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Abstract. Modular exponentiation in an abelian group is one of the
most frequently used mathematical primitives in modern cryptography.
Batch verification is to verify many exponentiations simultaneously. We
propose two fast batch verification algorithms. The first one makes use
of exponents with small weight, called sparse exponents, which is asymp-
totically 10 times faster than the individual verification and twice faster
than the previous works without security loss. The second one is ap-
plied only to elliptic curves defined over small finite fields. Using sparse
Frobenius expansion with small integer coefficients, we propose a com-
plex exponent test which is four times faster than the previous works.
For example, each exponentiation in one batch requires asymptotically
9 elliptic curve additions in some elliptic curves for 280 security.

Keywords: Batch verification, modular exponentiation, sparse expo-
nent, Frobenius map.

1 Introduction

Batch verification is an algorithm to verify many exponentiations simul-
taneously: Let G be an abelian group with a generator g. Given a batch
instance of n exponentiation pairs {(x1, y1), (x2, y2), . . . , (xn, yn)} with
xi ∈ Z and yi ∈ G, the algorithm checks at once if gxi = yi for all i.
The small exponent test is to check if g

∑n
i=1 xisi =

∏n
i=1 ysi

i for randomly
chosen ` bit integers si when the screening parameter is ` [2]. We extend
the small exponent test to more general exponent sets and improve the
performance using sparse exponents.

Our idea is to take random exponents which have smaller Hamming
weights and longer bit sizes. The probability that a wrong batch instance
passes the proposed test with an exponent set S is at most 1/|S|, as we
will show, when all elements in S are distinct modulo the order of a given
group. Therefore it is important how to take a exponent set S and how to



maximize the cardinality of elements that are distinct modulo the order
of the group.

If we take S to be a set of non-negative integers in Zp with Hamming
weight k ≤ 19 from Zp for an 160 bit prime p, |S| is greater than 280. In
this case, our sparse exponent test requires at most 208 + 19n multipli-
cations to verify n exponents with security 280, while the small exponent
test requires 272+40n multiplications at average. Another variant of the
algorithm is to use sparse signed binary exponents. It is proper for ver-
ifying scalar multiplications on elliptic curves where a subtraction is as
efficient as an addition. More savings are obtained by using even larger
exponents than the order of the underlying group. It is applicable to sig-
nature schemes the order of whose underlying group is secret such as RSA
and Guillou-Quisquater (GQ) signatures [9].

We can generalize the exponents set to complex endomorphisms in
elliptic curves. When an elliptic curve is defined over a small finite field
Fq, we have a very efficient complex endomorphism, called the Frobe-
nius map. We take as an exponent set S a polynomial of the Frobenius
map with small integer coefficients. In most previous works on Frobenius
expansions, the set of coefficients have at most q cardinality due to the
uniqueness of representation (For more references, refer to [14]). If we
consider this coefficient set, we have the same efficiency with the sparse
exponent set. In our method, however, we enlarge the coefficient set to
all integers whose absolute values are less than q2/2 and coprime to q
and prove that each element of S is distinct as an endomorphism on the
cyclic subgroup of the elliptic curve if each element of S has no adjacent
non-zero coefficients. As a result, we obtain the batch verification four
times faster than the previous works. For example, each exponentiation
requires asymptotically 9 elliptic curve additions in Koblitz curves for 280

security.

Batch Cryptography Batch cryptography was first introduced by Fiat [8].
He introduced an algorithm to obtain two exponentiations by one full ex-
ponentiation and several small exponentiations. More techniques on batch
computations can be found in [3, 12].

Batch verification of exponentiations was first proposed by Naccache
et al. [15] to verify efficiently modified DSA signatures. They used the
subset consisting of e-bits prime numbers for small e as an exponent set.
Yen and Laih [18] improved the test by adopting small exponents set
{0, 1}` for the screening parameter `. Bellare et al. [2] gave systematic
approaches with two more tests: the atomic test uses S = {0, 1} and the



bucket test is the combination of the atomic test and the small exponent
test. Later, Boyd and Pavlovski [4] indicated the weakness of the tests
when they are used in non-prime order subgroups.

