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Abstract  Outlier in one variable will smear the estimation of other measurements in data reconciliation (DR). In 
this article, a novel robust method is proposed for nonlinear dynamic data reconciliation, to reduce the influence of 
outliers on the result of DR. This method introduces a penalty function matrix in a conventional least-square objec-
tive function, to assign small weights for outliers and large weights for normal measurements. To avoid the loss of 
data information, element-wise Mahalanobis distance is proposed, as an improvement on vector-wise distance, to 
construct a penalty function matrix. The correlation of measurement error is also considered in this article. The 
method introduces the robust statistical theory into conventional least square estimator by constructing the penalty 
weight matrix and gets not only good robustness but also simple calculation. Simulation of a continuous stirred tank 
reactor, verifies the effectiveness of the proposed algorithm.  
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1  INTRODUCTION 
Data reconciliation (DR) is a task to reconcile 

process data and to obtain the accurate estimation of 
measured variables by having them satisfy material 
and energy balance constraints[1]. The steady-state 
DR (SSDR) is well-documented and applied satisfac-
torily to large-scale industrial processes[2—5]. How-
ever, chemical processes are intrinsically dynamic and 
dynamic data reconciliation (DDR) will obtain better 
state estimations than SSDR[6—9].  

Data reconciliation processes usually use a 
weighted least squares objective function, and are 
based on the assumption that random errors are dis-
tributed normally with zero mean and a known vari-
ance. However, weighted least squares objective func-
tion can lead to incorrect estimation and severely bias 
reconciliation when the measured data contains gross 
errors[10]. To make the estimation insensitive in the 
presence of a persistence of gross errors, robust ap-
proaches have been proposed[11,12]. In these methods 
the weighed squared residual of the DR objective 
function is replaced by a robust function. The robust 
function is usually selected as a convex function, to 
ensure that the solution is unique. The influence func-
tion, the derivative of robust function with respect to 
the process variable measurements, gives a weight 
approach to zero, to a high value residual, and com-
pensates for the effects that have the residuals on the 
estimator[13,14]. Comparison of least square estima-
tor and robust M-estimator shows the latter is superior 
in detecting outliers and robustness[15]. However, 
conventional robust DR may be subjected to a local 
optimal for the discontinuous and nonconvex proper-
ties of the robust M-estimator, in nonlinear DR prob-
lems[15].  

In this article, a penalty function matrix is con-
structed with its elements representing the penalty 
degree of each measurement. This can be done by 
calculating the different types of Mahalanobis distance 
of observations to the main body of data and assigning 
small weights for outliers and large weights for other 

normal data. By adding penalty weights to a recon-
ciliation object function, the influence of outliers to 
the estimation can be controlled, hence leading to 
more accurate results. The study of a continuous 
stirred tank reactor (CSTR) shows that the proposed 
robust nonlinear dynamic data reconciliation (NDDR) 
can reduce the effect of outliers on DR and has a bet-
ter performance than the conventional NDDR method. 

2  THEORY BACKGROUND 
2.1  NDDR 

NDDR can be formulated as a dynamic optimiza-
tion problem where the objective is to minimize the 
deviation between the measured and the estimated val-
ues, weighted by the variance of measurement errors 
subjected to the dynamic model and nonlinear algebraic 
model and/or inequality constraints as follows[16]: 
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where parameter c represents the current time, k 
represents the sampling time, Q is the covariance ma-
trix, f is differential equation constraints, h is algebraic 
equality constraints, and g is inequality constraints 
including simple upper and lower bounds.  

NDDR presents an extra challenge for solution of 
the differential/algebraic optimization problem. There 
are two methods served in the NDDR optimization 
problem. One is sequential solution, wherein the 
nonlinear differential equations are embedded in the 
solution and only the initial state estimates are treated 
as decision variables. The differential equations are 
integrated using an ordinary differential equation (ODE) 
solver to generate the estimates for all instants within 
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the time window[17]. Though straightforward, this ap-
proach is generally inefficient because it requires the 
accurate solution of the model equations at each itera-
tion within the optimization even when iterates are far 
from the final optimal solution. The other is to use a 
simultaneous solution, in which the differential equa-
tions are converted to algebraic equations by discretiza-
tion. These algebraic equations then solve the resulting 
constrained optimization problem[16]. In general, the 
simultaneous approach is computationally more efficient 
than the sequential strategy, and is used in this article. 

