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Abstract. This paper generalizes the model introduced by Cai in [5],
where the Cass-Koopmans optimal growth model has been extended to
allow for endogenous fertility choice. A sufficient condition for the exis-
tence of a nonzero steady state equilibrium is provided. If there is a unique
nonzero steady state, this is a saddle point. If there are multiple nonzero
steady states, the rightmost is a saddle point.
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1 Introduction

One of the key insights of Barro [2] was to think about utility maximizing individuals
who care not only about their own consumption but also their children’s consumption.
This reasoning was extended by some authors to develop a number of growth models
with endogenous fertility (see, e.g., [3], [4], [7], and [8]). In particular, Palivos intro-
duced an endogenous fertility choice in the Cass-Koopmans optimal growth model.
He showed that if the marginal product of capital minus the population growth rate
is monotonically decreasing in capital, then the economy has only one steady state
equilibrium, which has the saddle point property. If it does not decrease monoton-
ically, multiple steady states and growth paths may emerge. In [5] Cai carried out
a modified version of Palivos’ model in which multiple steady states appear. In his
model the maximized Hamiltonian is no longer concave with respect to capital, and
so the uniqueness of the path satisfying the necessary condition for an optimum is
no longer ensured. Thus, starting with an initial value of capital stock, there may
exist several paths leading to different steady states. In this paper, we modify Cai’s
model by assuming a more general production function than the one he used. The
corresponding model has a set of necessary conditions for optimality which can be
reduced to a pair of differential equations. A sufficient condition for the existence of a
steady state equilibrium is established for this dynamical system. Moreover, we prove
that if there is only one nonzero steady state, then this is a saddle, and so the path
that leads to this point is optimal and unique. If there is a finite number of nonzero
steady states, then the rightmost nonzero steady state is a saddle point.
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2 The model

We assume a closed economy populated by a continuum of identical infinitely lived
agents. In absence of immigration and mortality, there is a one-to-one correspondence
between population growth rate and number of children. The agent’s instantaneous
utility is a separable function of consumption c and fertility n, i.e.

u(c, n) = u1(c) + u2(n).(2.1)

The functions u1 and u2 in (2.1) are nonnegative, twice continuously differentiable,
strictly increasing, i.e. u′1(c) > 0, u′2(n) > 0, strictly concave, i.e. u′′1(c) < 0,
u′′2(n) < 0, and with the property that

lim
c→0

u′1(c) = lim
n→0

u′2(n) = ∞, lim
c→∞

u′1(c) = lim
n→b

u′2(n) = 0.

The constant b > 0 represents the fertility limit which agents can reach. To sim-
plify notation, time dependence of all variables is suppressed. Agents allocate their
available unit of time between labor effort l and child-rearing φ(n), with φ a twice
continuously differentiable function such that

φ(0) = 0, φ(b) = 1, φ′(n) > 0, φ′′(n) ≥ 0.

Each agent has access to a technology y described by a production function of the
form f(k, l) = g(k)l, where g is a twice continuously differentiable function with

g(0) = 0, g′(k) > 0, g′′(k) < 0, lim
k→0

g′(k) = ∞, lim
k→∞

g′(k) = 0.

The particular case of g(k) = Akα, 0 < α < 1, A > 0, was studied in [5]. In this
model, agents face two constraints. The first is a time allocation constraint,

l + φ(n) = 1,(2.2)

the second is the standard budget or resource constraint,

c +
.

k = f(k, l)− nk,(2.3)

where a dot over a variable denotes time derivative.
A representative agent’s optimization problem is given as

max

∞∫

0

e−ρtu(c, n) dt(2.4)

subject to equations (2.2), (2.3), and k(0) = k0 > 0, with ρ > 0 the constant rate of
time preference.