Current batch verifications are efficient for verifying many signatures
by one signer at once. The applications include: 1)an authenticated database
in which each data is signed by a data owner [13], 2) electronic commerce
where shops or banks need to verify all the coins, usually issued by one
bank, very efficiently, and 3) voting protocols where the tally needs to
authenticate huge number of votes and an effective vote should be ac-
companied by the signature signed by the voting center.

Organization This paper is organized as follows: In Section 2, we in-
troduce general approach for batch verifications and discuss its security.
In Section 3, we propose a batch verification algorithm using sparse bi-
nary exponents and its variants using sparse signed binary exponents and
sparse long exponents. In Section 4, we consider complex exponents on
elliptic curves. We conclude in Section 5.

2 Batch Verification

For the definition of batch verification, we will follow the notation in
[2]. Let G be a cyclic group of order p with a generator g and R(·) a
Boolean relation on the set of instances {(x, y)|x ∈ Zp, y ∈ G}. We say
that R(x, y) = 1 or the instance (x, y) is correct if and only if gx = y. A
batch instance for relation R is a sequence inst1, · · · , instn of instances
for R. We say that the batch instance is correct (R(inst1, . . . , instn) = 1)
if R(insti) = 1 for all i = 1, . . . , n, and incorrect (R(inst1, . . . , instn) = 0)
if there is some i ∈ {1, . . . , n} for which R(insti) = 0.

Definition 1. A batch verifier for relation R is a probabilistic algorithm
V that takes a batch instance X = (inst1, . . . , instn) for R and a screening
parameter `, and satisfies:

1. If X is correct then V outputs 1.
2. If X is not correct then the probability that V outputs 1 is at most

2−`.

In this case, we say the error of V is 2−`.

Now we consider a subset S of Z such that the difference of any two
elements of S is coprime to p. Then we define a batch verifier VS as Figure
1.



Input: A batch instance {(x1, y1), . . . , (xn, yn)} with xi ∈ Zp and yi ∈ G.
Check: That gxi = yi for all 1 ≤ i ≤ n.

1. Choose n elements s1, . . . , sn randomly from S.
2. Compute g

∑n
i=1 sixi and

∏n
i=1 ysi

i .
3. Accept if they coincide, else reject.

Fig. 1. The Batch Verifier VS with a Exponent Set S

Note that any correct batch instance always passes the test, but even a
wrong instance may pass the test with some probability. If we let αi ∈ Zp

be such that gαi = yi/gxi , the test is passed if and only if g
∑n

i=1 siαi = 1.
Thus the error of the batch verifier VS is

Err(VS) = max
α

|{(s1, . . . , sn) | g
∑

siαi = 1 for si ∈ S}|
|{(s1, . . . , sn)|s1, . . . , sn ∈ S}|

, (1)

where α = (α1, . . . , αn) runs through all but (0, 0, · · · , 0) in Zn
p , if all

elements of S are equally likely to be chosen in the test. Now we introduce
the formula for Err(VS).

Theorem 1. Let S be a subset of nonnegative integers such that the dif-
ference of any two elements in S is coprime to p. Then we have

Err(VS) ≤ 1/|S|.

Proof. Consider an instance of n exponentiation pairs (x1, y1), . . . , (xn, yn)
with xi ∈ Zp and yi ∈ G where yi = gxi+αi for some αi ∈ Zp. Given a
test parameter (s1, . . . , sn) ∈ Sn, the instance passes the test if and only
if gs1α1+···+snαn = 1.

If the instance contains an incorrect pair, there must be at least one
i such that αi 6≡ 0 mod p. In that case, we have at most one si satisfying
siαi ≡ −

∑n
j 6=i sjαj mod p, because any two elements si, s

′
i satisfying the

equation should have gcd(si−s′i, p) 6= 1 which contradicts the assumption
of S. Hence, for any given α, we have

|{(s1, . . . , sn)|
∑

siαi ≡ 0 mod p for si ∈ S}| ≤ |S|n−1.

From Equation (1), we have Err(VS) ≤ 1/|S|. ut

In [2], Bellare et al. suggested three tests. In the atomic test, S is taken
to be {0, 1}. In the small exponent test, S is taken to be {s ∈ Z|0 ≤ s <
2`} for a given screening parameter `. The bucket test is the combination
of the atomic test and the small exponent test. In this paper, we consider
different types of a set consists of sparse exponents.