An ideal DR scheme would use all of the infor-
mation in the process measurements from the start-up 
of the process t0 until the current time tc. Unfortu-
nately, such a scheme would necessarily result in an 
optimization problem of ever-increasing dimensions. 
For practical implementation, a moving time win-
dow[16] of length H would be used to reduce the op-
timization problem to manageable dimensions. If the 
most recent available measurements are at time step c, 
then a history horizon HΔt can be defined from (tc—
HΔt) to tc, where Δt is the time step size. So the 
NDDR objective function is modified as 
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2.2  M-estimator 
The M-estimator is a very robust estimator. Each 

vector of measurement, based on its Mahalanobis dis-
tance, is assigned a weight. These weights determine 
the influence of each vector to the estimations so that 
they approach zero as the measurement error vector 
becomes less characteristic[18]. 

The most famous M-estimators used in practice 
include Huber estimator, Hampel’s three-part re-
descending estimator, Tukey estimator, and Andrews 
estimator. All these estimators can be used to construct 
a penalty function matrix. In this article, Huber-type 
weights are used.  

Huber estimator ρ(u) and its influence function 
( )uϕ  and weight factor ω(u)[18]: 
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where u is the standardized residual and the parameter 
k controls the sensitivity of the estimator to the con-
taminating distribution and increases as the proportion 
of outliers decreases.  

3  ROBUST NDDR 
3.1  Robust NDDR approach 

To reduce the effect of the outlier on NDDR, the 

objective function is modified as 
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where W is the penalty function matrix with its ele-
ments representing the penalty degree of measurement 
to the estimation. The penalty function should be se-
lected in such a way that it will decrease when meas-
urements become increasingly less relevant to the 
main characteristic of the main data set. In this article, 
the Huber type weights are used as the penalty func-
tion.  

The Huber-type weights are defined as follows: 
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where k2 is the 90% point of χ2 distribution with p 
degrees of freedom. The degrees of freedom are de-
termined by the dimension of the observation vector. 
di is the Mahalanobis distance of the ith vector of 
measurements that gives its square distance from the 
current estimation of the mean, scaled by the current 
estimation of the variance. 
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The assignment of same weight to one vector 
will lead to loss of some valuable acceptable meas-
urements because not all measurements of the same 
vector contain outliers. Therefore, once an error is 
detected in one vector, a further analysis is conducted 
within the vector. A small weight is assigned to the 
outlying elements with large weights being assigned 
to the remaining elements. To obtain element-wise 
weights, Mahalanobis distance dij for a single j ele-
ment of the ith observation vector is given by 
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Therefore there will be two k’s, namely k1 and k2, 
corresponding to the above two different Mahalanobis 
distances, differing from each other in the degrees of 
freedom used in the calculation of k. 2

1k  is the 90% 
point of χ2 distribution with p degrees of freedom and 

2
2k  is the 90% point of χ2 distribution with a freedom 

degree of 1. 
Therefore W is constructed according to the fol-

lowing procedure. First, the vector of measurements is 
evaluated. If no error is detected, a large weight is 
assigned to the whole vector. Should an outlier be de-
tected in one observation vector, an element-wise 
search is conducted within the vector. A small weight 
is assigned to the outlying elements, with large 
weights being assigned to the remaining elements. 

In the equations cited above, ym and Q are loca-
tion and covariance matrix of measurements in the 
current moving window. ym,j and σj are current estima-
tions of median and variance over n observations in 
the current moving window.  
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In this article, location and variance are easily 
obtained from the median and median absolute devia-
tion (MAD)[18]  

( )m median y=y             (14) 

( )m1.4826median iyσ = − y        (15) 

( )2 2 2
1 2Diag , , , pσ σ σ= ⋅ ⋅ ⋅Q          (16) 

where the constant 1.4826 is required to make MAD 
an unbiased estimation of the standard deviation for 
Gauss data. The advantage of MAD is that it is com-
putationally inexpensive and relatively robust to out-
liers.  