To perform the maximization in (2.4), we consider the current value Hamiltonian

H(k, c, n, λ) = u1(c) + u2(n) + λ[g(k)(1− φ(n))− c− nk],
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where λ represents the co-state variable associated to (2.3). Applying the Pontrya-
gin maximum principle yields the following first-order necessary conditions for the
optimization problem

.

k = Hλ ⇒
.

k = g(k)(1− φ(n))− c− nk,(2.5)
Hc = 0 ⇒ u′1(c) = λ,(2.6)
Hn = 0 ⇒ u′2(n) = λ[g(k)φ′(n) + k],(2.7)

.

λ = ρλ−Hk ⇒
.

λ = λ[ρ + n− g′(k)(1− φ(n))],(2.8)

where the subindex denotes the variable with respect to which the partial derivative
is taken, plus the transversality condition

lim
t→∞

e−ρtλk = 0.(2.9)

3 Existence of steady states

To investigate the dynamic of our model, we use equations (2.6) and (2.7) to express
the co-state variable λ and the fertility rate n as a function of the state variable k
and the consumption c.

Proposition 1.

i) λ = λ(k, c); λk = 0 and λc < 0.

ii) n = n(k, c); nk < 0 and nc > 0. Moreover

[g(k)φ′(n(k, c)) + k]u′1(c) = u′2(n(k, c)).(3.1)

Proof. i) Immediate from (2.6). ii) Set

F (k, c, n) = [g(k)φ′(n) + k]u′1(c)− u′2(n).

Evidently (2.7) gives F (k, c, n) = 0. Since for any (k0, c0) ∈ R2
+,

Fn(k0, c0, n) = g(k0)φ′′(n)u′1(c0)− u′′2(n) > 0,

lim
n→0

F (k0, c0, n) = −∞, lim
n→b

F (k0, c0, n) = [g(k0)φ′(b) + k0]u′1(c0) > 0,

we have that the Implicit function theorem [6] implies that there exists a unique
differentiable function n = n(k, c) in the positive orthant of the (k, c)-plane such
that F (k, c, n(k, c)) = 0. In particular, this gives (3.1). The chain rule applied to
F (k, c, n(k, c)) = 0 yields nk = −Fk/Fn and nc = −Fc/Fn. The result now follows
from being

Fk = [g′(k)φ′(n) + 1]u′1(c) > 0, Fc = [g(k)φ′(n) + k]u′′1(c) < 0,

Fn = g(k)φ′′(n)u′1(c)− u′′2(n) > 0.
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Corollary 1. Let (u′2)
−1 be the inverse function of the map n → u′2(n). Then

n(k, c) = (u′2)
−1 {[g(k)φ′(n(k, c)) + k]u′1(c)} .(3.2)

Moreover, for any k0 ∈ R+, lim
c→0

n(k0, c) = 0 and lim
c→∞

n(k0, c) = b.

Proof. There exists (u′2)
−1 since n → u′2(n) is monotone decreasing. So (3.2) is

immediate from (3.1). Let k0 ∈ R+. Then lim
c→0

n(k0, c) = (u′2)
−1(∞) = 0, and

lim
c→∞

n(k0, c) = (u′2)
−1(0) = b.

Proposition 2. The following system




.

k = g(k)(1− φ(n(k, c)))− c− n(k, c)k,

.
c = [ρ + n(k, c)− g′(k)(1− φ(n(k, c)))] u′1(c)/u′′1(c),

(3.3)

describes the dynamic behaviour in the (k, c)-plane of the system of necessary con-
ditions for an optimal program together with k(0) = k0 > 0 and the transversality
condition (2.9).

Proof. Differentiating (2.6) with respect to time yields u′′1
.
c =

.

λ. Hence the statement
follows from Proposition 1.

Steady states of (3.3) are reached when
.

k =
.
c = 0. If we set

F1(k, c) = g(k)(1− φ(n(k, c)))− c− n(k, c)k,

F2(k, c) = ρ + n(k, c)− g′(k)(1− φ(n(k, c))),

then this is equivalent to write F1(k, c) = 0 = F2(k, c).

Lemma 1. F1(k, c) = 0 determines a unique differentiable curve c = c1(k) on (0,∞)
such that lim

k→0
c1(k) = 0 and c1(k) > 0 for all k > 0.