2.1 How to Select Screening Parameters

The security level of today’s signature schemes is usually set on 280, which
is equivalent to that of 1024-bit RSA or 160-bit elliptic curve cryptosys-
tem. But, the screening level of batch verifier can be different because even
the owner of signing key can produce a set of wrong signatures that passes
the verifiers, with at most 2−` probability for the screening parameter `.
In [2] and [4], ` = 60 was proposed for most practical use.

Usually, selection of the screening parameter depends on the situation
where each application deploys. If an application performs only small
number of verifications, it would be very unlikely to accept the wrong
instance in its lifetime even with the small screening parameter. When
we take the small screening parameter, the batch verification algorithm
is more efficient. Hence it is desirable to set the screening parameter as
small as possible in tolerable ranges for each application.

We may consider an iteration of several weak batch verifications to
achieve stronger batch verifications. If we perform t times the batch ver-
ification with screening level ` independently, then the screening level
becomes t`. This enables us a parallelization of batch verification. More-
over we can design a cascade filter of signatures consisting of successive
weak batch verifiers. If the test fails in the first filter, the set of signatures
should be moved to the step of identifying wrong signatures. If the test
succeeds, it goes to the second filter and so on until the intended screening
level is achieved. This would be useful for fast screening DoS attacks.

Note that when there is only one invalid signature in the set of n
instances and the batch verifier fails the verification, we can identify the
invalid one with at most dlog2 ne + 1 batch verifications by binary tree
search technique. If the number of wrong signatures are k, the maximum
number of batch verifications becomes k(dlog2 ne−dlog2 ke)+2dlog2 ke+1−1

3 Sparse Exponent Test

3.1 Basic Sparse Exponent Test

Let ` be the screening parameter and let the order of G be a prime p. In
sparse exponent test, we consider the set S of exponents

S = {s ∈ Z|0 ≤ s < 2blog pc, wt(s) ≤ k},

where wt(s) is the Hamming weight of s in the binary representation.
Then every element is distinct modulo p and so we have Err(VS) ≤ 1/|S|



by Theorem 1. To bound Err(VS) by 2−`, k must satisfy

|S| =
k∑

i=0

(
blog pc

i

)
≥ 2`.

Table 1 gives minimum k values for various screening parameters ` that
satisfy the above equation when blog pc = 160. Observe that k is much
less than `/4. In particular, k ≤ `/5 for ` ≤ 50.

Table 1. k values for various screening parameters when blog pc = 160

` 10 20 30 40 50 60 70 80

k 2 3 5 8 10 13 16 19

Our sparse exponent test is described in Figure 2. In order to perform
the test efficiently, we use the technique of simultaneous multiplications
as usual.

Input: (xi, yi) for 1 ≤ i ≤ n.
Check: That gxi = yi for all 1 ≤ i ≤ n.

1. Choose n random elements s1, s2, . . . , sn from S defined in Equation (3.1)
2. y ← 1 and y0 ← g.
3. s0 ← −

∑n
i=1 sixi mod p.

4. For j = blog pc to 1, do
(a) For i = 0 to n, y ← yyi if the j-th bit of si is one.
(b) y ← y2 unless j = 1.

5. Accept if y is one, else reject.

Fig. 2. Sparse exponent test using simultaneous multiplications

Table 2 gives the average numbers of operations which are required
for verifying n instances for the näıve test, the small exponent test (SE),
and our sparse exponent test (SPET). Näıve test verifies n instances inde-
pendently. In the table, Exp, Mul, and Sqr represent the exponentiation,
the multiplication, and the squaring on G respectively. P denotes a prime
field (Sqr=0.8 Mul) and B-PB and B-NB denote a binary field with a
polynomial basis (Sqr=0.1 Mul) and a binary field with a normal ba-
sis (Sqr is for free), respectively. Multiplication modulo p operations are
ignored in total estimations.



Table 2. Average number of operations for verifying n-instances when blogpc = 160.