3.2  Correlation 
If measurement errors are independent of each 

other, the penalty function matrix is a diagonal matrix 
with its diagonal elements calculated from the Huber 
function. For dependent error, the nondiagonal ele-
ments of the penalty function matrix are 

ij ji i jw w w w= = ⋅              (17) 

This can be proved from the definition of corre-
lation coefficient rij 
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where iσ  and jσ  are the standard residuals of obser-
vations i and j, ijσ  is the covariance of observation i 
and j. When weighted, the variance ( 2
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From Eq.(20), it can be seen that by treatment of 
Eq.(17), the dependence and the original structure of 
the covariance matrix of measurement errors are not 
changed.  

4  EXAMPLE 
The performance of the proposed method has 

been tested using a simulated CSTR with a first-order 
exothermic reaction[16,19,20]. There are four meas-
ured variables in CSTR, two input variables: input 
concentration C0, input temperature T0, and two state 
variables: output concentration C, output temperature 
T. The process dynamic model is given by 

( )0 d
d
d
C q C C KC
t V

α= − −          (21) 

( ) ( )r R
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where 0K K=  exp ( )A /E RT− , is an Arrhenius rate 
expression. The process parameters are shown in Table 
1. All temperature and concentrations were scaled using 
a normal reference concentration ( r 1.0C = mol⋅m－3) 
and a normal reference temperature ( r 100KT = ). 

Measurements for all the variables were simu-
lated at time steps of 2.5s by adding outliers and 
Gaussian noise to the true values, which were ob-
tained through numerical integration of the dynamic 
equations. A measurement error with a standard devia-
tion of 5% of the corresponding reference value was 
considered and the reconciliation of all measured 
variables was carried out. Outliers were added in 
every measured variable and the total number of out-
liers equalled 10% of the total data. The proposed ro-
bust NDDR algorithm was applied with a history ho-
rizon of five time steps. 

The steady-state simulation was initialized at a 
steady-state operating point of C0＝6.5×106mol·m－3, 
T0＝3.5K, C＝0.1531×106mol·m－3, and T＝4.6091K. 
At time 30s, the feed concentration was stepped up 
from 6.5×106mol·m－3 to 7.5×106mol·m－3. In this 
study, a simultaneous solution and optimization strat-
egy were used to solve the dynamic optimization 
problem defined earlier. In this approach, the differen-
tial equations were approximated by a set of algebraic 
equations using the Euler discretization method. These 
algebraic equations were then solved with other con-
straints within the sequential quadratic programming 
(SQP) method. 

The performance criteria used in this study is the 
mean squared error (MSE), which can be defined as 

( )2*
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N

k ik ik
i

y y
N =

= −∑   1, ,k p∀ = ⋅ ⋅ ⋅   (23) 

where p is the number of measurement variables, N is 
the sampling number, ˆiky  is the estimation, and *

iky  is 
the true value.  

The estimated values for the feed concentration 
and feed temperature are shown in Fig.1. The esti-
mated values for the output concentration and output 
temperature are shown in Fig.2. In these figures the 
circles correspond to the measurements, the dot line to 
the element-wise, distance-based estimates, the plus to 
the vector-wise, distance-based estimates, the solid 
line to the simulated (free noise) value, and the trian-
gle to the estimates by conventional least square 
method. To show better detail of the dynamics, Figs.1(c), 
1(d) and Figs.2(c), 2(d) are a scale of Figs.1(a), 1(b), 
Fig.2(a) and Fig.2(b).  