Proof. For any k0 > 0, Corollary 1 implies

lim
c→0

F1(k0, c) = g(k0) > 0, lim
c→∞

F1(k0, c) = −∞.

Moreover, for all c ∈ (0,∞) it is

(F1)c = −[g(k)φ′(n(k, c)) + k]nc − 1 < 0.

Thus the Implicit function theorem states that F1(k, c) = 0 determines a unique dif-
ferentiable function c = c1(k) for all k ∈ (0,∞) and F1(k, c1(k)) = 0. As n(0, c1(0)) =
(u′2)

−1(0) = b, by taking k → 0 in F1(k, c1(k)) = 0, it follows that lim
k→0

c1(k) = 0 .

Lemma 2.

F2(k, c) = 0 determines a unique differentiable curve c = c2(k) on (0, k̄) such that
lim
k→k̄

c2(k) = 0, with k̄ > 0 denoting the unique solution of the equation g′(k) = ρ.

Furthermore, if (u′1)
−1 denotes the inverse function of the map c → u′1(c), then

c2(k) = (u′1)
−1{u′2[g′(k)(1− φ(n(k, c2(k))))− ρ]/[g(k)φ′(n(k, c2(k))) + k]}.
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Proof. Existence and uniqueness of k̄ follow from being k → g′(k) a map monotoni-
cally decreasing to zero. Since for any k0 ∈ (0, k̄),

lim
c→0

F2(k0, c) = ρ− g′(k0) < 0, lim
c→∞

F2(k0, c) = ρ + b > 0,

and

(F2)c = [1 + g′(k)φ′(n(k, c))]nc > 0

for all c ∈ (0,∞) and k ∈ (0, k̄), the Implicit function theorem yields that the equation
F2(k, c) = 0 determines a unique differentiable function c = c2(k) for all k ∈ (0, k̄),
and F2(k, c2(k)) = 0. As g′(k̄) = ρ, for k → k̄ in F2(k, c2(k)) = 0, we get

lim
k→k̄

n(k, c2(k)) = −ρ lim
k→k̄

φ(n(k, c2(k))).

From this we must have lim
k→k̄

n(k, c2(k)) = 0. Therefore, by Corollary 1, it follows

lim
k→k̄

c2(k) = 0. Finally, the map c → u′1(c) is monotone decreasing and so it has an

inverse. The statement comes from (3.2) and F2(k, c2(k)) = 0.

The previous Lemmas provide an information on how the curves F1(k, c) = 0 and
F2(k, c) = 0 divide the positive orthant of the (k, c)-plane. On the curve c = c1(k),
it is

.

k = 0. Hence, the first quadrant of the (k, c)-plane is separated into two parts:
.

k < 0 above the curve c = c1(k) and
.

k > 0 below the curve c = c1(k). On the curve
c = c2(k), we have

.
c = 0. So, the first quadrant of the (k, c)-plane is separated into

two parts:
.
c < 0 above the curve c = c2(k) and

.
c > 0 below the curve c = c2(k).

It is now immediate the next result which establishes a sufficient condition for the
existence of nonzero steady states equilibrium.

Proposition 3. Under the following limit condition

lim sup
k→0

c2(k) > 0,(3.4)

there exists at least a nonzero steady state for the dynamical system (3.3).

Corollary 2. Condition (3.4) is equivalent to

lim inf
n→b

u′2(n)/g(k(n)) < ∞,

where k(n) = (g′)−1{(ρ + n)/(1− φ(n))}.