Näıve SE SPET(ours)

Exp n 1 0

Mul 0 `n/2 kn + blogpc/2

Sqr 0 ` blogpc

Total P 208n 10n + 224 3n + 208

(in Mul) B-PB 96n 10n + 98 3n + 96

` = 20 B-NB 80n 10n + 80 3n + 80

Total P 208n 40n + 272 19n + 208

(in Mul) B-PB 96n 40n + 104 19n + 96

` = 80 B-NB 80n 40n + 80 19n + 80

Compared with the small exponent test, our method removes one
exponentiation and reduces the number of multiplications at the cost of
increasing only a small number of squarings (which is independent of n).
Moreover squaring is generally more efficient than multiplication [5, 10].3

From Table 2, we can see that our test is expected to be about 2 ∼ 3
times faster than the small exponent test as n grows.

The sparse exponent test can be applied to signature schemes based
on modular exponentiations. Especially it is useful for modified DSA as
in [15]. But we need to take primes p and q such that (p− 1)/(2q) has no
divisor less than q, and regard two group elements to be equal if they are
the same up to the sign due to the attack by Boyd and Pavlovski [4].

3.2 Bucket Test based on Sparse Exponents

The bucket test is a combination of the atomic test and the small exponent
test [2]. We can get another bucket test based on sparse exponents by
replacing the small exponent test by the sparse exponent test appearing
in the bucket test: Given an instance of n exponentiation pairs (xi, yi), n
pairs are randomly partitioned into 2m groups and the xi’s and yi’s in the
same partition are added and multiplied to form a new exponentiation
pair. Then the 2m pairs are verified using the sparse exponent test with
the screening parameter m. This procedure is repeated independently

3 According to [5, 10], the speed ratio of the squaring over the multiplication is
0.8∼0.86 for prime fields and 0.1∼0.13 for binary fields.



d`/(m − 1)e times for the screening parameter `. The m is chosen to
optimize the performance of the test.

We compare the performance of the bucket test based on sparse ex-
poents with the previous tests in Table 3. In the table, we set p to be 160
bit primes and ` = 60 as in [2]. Hence k = 13 is enough for our test. K
denotes the unit of 1000.

Table 3. Comparison of Average Numbers of Multiplications for Different Tests

n Näıve Small Exp Bucket Sparse Exp Buc.+Spar.

5 1 K 0.41 K 4.35 K 0.245 K 2.99 K

100 20 K 3.26 K 5.78 K 1.48 K 4.08 K

200 40 K 6.26 K 7.17 K 2.78 K 5.08 K

500 100 K 15.3 K 10.8 K 6.68 K 8.08 K

1K 200 K 30.2 K 16.6 K 13.2 K 13.1 K

10K 2000 K 300 K 100 K 130.1 K 85.6 K

Observe that our sparse exponent test improves the small exponent
test by a factor of about two and our bucket test based on sparse exponent
test gives better performance than the original bucket test.

3.3 A Group with Secret Order: a Composite Modulus

Let N be a product of two strong primes pN and qN such that pN =
2p′N + 1 and qN = 2q′N + 1 for two primes p′N and q′N . We assume that N
is hard to factorize. Then we may take even larger exponents than N for
batch verification.

We consider
S = {s ∈ [0, 2L)|wt(s) ≤ k},

where L is a size of the exponent set S. We may assume that the difference
of any two elements in S is coprime to φ(N)/4 = p′Nq′N . Otherwise, we
can get a nontrivial divisor of p′Nq′N or a multiple of φ(N) which gives a
factorization of N [11]. Hence we may assume that the batch verifier with
exponent set |S| has the error at most 1/|S| by Theorem 1.

The cardinality of |S| is given by

|S| =
k∑

i=0

(
L

i

)
.



For the screening parameter `, k is the minimum integer satisfying |S| >
2`. Table 4 gives several k values for various exponent sizes L and screen-
ing parameters `.

Table 4. k values for various exponent sizes L and screening parameters `

L 160 192 256 512 1024 2048

k when ` = 20 4 3 3 3 3 2

k when ` = 40 8 7 7 6 5 5

k when ` = 80 19 18 16 13 11 9

The sparse long exponent test is similar to the sparse exponent test
(Figure 2). The difference is that the order p of G is secret and the bit
length of exponents is longer. Since p is unknown, Step 3 of Figure 2
uses normal integer operations. This is useful for verifying the modified
GQ signatures. We need to modify the scheme a little bit as in the DSA
scheme [15, 4]. Let N be the product of two primes pN and qN and e be
a 160 bit integer. Take random J and compute a ≡ J−e−1

mod N . Then
the public key is (N, J, e) and the private key is (pN , qN , a).