Table 1  Parameters of dynamic model 

q, 
m3·S－1 

V, 
m3 

ΔHr, 
J·mol－1 

ρ, 
kg·m－3 

cp, 
J·kg－1·K－1

U, 
J·m－2·s－1·K－1

AR, 
m2 

Tc, 
K 

Ko, 
s－1 

EA, 
J·mol－1 αd

1.0×10－5 1.0×10－3 －1.13049×105 1.0 4187 20.935 1.0×10－3 340.0 7.86×1012 1.17151×105 1.0
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1  Feed concentration and temperature estimate’s 
response to time step change 

○ the measurements; ······ the element-wise distance-based es-
timates; + the vector-wise distance-based estimates; 

—— the simulated value; △ the estimates by 
conventional least square method 

The MSE for conventional least-square estimate, 
element-wise, distance-based estimate, and vector-wise, 
distance-based estimates are shown in Table 2. 

From Figs.1 and 2 it can be seen that robust 

NDDR estimators give a better performance than the 
conventional least square method. This is because the 
latter tends to spread the gross error over all the 
measurements in the time window, leading to a biased 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2  Output concentration and temperature 
estimate’s response to time step change 

○ the measurements; ······ the element-wise distance-based 
estimates; + the vector-wise distance-based estimates; 

—— the simulated value; △ the estimates by 
conventional least square method 

Table 2  Performance comparison of different estimators 

MSE 
Method 

C0 T0 C T 
conventional least-square 0.14622 0.0056703 0.00021001 0.0008317 

vector-wise distance based estimator 0.025157 0.0041709 1.0659×10－4 1.9933×10－4 
element-wise distance based estimator 0.022195 0.0030097 3.7613×10－5 1.5302×10－4 
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estimate. When the robust NDDR is applied, small 
weights are assigned to the outliers, which makes the 
estimate insensitive to the outliers. 

It can be seen from Table 2, that the element-wise 
Mahalanobis distance based estimator gives a better 
performance than the vector-wise distance based esti-
mator. That is because the latter assigns the same pen-
alty weight to the tagged vector, which leads to loss of 
information from some valuable acceptable measure-
ments. 

5  CONCLUSIONS 
In this article, a robust nonlinear dynamic data 

reconciliation approach is proposed to reduce the in-
fluence of outliers to estimations. By introducing pen-
alty function matrix to NDDR least square objective 
function, and assigning large weights to normal data 
and small weights to outliers, the approach reduces the 
influence of gross error to final estimation effectively, 
meanwhile maintaining the simplicity of the conven-
tional least square estimator. Penalty weights are ob-
tained from the weight factor of robust Huber estima-
tor. To avoid the loss of data information, element-wise 
Mahalanobis distance was also proposed, as an im-
provement of vector-wise distance, to construct the 
penalty function matrix. The proposed approach can 
also be used in the correlative data reconciliation by 
suitable treatment of the nondiagonal element of the 
penalty matrix. An example of a dynamic CSTR veri-
fied the effectiveness of the proposed algorithm. 

NOMENCLATURE 
AR area of heat transfer, m2 
C tank concentration, mol·m－3 
Cr reference concentration, mol·m－3 
C0 feed concentration, mol·m－3 
c the current time, s 
cp heat capacity, J·kg－1·K－1 
di vector-wise Mahalanobis distance 
dij element-wise Mahalanobis distance 
EA activation energy, J·mol－1 
f differential equation constraints 
g inequality constraints  
H length of moving window 
ΔHr heat of reaction, J·mol－1 

h algebraic equality constraints 
K Arrhenius rate expression 
K0 rate constant, s－1 
k sampling time, s 
N sampling number 
p number of measurement variable 
Q the covariance matrix 
q flow rate, m3·s－1 
rij the correlation coefficient of observation i and j 
ijr  the correlation coefficient of observation i and j after 

being weighed 
T output temperature, K 
Tc coolant temperature, K 
Tr reference temperature, K 
T0 feed temperature, K 
U heat transfer coefficient, kJ·m－2·s－1·K－1 
V volume, m3 

W penalty weight matrix 
wi penalty weight factor of observation i 
yik measurement of variable k at time step i 
ˆiky  estimation of variable k at time step i 

ym median value of measurement vector 
y(t) measurement vector at time step t 
ˆ ( )ty  estimated measurement vector at time step t 
αd  deactivation factor 
ρ density, g·m－3 
σi standard deviation of variable i 
σij the covariance of observation i and j 
ϕ  objective function 

REFERENCES 
1 Kuehn, D.R., Davidson, H., “Computer control (Ⅱ): 

Mathematics of control”, Chemical Engineeing Progress, 
57(6), 44—47(1961). 

