
Cryptography based on Chaotic
Synchronization: Round III

P G Vaidya and Sajini Anand

National Institute of Advanced Studies, Indian Institute of Science Campus,
Bangalore 560 012, Email: pgvaidya@nias.iisc.erent.in

Abstract. This paper discusses cryptography based on the property
of chaotic synchronization. Specifically, it is about Round III of such a
cryptographic method. Round I showed the feasibility of using chaotic
synchronization for cryptography. Round II consisted of a method to
counter attack. This paper is Round III and shows how to counter the
counter attacks. First, we show numerical evidence that synchronization
is possible between two Lorenz systems if one system sends information
about x0 at a slower rate. The second system evolves on its own, except
that when it receives a signal from the first system, it replaces its own
value of y0 by the received x0. We have found that the two systems
eventually synchronize, but often after a long time. Therefore, we have
devised a technique to speed-up this synchronization. Once this is done, it
is possible for the authorized receiver (with the possession of the initial
super-key) to keep synchronizing with slowly sampled inputs, whereas
the known methods of Round II do not help an eavesdropper.

Keywords: Chaotic Cryptography, Synchronization, Secure Communication,
Super-key.

1 Introduction

One of the most well known characteristics of chaotic system is its sensitivity
to initial conditions. It was therefore a surprise to see the result, first reported
by Pecora and Caroll [1] that chaotic systems can be synchronized sending only
a part of the state space information from one system to another. Soon it was
suggested [2, 3] that this can be used to create keys for cryptography using the
unsent state spaces (Round I). This system was first used in connection with
the Lorenz equation. The assumption was that access to the sent information is
impossible without knowledge of the three parameters of the equation. This is
why the knowledge of the three parameters is known as the super-key. Exhaustive
search for this key from the existing data is time consuming and can easily be
countered by changing the key frequently.

However, in Round II, it was shown that this cryptosystem is easily breakable
and the super-key can be found in a very rapid manner from the synchronizing
signal. This was possible if the synchronizing sampling rate. In that case, a new



method to calculate the derivatives of the variables was used to arrive at a non-
linear equation for the super-key. This problem was then embedded in a higher
dimension to get a linear equation. The solution rapidly gave the super-key.

For Round III, we wanted to synchronize the system by sending signals at
such large intervals that the methods of Round II would fail.

However, we found that if the synchronizing signals are not very frequent,
the systems synchronize but it takes a very long time. Therefore, our main
result is about how to force synchronization quite rapidly. Once this is done, the
sender and receiver can frequently communicate and change the parameters of
the equation so that the task of the eavesdropper becomes even more difficult.

In what follows, first we would briefly review these developments of Round
I and II. Then, we would describe the new results which makes it possible to
counter the results of Round III.

2 Round I: Feasibility of using Chaotic Synchronization
for Secure Communication

We will assume that we have a sender (“Alice”) who generates some data using a
differential equation. As a specific example, we will consider the Lorenz equation:

dx0

dt
= σ(x1 − x0) (1.1)

dx1

dt
= ρx0 − x1 − x0x2 (1.2)

dx1

dt
= x0x1 − βx2 (1.3)

The parameters of this equation are α, ρ and β. These three constitute what
is collectively know as the Super-key. We assume that the authorized receiver
(“Bob”) has received this super-key with an alternative method (typically a
public-key method such as RSA). We will assume that an eavesdropper does not
know the super-key.

Now, let us represent Bob’s system by

dy0

dt
= σ(y1 − y0) (2.1)

dy1

dt
= ρy0 − y1 − y0y2 (2.1)

dy2

dt
= y0y1 − βy2 (2.1)

In the original system by Pecora and Caroll [1] Bob’s y0 was completely over-
ridden by Alice’s x0. So Bob really had only two equations

dy1

dt
= ρx0 − y1 + x0y2 (3.1)



dy1

dt
= xoy1 − βy2. (3.2)

In the system in Round III, we will continue to use the full equations for Bob,
except that we have an option to override his y0 by x0 whenever information
about x0 is available.

Coming back to Round I, it was found that after a passage of time (which
was later shortened [3])

y1(t) = x1(t)

and
y2(t) = x2(t).

This is known as synchronization.
This was at first a surprise because the systems are chaotic. In [2], this

property was proven by using Lyapunov function and it was also suggested for
the first time that this can be used for cryptography (Fig. 1).

The suggestion was to use the unsent x1(t) and x2(t) to create keys. These
methods were further illustrated in (for example, see [4,5,6]).

Fig. 1. Alice sends x0(t) on an open channel to Bob. Eventually Bob’s system will
synchronize with Alice, i.e. x1(t) = y1(t) and x2(t) = y2(t)

Alice also uses x1(t) and/or x2(t) to generate keys. These keys are used to
encrypt a message which is also sent on the open channel. Bob, synchronizes
with Alice and then uses y1(t) and y2(t) to get the key sequences and decrypts
the message.

3 Round II: Breaking of the Super-key

In [7] it was shown that an eavesdropper can determine the super-key from the
knowledge of x0(t) alone.