The GQ signature for a message m ∈ ZN is (r = (ke mod N), σ =
(kah mod N)) for randomly chosen k ∈ ZN and h a hash output of m
and r. The verification is to check if σeJh ≡ r mod N . Assume we are
given n signatures (mi, ri, σi). We take n random si from S to apply our
batch verification and computes(

n∏
i=1

σsi
i

)e

J
∑n

i=1 sihi and
n∏

i=1

rsi
i ,

and verify if they are equal modulo N . It requires (L+160)blog nc
2 +2kn+80

multiplications and (L + 160)blog nc+ 2L + 160 squarings at average.
It can be also applied to the RSA, but it is efficient only when rela-

tively large public exponent is used. Some applications may require rela-
tively large public exponent e [17] to reduce the private exponent. Also
the similar technique can be applied to signatures based on strong RSA
problems. One example is one of two verification equalities in the verifi-
cation in the Cramer-Shoup signature [6].

3.4 Sparse Signed Binary Exponent Tests

In elliptic curves, subtractions are as efficient as additions. In this case,
we may consider signed binary representation of exponents. Let S be a



subset of nonnegative integers

S = {s =
blog pc−1∑

i=0

si2i ≥ 0|si = 0,±1, sisi+1 = 0},

where the number of nonzero ai is at most k. That is, an element of
S has a non-adjacent representation of the weight ≤ k and the most
significant bit is one. Note that an integer has the unique non-adjacent
form (NAF) [16]. By modifying the proof, we can show that all elements
in S are distinct modulo p.

Lemma 1. Any two elements in S are distinct modulo p.

Proof. Suppose that two elements x =
∑blog pc−1

i=0 xi2i and y =
∑blog pc−1

i=0 yi2i

in S are congruent modulo p and have different representation in NAF.
Then two elements are between zero and p− 1 and so it should be iden-
tical in Z. Let j be the first bit from the least significant bit such that
xj 6= yj . Then (x− y)/2j 6≡ 0 mod 4. This is a contradiction. ut

The cardinality of S is given in the next theorem.

Theorem 2.

|S| =
k∑

i=1

(
blog pc+ 1− i

i

)
2i−1 + 1.

Proof. We partition S into two disjoint subsets S0 and S1, where

S0 = {
blog pc−1∑

i=0

si2i ∈ S|sblog pc−1 = 0}

and S1 = S \ S0. First, we count the cardinality of S0. We choose i
positions from blog pc−i positions, each i position except the first position
from the most significant bit is filled with 01 or 01̄, and the first position
is filled with 01 because an element of S should be positive. Since they
are all distinct and covers all elements of weight i in S0, we have

|S0| = 1 +
k∑

i=1

(
blog pc − i

i

)
2i−1.

When we count the cardinality S1, we first fix the first bit of each
element by one. Then by similar argument but without the constraint on
the first position, we have

|S1| =
k−1∑
i=0

(
blog pc − 1− i

i

)
2i =

k∑
i=1

(
blog pc − i

i− 1

)
2i−1.



Using the well-known formula
(

a
b−1

)
+
(
a
b

)
=
(
a+1

b

)
, we have the lemma.

ut

In Table 5, we compare the k values for sparse binary exponents and
sparse signed binary exponents. Table 5 shows that if we use sparse signed
binary exponents, then the batch verification could be more efficient when
the screening parameter ` ≥ 40. ECDSA that is the elliptic curve analogue
of DSA is a good example that admits a sparse signed binary exponent
tests [7]. We have to slightly modify the ECDSA for batch verification in
the same way [15]. Remark that if we take an elliptic curve whose order
is prime, the Boyd and Pavlovski attack [4] can not be applied.

