16], operation of lin-
earization generates: 

( )

( )

g g
g g g

g 3

2 2

g g

2 2
2

2 2

2 2
2 g

g g g 2 2

cos

l l
l l l

l l
l

l
ll l

l
l l l l l

l

U UU U
U U

t t x x
h h

g
x x

h
hU Ux t x t x

Uh U U
t x x x x

U
h U

t x x x x

ρ ρ ρ ρ

ρ ρ θ σ

ρ ρ

ρ η μ

ρ ξ μ

∂ ∂∂ ∂
− + − +

∂ ∂ ∂ ∂
∂ ∂− − +
∂ ∂

⎛ ⎞∂ ∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤ −−+ +⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦⎝ ⎠
⎡ ⎤ ⎛ ⎞∂∂ ∂ ∂ ∂ ++ − − ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎝ ⎠

∂⎡ ⎤∂ ∂ ∂ ∂
+ − −⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦ g FU

⎛ ⎞
=⎜ ⎟

⎝ ⎠

 

(19) 
with  

( )g g
gi i

gg

1 1
sinl l

l
ll

SS
F S gA AA A

ττ ρ ρτ θ
⎛ ⎞+ −= − + + −⎜ ⎟
⎝ ⎠

 

The general approach presented by Barnea[15] is used 
to obtain dispersion equation. Introducing a linear si-
nusoidal perturbation into the model: 
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Substituting the expressions of lU ′ , gU ′  and F ′  into 
Eq.(19) gives the following dispersion equation: 
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(20) 
It can been seen that, if setting g 0lf f= = , Eq.(19) 
yields the same dispersion equation by adopting the 
hydrostatic approximation as in Ref.[14]. 

The neutral stability condition ( 0iω = ) is found 
by letting R Riiω ω ω ω= + =  in the dispersion equa-
tion as follows: 
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Hence, the critical wave velocity at the inception of 
instability is given by  
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Substituting Eq.(22) into Eq.(21b) gives the stability 
criteria: 
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The stability criteria incorporate the shear stresses, 
fluid velocities and geometrical relations of the flow, 
which are in turn functions of the equilibrium liquid 
holdup. Thus, the first step in implementing this 
model is to find αl. The geometrical parameters in 
two-phase stratified pipe flow are shown in Fig.1. Al-
though the present criterion is given in a general form 
which includes the shear stresses and does not depend 
on the particular form of the shear-stress relationship 
and the friction coefficient, these relationships should 
be incorporated when practical simulations are sought. 
In the present calculations the following relations de-
scribed in Taitel and Dukle[13] are used: 
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The liquid and the gas friction factors are evaluated 
from 

0.20.046l lf Re−=             (25a) 
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The critical wave number kc is found numerically. 
For fixed gas and liquid velocities, with the decreasing 
of wave number, the value in the right hand side of 
Eq.(23) increases to a maximum, and then decreases. 
The critical liquid velocity at the inception of instabil-
ity is defined as the liquid velocity when the maxi-
mum value in the right side of Eq.(23) is zero, and the 
critical wave number corresponds to the wave number 
of the “most dangerous wave”. More details can be 
found in Refs.[15—17]. 

4  RESULTS AND DISCUSSION 
Experiments were carried out in a flow loop fa-

cility with an inner diameter of 0.05m and a length of 
20m with various inclinations of 0.0°, －0.4°, －0.6°, 
－0.8° and －1.0° in the State Key Laboratory of 
Multiphase Flow, Xi’an Jiaotong University. The 
characteristics of interfacial wave of stratified flow 
were measured using two-parallel conductance probes. 
More detailed description of experimental facility, 
measurement method and data processing is presented 
in Ref.[20]. 

Barnea and Taitel[16], Lin and Hanratty[14] devel-
oped their models based on a one-dimensional two-fluid 
model with the hydrostatic approximation. Fig.2 
shows the comparison between the experimental and 
calculated critical liquid height and critical superficial 

 
      (a) Critical hc 

 
      (b) Critical Usl 

Figure 2  Comparison of neutral stability prediction with 
experimental data (air-water, D＝0.05m, θ＝－0.8°) 

● exp. data; —— present model;  Ref.[16];  Ref.[14]
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liquid velocity, above which the instability of interfa-
cial wave occurs, with a pipe inclination of －0.8°. It 
can be noted that the predicted values of Barnea and 
Taitel[16], Lin and Hanratty[14] models are lower 
than experimental values. The vertical component of 
phase velocity, especially when superficial gas veloc-
ity is high, has great effects on interfacial stability. 
The prediction of the present model is in best agree-
ment with the experimental data. 