2 Crowe, C.M., Campos, Y.A.G., Hrymak, A., “Reconcilia-
tion of process flow rates by matrix projection (Ⅰ) Lin-
ear case”, AIChE Journal, 29, 881—888(1983). 

3 Crowe, C.M., “Reconciliation of process flow rates by 
matrix projection (Ⅱ) The nonlinear case”, AIChE Jour-
nal, 32, 616—623(1989). 

4 Sanchez, M., Romagnoli, J., “Use of orthogonal trans-
formations in data classification-reconciliation”, Com-
puters & Chemical Engineering, 20, 483—493(1996). 

5 Kelly, J.D., “Formulating large-scale quantity-quality bi-
linear data reconciliation problems”, Computers & 
Chemical Engineering, 28(3), 357—362(2004). 

6 Bagajewicz, M.J., Jiang, Q.Y., “Integral approach to 
plant linear dynamic reconciliation”, AIChE Journal, 43, 
2546—2558(1997). 

7 Bagajewicz, M.J., Jiang, Q.Y., “Comparison of steady state 
and integral dynamic data reconciliation”, Computers & 
Chemical Engineering, 24(11), 2367—2383(2000). 

8 McBrayer, K.F., Edgar. T., “Bias detection and estimation 
in dynamic data reconciliation”, Journal of Process Con-
trol, 5(4), 285—289(1995). 

9 Ozyurt, D.B., Pike, R.W., “Theory and practice of simul-
taneous data reconciliation and gross error detection for 
chemical processes”, Computers & Chemical Engineer-
ing, 28, 381—402(2004). 

10 Wang, D., Romagnoli, J.A., “Generalized T distribution 
and its applications to process data reconciliation and 
process monitoring”, Transactions of the Institute of 
Measurement and Control, 27(5), 367—390(2005). 

11 Ragot, J., Chadli, M., Maquin, D., “Mass balance equili-
bration: A robust approach using contaminated distribu-
tion”, AIChE Journal, 51(5), 1569—1575(2005). 

12 Tjoa, I.B., Biegler, L.T., “Simultaneously strategies for 
data reconciliation and gross error detection of nonlinear 
systems”, Computers and Chemical Engineering, 15(10), 
679—690(1991).  

13 Chen, J., Bandoni, A., Romagnoli, J.A., “Robust estima-
tion of measurement error variance/covariance from 
process sampling data”, Computers & Chemical Engi-
neering, 21, 593—600(1997). 

14 Romagnoli, J.A., Sanchez, M.C., Data Processing and 
Reconciliation for Chemical Process Operations, Aca-
demic Press, London (2000). 

15 Arora, N., Biegler, L.T., “Redescending estimators for 
data reconciliation and parameter estimation”, Com-
puters & Chemical Engineering, 25(11/12), 1585—
1599(2001). 

16 Liebman, M.J., Edgar, T.F., Lasdon, L.S., “Efficient data 
reconciliation and estimation for dynamic process using 
non-linear programming techniques”, Computers & 
Chemical Engineering, 16, 963—986(1992). 

17 Kim, I., Liebman, M.J., Edgar, T.F., “A sequential er-
ror-in-variables method for nonlinear dynamic systems”, 
Computers & Chemical Engineering, 15, 663—670(1991). 

18 Huber, P.J., Robust Statistics, Wiley, New York 1989. 
19 Chen, J., Romagnoli, J.A., “A strategy for simultaneous 

dynamic data reconciliation and outlier detection”, Com-
puters & Chemical Engineering, 22, 559—562(1998). 

20 Zhou, L.K., Su, H.Y., Chu, J., “A modified outlier detec-
tion method in dynamic data reconciliation”, Chin. J. 
Chem. Eng., 13, 542—547(2005). 

 