This can be done with a very small segment of x0(t). This was important
because Alice and Bob, once synchronized, can rapidly communicate changes in
the super-key.

The breakthrough was achieved by first transforming the Lorenz equation to a
canonical form. Then they used a new method to find highly accurate derivatives
from data. Next, they transformed a nonlinear equation for the super-key to a
linear form by embedding it in four dimensions. The final equations were solved
by using the generalized inverse. This method used the fact that x0(t) is sent to
Bob in a virtually continuous manner (in fact, the theory assumed a continuous
signal). In any case, the samplings were quite dense. It was mentioned in their
paper that if the samples are not dense the method fails.

At that stage, this was not a serious objection. Because, if the samples are
not frequent, the systems take a long time to synchronize and Alice has no idea
whether Bob has synchronized. Even the method of [3], which speeded up this
procedure, assumed that the sampling was quite fast.

4 Round III: Development of a System which is Immune
to Round II

Round III depends on sending only intermittent samples of x0(t) on the open
channel. First, we would show that in this case, synchronization is still possible.
Then, we would show how to speed this process. To see how synchronization is
possible, we generated Alice’s equations x0(t), x1(t), x2(t) using equations (1).

Parameters of the system are (σ = 10.0, β = 8/3, ρ = 29.75) and the initial

conditions are




1.874
2.056
19.142




Bob does not know these initial conditions, except for x0 which is received.
He uses the full equations (2). When he receives an information from Alice,

he resets y0 to the value of x0 received.
In the first case shown in Figs 2 and 3. Alice’s trajectory was calculated (using

the Runge-Kutta procedure), at every 0.0001 second. However, information was
sent to Bob every 0.1 second. It can be seen from Figure 3 that it takes at least
5 seconds for the two to synchronize. If his initial guess is different, it might take
less time or it might take longer. Alice has no way to know when this has taken
place. If the information is sent at a longer interval, it takes even longer time to
synchronize.

5 Rapid Synchronization

In this section, we would show how synchronization is possible with only first
three samples from Alice.

To get the overall idea behind this, consider Fig. 4. In this concept, we con-
ceive of a map from initial conditions in the usual state space of x0, x2, x2 and



Fig. 2. Alices signal Vs Bob signal as a function of time. Bob’s trajectory eventually
synchronizes with Alice after along time

Fig. 3. The difference of Bob and Alices trajectories plotted against time. Bob’s tra-
jectory eventually synchronizes with Alices

a new state space constructed from the samples of x0. Here, (for the case of
samples being sent every 0.1 seconds).

S0 = x0(0)
S1 = x0(0.1)
S2 = x0(0.2).

The main idea is that if we choose some other initial conditions in (x0, x1, x2)
space, we would get another point in the S0, S1, S2 space. In fact, in all prob-
abilities, Bob chooses another. At that point he can be sure that his x0 (and
therefore S0) would agree with Alice’s but x1, x2 (or as we have used the notation
y1, y2) would be different.

The main idea is to look at the S picture and find how Alice and Bob find a
correction for Bob’s initial condition.

Once again the approach of trial and error runs into enormous difficulties. The
method which works here can be seen as a generalization of Newton-Raphson
method of higher dimension.



Fig. 4. A sketch of a map between initial conditions and measurements x0 at t = 0,
0.1 and 0.2. Bob’s guess results in discrepancy in S space

Fig. 5. Map of Alice’s, Bob’s and his neighbors initial conditions and observations

So essentially Bob starts with some initial guess and generates some trajec-
tories quite nearby him. Based upon these trajectories what he tries to do is to
develop a relationship between deviations from his own trajectory in y1 and y2

dimension and how they relate to the deviations in the S components at t = 0.1
and 0.2 secs respectively. We can see that the errors in the initial trajectories
lead to discrepancies in the observations of the component later. If the errors
are small, then the discrepancies later would be linearly related to these errors
and can be represented by a matrix. This matrix can be inverted; therefore
from errors we can guess back what the initial discrepancies were. Using the
same procedure, Bob doesn’t know where Alice has started in terms of x1 and
x2. But Bob does know what discrepancies occur with the Alices signals in his
own trajectories. Using those discrepancies and the same inversion matrix, Bob
can improve his case. If Bob’s origin is fairly close to Alice’s, then the case is
improved almost immediately to the exact case. But if Bob is farther, several
iterations would be needed. It has been found that when every 1000 sample is
taken, convergence took place in every case no matter where Bob started his
trajectory. But in the case of every 5000 samples such convergence require that



the region needed to be split in to different regions and then find out which
among them leads to convergence.

Specially, let us take two additional trajectories which in principle start very
close to Bob’s initial conditions. He knows where he started and where the
neighbors started. Bob should know the deviation from the distance between
him and his neighbors, which leads to the deviations in his y0 component and
his neighbors and hence the relation between those deviations and the initial
conditions. We could do this in principle by taking extremely small deviations
from Bob’s starting point, using exact equations and finding the transfer matrix.
In practice this can be accomplished much better by taking the Jacobian of the
non linear equation over a very small region. This scheme is shown in Figure 5.