Figure 3 depicts the experimental critical liquid 
height and critical superficial liquid velocity to initiate 
instability of interfacial wave at different pipe inclina-
tions. The critical liquid height is found to be insensi-
tive to the pipe inclination, especially when the incli-
nation is larger than 0.4°. However, the inclination has 
a striking effect on critical liquid velocities at low gas 
velocities. The critical liquid velocities increase 
sharply due to the effect of gravity as the inclination 
increases. When the pipe is inclined, the gravity com-
ponent along flowing direction significantly affects 
the critical liquid velocity. It is demonstrated that the 
model presented in this paper can efficiently predict 
the height of liquid and critical superficial liquid ve-
locities. 

 

 
Figure 3  Comparison of neutral stability prediction 

with experimental data (air-water, D＝0.05m) 
θ, (°): □ 0 (exp.); ○ －0.4 (exp.); △ －0.6 (exp.); 

▽ －0.8 (exp.); ● －1.0(exp.); —— 0 (cal.);  －0.4(cal.); 
 －0.6 (cal.);  －0.8 (cal.);  －1.0 (cal.) 

Small pipe inclination has a great effect on inter-
facial wave velocities when instability of interfacial 
wave occurs: at a low superficial gas velocity, as the 
inclination increases, interfacial wave velocity in-
creases; however, when superficial gas velocity is lar-
ger than 6.0m·s－1, pipe inclination has little effect on 
interfacial wave velocity as indicated in Fig.4. There 
is an excellent agreement between the predicted re-
sults and the experimental data.   

Andreussi and Bendiksen[21] studied air-water 
stratified flow in inclined pipes with diameters of 9.53 

and 2.52cm. Fig.5 compares Andreussi and Bendiksen 
observation[21] of the interfacial wave instability to 
the present model. It shows that the critical liquid 
height required to initiate instability increases with the 
increasing of the pipe diameter. Good agreement be-
tween theoretical predictions and experimental results 
is obtained again. 

 
Figure 5  Comparison of neutral stability prediction with 

results of Ref.[21] (air-water, θ＝－1.0°) 
D, cm: ○ 9.53 Ref.[21]; —— 9.53(cal.); 

● 2.52 Ref.[21];  2.52 (cal.) 

5  CONCLUSIONS 
A one-dimensional two-fluid model for stratified 

flows in a horizontal and nearly horizontal pipe is de-
veloped in the current study, in which a more complex 
closure that included the dynamic pressure terms in-
stead of the hydrostatic approximation, is adopted. A 
viscous Kelvin-Helmholtz criterion for the prediction 
of the onset of interfacial wave instability is derived 
based on the linear analysis of the two-fluid model. 
The criterion proposed in this paper predicts quantita-
tively critical conditions required to initiate interfacial 
wave instability. Both predicted results and experi-
mental data show that critical liquid height is insensi-
tive to small pipe inclinations, while at low gas ve-
locities, critical liquid velocity and critical wave ve-
locity are surprisingly sensitive to small pipe inclina-
tions.  

NOMENCLATURE 
A cross-sectional area, m－2 

b local width of cross-section, m 
C wave velocity 
D inside diameter, m 
f friction factor 

 
Figure 4  Comparison of interfacial wave velocity 

prediction with experimental data (air-water, D＝0.05m)
θ, (°): □ 0 (exp.); ○ －0.4 (exp.); △ －0.6 (exp.); 

▽ －0.8 (exp.); ● －1.0(exp.); —— 0 (cal.);  －0.4(cal.);
 －0.6 (cal.);  －0.8 (cal.);  －1.0 (cal.) 
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g gravitational acceleration, m·s－2 
h film thickness, m 
j superficial velocity, m·s－1 
k wave number, m－1 
P cross-sectional averaged pressure, Pa 
p local pressure, Pa 
R radius, m 
S wetted perimeter, m 
t time, s 
U cross-sectional averaged velocity, m·s－1 
u local velocity, m·s－1 
x,y cartesian coordinate, m 
α phase fraction 
θ pipeline inclination, (°) 
μ viscosity, Pa·s 
ρ density, kg·m－3 
σ surface tension, N·m－1 
τ shear stress, N·m－1 
ω angle velocity, s－1 