Table 5. k values for various screening parameters when blog pc = 160

` 10 20 30 40 50 60 70 80

k (Sparse Binary) 2 3 5 8 10 13 16 19

k (Sparse Signed Binary) 2 3 5 6 8 10 13 15

4 Complex Exponent Test

Consider an ordinary elliptic curve E defined over Fq with #E(Fq) =
q + 1− t and gcd(q, t) = 1. The Frobenius map φ is defined as follows:

φ : E(Fq) → E(Fq); (x, y) 7→ (xq, yq),

where Fq is the algebraic closure of Fq. The Frobenius map φ satisfies
φ2 − tφ + q = 0 on E(Fq). The endomorphism ring of E contains Z[φ] =
Z[x]/(x2 − tx + q). Then the norm function N(·) on Z[φ] is defined by
N(a + bφ) := (a + bφ)(a + bφ̄) = a2 + tab + qb2, a, b ∈ Z, where φ̄ is the
dual of φ corresponding to the complex conjugate of φ in C. (We may
regard φ as a complex number (t +

√
t2 − 4q)/2 and Z[φ] as a subset of

C.)
We denote E(Fqm) by the subgroup of E(Fq) consisting of Fqm-rational

points. Let G be the subgroup of E(Fqm) generated by P with a prime
order p satisfying p2 - #E(Fqm) and p - E(Fq). Then we have φm = 1 and

φm−1 + φm−2 + · · ·+ φ + 1 = 0

on the group G since G ∩ E(Fq) = {O}.



In this section, the exponent sets can be extended to this endomor-
phism ring, that is why we call complex exponents. Now we consider two
candidates for the exponent set.

S1 = {
e∑

i=0

aiφ
i | ai ∈ Z, |ai| ≤ q − 1, aiai+1 = 0},

S2 = {
e∑

i=0

aiφ
i | ai ∈ Z, q - ai, |ai| < q2/2, aiai+1 = 0},

where the number of non-zero ai is at most k.
We note that each Si is a set of generalized signed φ-adic NAF ex-

pansions. To count the number of elements in Si which are distinct as
endomorphisms of G, we need the following lemma.

Lemma 2. Let e ≥ 5 and f(x) =
∑e

i=0 aix
i be a polynomial in Z[x] with

|ai| ≤ M . If 30qe+1M2 ≤ p, f(φ)P = 0 implies that x2 − tx + q divides
f(x) in Z[x].

Proof. By division algorithm, we have gi, ri ∈ Z such that

f(x) = (x2 − tx + q)(ge−2x
e−2 + · · ·+ g1x + g0) + r1x + r0.

Let M0 = 0, M1 = M and Mi = M + |t|Mi−1 + qMi−2 for i ≥ 2. Then,
by equating the coefficients of xi, we have

|ge−2| = |ae| ≤ M1,

|ge−3| = |ae−1 + tge−2| ≤ M + |t|M1 = M2,

|ge−i−1| = |ae−i+1 + tge−i − qge−i+1|
≤ M + |t|Mi−1 + qMi−2 = Mi

for 2 ≤ i ≤ e− 1. Also we have

|r1| = |a1 + tg0 − qg1| ≤ Me,

|r0| = |a0 − qg0| ≤ M + qMe−1.

If we take M ′
i = Mi + M ′ (i ≥ 0) for M ′ = M/(|t| + q − 1), we have

M ′
i = |t|M ′

i−1 + qM ′
i−2 for i ≥ 2. This recurrence relation has the unique

solution M ′
i = c1β

i
1+c2β

i
2 where β1 and β2 are the solutions of x2−|t|x+q

in C and c1 = M ′β2+M−M ′

β1−β2
and c2 = −M ′β1+M−M ′

β2−β1
. Thus we have for i ≥ 4

|Mi| ≤ max{c1, c2}|βi
1 + βi

2|+ M ′ ≤ 21
8

qi/2M,



because

|ci| ≤
M√

4q − t2

( √
q + 1

|t|+ q − 1
+ 1
)
≤ 5

4
M

and
|βi

1 + βi
2| = |qi + 1−#E1(Fqi)| ≤ 2

√
qi

by Hasse-Weil Theorem, where E1 is E if t > 0 and the twist of E (with
q + 1 + t Fq-rational points) if t < 0. Hence we have

|r1| ≤
21
8

qe/2M

and

|r0| ≤ M + qMe−1 ≤ (1 +
21
8

q(e+1)/2)M ≤ 22
8

q(e+1)/2M.