Proof. Lemma 2 yields lim sup
k→0

c2(k) > 0 if and only if lim inf
k→0

u′1(c2(k)) < ∞. From

F2(k, c) = 0, we see that k ≡ k(n) = (g′)−1((ρ + n)/(1−φ(n))). So k → 0 if and only
if n → b. From (3.2) we get that u′1(c) = u′2(n)/(g(k)φ′(n) + k). As lim

k→0
g(k)/k = ∞

and φ′(b) > 0, the statement follows immediately.
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From Arrow’s theorem [1], we know that if the maximized current-value Hamil-
tonian, defined as

H0(k, c) = max
n,λ

H(k, c, n, λ)

= u1(c) + u2(n(k, c)) + λ(k, c)[g(k)(1− φ(n(k, c))− c− n(k, c)k]

is concave in the state variable k, given the co-state variable λ, then the first order
conditions, together with a transversality condition, are necessary and sufficient to
characterize the maximum. As

H0
k(k, c) = λ(k, c)[g′(k)(1− φ(n(k, c)))− n],

for this to be true it must hold the condition that the marginal product of capital
minus the population growth rate is monotonically decreasing in capital. However,
in this model, this condition does not hold and so multiple steady states equilibrium
may emerge.

Proposition 4. If the dynamical system (3.3) has a unique nonzero steady state,
then this is a saddle point. If (3.3) has a finite number of nonzero steady states, then
the rightmost nonzero steady state is a saddle point.

Proof. Let k∗ ∈ (0, k̄) be the unique point of intersection of the curves c = c1(k) and
c = c2(k). Since this intersection corresponds to the nonzero steady state of (3.3), if
we set c∗ = c1(k∗) = c2(k∗), then (k∗, c∗) is the unique steady state of (3.3). As c1(k)
is over c2(k) when k approximates k̄, it follows that c1(k) < c2(k) when 0 < k < k∗,
and c1(k) > c2(k) when k∗ < k < k̄. Therefore the first quadrant of the (k, c)-plane is
separated into four regions and we see that (k∗, c∗) is a saddle point by phase portrait
analysis. Now let assume that the dynamical system (3.3) has a finite number of
nonzero steady states. Let (k∗1 , c∗1) be the steady state on the extreme right of the
(k, c)-plane. The curve c = c1(k) is above the curve c = c2(k) on the interval (k∗1 , k̄),
and below the curve c = c2(k) on the interval (k∗1−δ, k∗1), for δ > 0 chosen sufficiently
small. So proceeding as before we get the statement.

If the dynamical system (3.3) has a unique nonzero steady state, then the unique
saddle path is the optimal growth path. If it has multiple nonzero steady states, then
the steady state on the extreme right is a saddle point, and the saddle path is the
optimal growth path for the per capita capital. Moreover, as the next result confirms,
the steady state with higher per capita capital has higher per capita consumption and
lower fertility.

Proposition 5. Let (k∗1 , c∗1) and (k∗2 , c∗2) be two nonzero steady states of the dynam-
ical system (3.3). Let n∗i = ni(k∗i , c∗i ), i = 1, 2. If k∗1 < k∗2 , then c∗1 < c∗2 and n∗1 > n∗2.

Proof. Since the function k = k(n) is monotonically decreasing, it has an inverse.
Hence k∗1 = k(n∗1) < k(n∗2) = k∗2 yields n∗1 > n∗2. From F1(k, c) = 0 we have

c∗2 − c∗1 = [g(k∗2)− g(k∗1)](1− φ(n∗2)) + g(k∗1)(φ(n∗1)− φ(n∗2))− n∗2k
∗
2 + n∗1k

∗
1

= [g(k∗2)− g(k∗1)](1− φ(n∗2)) + g(k∗1)(φ(n∗1)− φ(n∗2))− n∗2(k
∗
2 − k∗1) + k∗1(n∗1 − n∗2)
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= [g′(ξ)(1− φ(n∗2))− n∗2](k
∗
2 − k∗1) + [g(k∗1)φ′(η) + k∗1 ](n∗1 − n∗2) > 0,

where ξ ∈ (k∗1 , k∗2) and η ∈ (n∗2, n
∗
1). Note that F2(k, n) = 0 and k → g′(k) monotone

decreasing imply g′(ξ)(1− φ(n∗2)) > g′(k∗2)(1− φ(n∗2)) = ρ + n∗2.
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