Subscripts 
c critical value 
g gas phase 
i interfacial 
l liquid phase 
s superficial velocity 
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APPENDIX 
The term I2 in Eq.(12) represents the variation of the tran-

sient acceleration term due to the variation in the liquid level. 
The high order diffusive terms in the expression of ( , )lx hϕ  as 

well as the /l lv v y∂ ∂  term, is small compared to [ ( , ) /l lv x h t∂ ∂ +  

]( , ) /l l lu v x h x∂ ∂ , so 

( ) ( ), , l l llx h v x hu
t x

ϕ ∂ ∂⎛ ⎞≈ +⎜ ⎟∂ ∂⎝ ⎠
. 

At the interface with the liquid level hl, the continuity 
equation can be expressed as 

( ) ( ), , l l
l l l l

h hv x h u x h
t x

∂ ∂
= +
∂ ∂

 

for turbulent flow in a pipe, any value between U(x) and 1.2U(x) 
is acceptable for ( , )l lu x h . Using ( , ) ( )l lu x h U x= , the simplest 
expression is: 

( ) ( ) ( )
2

, , l ll lx h hU x h
t x

ϕ ∂ ∂⎡ ⎤≈ +⎢ ⎥∂ ∂⎣ ⎦
 

Then it leads to 

( ) ( )
2

2 , l
l l ll l

hI A hU x h
x t x

ρ ∂ ∂ ∂⎡ ⎤= +⎢ ⎥∂ ∂ ∂⎣ ⎦
 

The y component of the liquid velocity at the crest is given by 

( ) ( ), , ( )l l l l
l l l l l

h h h hv x h u x h U x
t x t x

∂ ∂ ∂ ∂
= + ≈ +
∂ ∂ ∂ ∂

 

and the global continuity equation for the liquid phase is given 
by 

l l l
l l

l

h h AU U
t x A' x

∂ ∂ ∂
+ = −

∂ ∂ ∂
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and /l lA A'  can be grossly approximated as lh , so 

( ), l l
l l l l

l

A Uv x h U h
A' x x

∂∂
≈ − ≈ −

∂ ∂
 

while at the bottom of the liquid layer, the velocity profile must 
fit the condition of ( , 0) 0lv x = , and in the bulk of the liquid 
layer, the evolution of lv  is governed by  

( , ) ( , )l lv x y u x y
y x
∂ ∂

= −
∂ ∂

 

according to the assumption mentioned above: ( , ) ( )lu x y U x≈ . 
Then an approximation for the local velocity profile within the 
liquid phase can be expressed as follows: 

( ) ( ), lv y Ux y x
x
∂

≈ −
∂

 

Using the proposed bulk velocity profile: ( , ) ( )lu x y U x≈  and 
( , ) ( ) /lv x y y U x x≈ − ∂ ∂ , the following equation can be ob-

tained: 
2 2

2 2
l

l l l
Uy U U

x t x x x x
ϕ μ

∂ ⎡ ⎤⎛ ⎞∂∂ ∂ ∂ ∂= − + − − ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
 

by integrating, the term I3 is obtained: 
2 2

3 2 2
l

l l l l
UI U U

t x x x x
ρ χ μ

⎡ ⎤⎛ ⎞∂∂ ∂ ∂ ∂= − + − − ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
 

with  

( ) ( ) ( )2 2
0 0

1 1d dd
2 2

l llh hh
l ly

b y h A y b yy' y' y yχ = = −∫ ∫∫  

The integral ( )2
0

dlh
y b yy∫  can be approximated by the explicit 

expression ( )2 2 sin / 4l lh R h Rπ . Hence an explicit expression of 

3I  is obtained: 

2 2
2

3 2 2
l

l l l l l l
UI h A U U

t x x x x
ρ η μ

⎡ ⎤⎛ ⎞∂∂ ∂ ∂ ∂= − + − − ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
 

with 
11 1 sin

42
l

l

A h
A R

η
⎡ ⎤π⎛ ⎞−= ⎜ ⎟⎢ ⎥π ⎝ ⎠⎣ ⎦

. 

 
 
 