Returning to Fig. 4, Bob does not know exactly where Alice starts in x0, x1, x2

space. He does choose y0 = x0 and some y1 and y2. Now, he runs a simulation
using equation (2) and arrives at a point in the S space. In the S space at t = 0,
the values of S0 for both are identical. Let us assume that at the next observation
at t = h (e.g. h = 0.1 sec) Bob’s y0 is (S1− δ) and at the next one at (t = 2h) it
is (S2 − µ). We would form a column vector using this derivation, called Jump.
So,

Jump =
[

S1 − (y0)h

S2 − (y0)2h

]
=

[
δ
µ

]
. (4)

Consider one of the neighbors of Bob. Assume that its trajectory is given by



y0(t) + η0(t)
y1(t) + η1(t)
y2(t) + η2(t)


 .

If η’s are very small, the equation for them can be found from the Jacobian of
Bob’s equation. Thus

d

dt




η0

η1

η2


 =




−σ σ 0
(ρ− y2) −1 −y0

y1 y0 −β







η0

η1

η2


 . (5)

We can solve 3 sets of equations simultaneously. One for Bob and two others
which both follow equation (5). For both the neighbors η0 is zero. Since we can
extend the linearization, we can choose η1 = 1, η2 = 0 for one neighbor and
η2 = 1 for the other.

Now, define matrix A as

A =
[

(η0)h (η′0)h

(η0)2h (η′0)2h

]
(6)

where the prime is used for the second neighbor.
The A matrix tells us how unit derivations in x1 and x2 initial conditions

transform into derivations in S1 and S2.
If linearity were to prevail the initial error in Bob’s position:

Error =
(

y1(0)− x1(0)
y2(0)− x2(0)

)
(7)



will also get multiplied by the same matrix so that

Jump = A · Error. (8)

Therefore,
Error = A−1 · Jumb (9)

Corrected y =




y0

y1 + Error0

y2 + Error1


 . (10)

In general, linearity will not extend to Alice’s position. So, following the spirit of
Newton–Raphson method, he chooses the corrected value and iterate again. If
this procedure does not converge, he selects an initial condition from a different
part of the state space.

6 Numerical Results

We continue with equation (1) for Alice. We use Runge-Kutta procedure and
find x at intervals of 10−4 sec. Initial conditions were chosen at




1.874
2.056
19.142


 .

In the first simulation, we used h = 0.1 sec. Therefore

S0 = x0(0); S1 = x0(0.1); S2 = x0(0.2).

Bob knows S0, S1 and S2.
We choose several initial guesses for Bob. One which was quite for away from

Alice was 


18.46
0
0


 .

(Of course, y0 = x0 = S0, because Bob knows it.)
The iteration procedure worked quite well. Bob’s predicted trajectory is

shown in Fig. 6. The derivations shows in Fig. 7 shows that the synchronization
is almost perfect.

Our second simulation used the same initial conditions for Alice but h was
0.5 seconds, so that

S0 = x0(0); S1 = x0(0.5); S1 = x0(1.0).

Now if Bob starts with the guess



18.46
0
0


 .



Fig. 6. Evolution of x0 and predicted y0 for h = 0.1 seconds

Fig. 7. State space for x and y

Fig. 8. Difference in x0 and y0

it does not converge. However, there is a fairly large neighborhood of initial
conditions around Alice’s conditions for which convergence takes place. So, using



a strategy akin to simulated annealing, we soon arrive at an initial condition



18.46
1

16.5


 .

In this case, the synchronization is once again quite good. This is shown in
Figs 9, 10 and 11.

Fig. 9. State space for h = 0.5 second

Fig. 10.

7 Conclusions

The theory of chaotic synchronization assumes a continuous feedback from sender
to receiver. In practice we send digitally sampled versions, with a fairly high sam-
pling rate. But an eavesdropper can find the super-key in such a case as shown in



Fig. 11.

[3]. So we counter this possibility by infrequent sampling. Here receiver achieves
rapid synchronization and once the systems are synchronized the super-keys can
be changed frequently. Hence eavesdropper cannot attack the private communi-
cation, at least by the published method.

References

1. L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990)
2. Rong He and P. G. Vaidya, Analysis and synthesis of synchronous periodic and

chaotic systems, Phys. Rev. A46, 7387–7392 (1992)
3. P. G. Vaidya, Monitoring and speeding up chaotic synchronization Chaos, Solitons

and Fractals, Volume 17, Number 2, July 2003, pp. 433-439(7)
4. Rong He and P. G. Vaidya, Implementation of chaotic cryptography with chaotic

synchronization, Phys. Rev. E57, 1532-1535 (1998)
5. K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Lett. 71, 65 (1993
6. M. Lakshmanan and S. Rajasekar, Nonlinear Dynamics: Integrability, Chaos, and

Patterns, Springer-Verlag, 2003, Ch. 16, India
7. P.G. Vaidya and Savita Angadi, Decoding chaotic cryptography without access to

the super key. Chaos, Solitons and Fractals 17(2-3), 379-386, (2003)