Using this bound, we have N(f(φ)) = N(r1φ+r0) = r2
1q+tr1r0+r2

0 <
30qe+1M2. Suppose f(φ)P = O. Then N(f(φ))P = f(φ̄)f(φ)P = O and
N(f(φ)) ∈ Z, and so N(f(φ)) is divisible by p. Therefore, if we take
30qe+1M2 ≤ p, then N(f(φ)) = 0 and so r1 = r0 = 0, which completes
proof. ut

Now we can show that each element of Si is distinct as an endomor-
phism of G under some condition.

Theorem 3. If 5 ≤ e ≤ log p−2 log M−5
log q , then each element of Si is a

distinct endomorphism of G where M = 2(q−1) for S1 and M = 2b q2−1
2 c

for S2.

Proof. Suppose that f1(φ)P = f2(φ)P for two different polynomials f1(x) =∑e
i=0 aix

i and f2(x) =
∑e

i=0 bix
i in Z[x] with |ai| ≤ M/2 and |bi| ≤ M/2.

Then f1(x)− f2(x) is divisible by x2 − tx + q by Lemma 2.
Let j be the smallest index such that aj 6= bj . Then g(x) = (f1(x) −

f2(x))/xj =
∑e−j

i=0 cix
i ∈ Z[x] is divisible by x2 − tx + q. So c0 must be

a multiple of q. Let c′0 = c0/q ∈ Z. Then (g(x) − c′0(x
2 − tx + q))/x =∑e−j

i=3 cix
i−1 +(c2− c′0)x+(c1 + tc′0) is also divisible by x2− tx+ q, hence

c1 + tc′0 must be divided by q again. That is, q2 divides qc1 + tc0.
If either aj = 0 or bj = 0, then q does not divide c0 by the definition

of S1 and S2. If both of aj and bj are non-zero, then aj+1 = bj+1 = 0 and
q2 - qc1 + tc0 = tc0. In both cases, g(x) can not be divided by x2− tx+ q,
which is a contradiction. ut

The cardinality of Si is given in the next theorem.



Theorem 4. The cardinality of Si is given by

1. |S1| =
∑k

i=0

(
e+2−i

i

)
(2q − 2)i,

2. |S2| =
∑k

i=0

(
e+2−i

i

)
(q2 − q)i.

Proof. At first, we will count the cardinality of S1. The proof is similar
to the proof of Theorem 2. The difference is that a negative coefficient is
allowed in the most significant nonzero position. The number of elements
whose most significant bit is zero is

k∑
i=0

(
e + 1− i

i

)
(2q − 2)i.

The number of elements whose most significant bit is nonzero is

(2q − 2)
k−1∑
i=0

(
e− i

i

)
(2q − 2)i−1.

By summing up the above values, we have

|S1| =
k∑

i=0

(
e + 2− i

i

)
(2q − 2)i.

For the cardinality of S2, it is essentially same as the above case. Only
difference is the number of coefficients, which is q2 − q. ut

Our complex exponent test using Frobenius maps is described in Fig-
ure 3. In order to perform the test efficiently, we utilize BGMW multipli-
cations [1].

In Table 6, given a power of prime q we present the maximum e
such that all elements of Si are distinct as endomorphisms of G. Also
we compute the maximum weight k satisfying that the cardinality Si is
greater than 2` for various screening parameter `. For example, when
q = 8, the maximum e becomes 47 and we need only 9 elliptic curve
additions for each exponentiation when the number of batch instances
n is large. More precisely, to verify n exponentiations, we need 9n + 80
elliptic curve additions when a normal basis is used for representation of
field elements.



Input: (xi, Qi) for 1 ≤ i ≤ n.
Check: xiP = Qi for all 1 ≤ i ≤ n where P is a generator of E.

1. Choose n random elements σ1, σ2, · · · , σn from S1(e, k, q) or S1(e, k, q)
Denote that σi =

∑e
j=0 cjφ

j and εj = cj/|cj | for nonzero cj for each i.

2. σ ←
∑n

i=1 σixi mod (φm−1 + φm−2 + · · ·+ φ + 1).
3. R[i]← O for 0 ≤ i ≤M
4. For j = 0 to e, do

(a) For i = 0 to n, do
if cj of σi is not zero, then R[|cj |]← R[|cj |] + εjφ

j(Qi).
5. Q← R[M ], T ← R[M ]
6. For i = M − 1 to 1 do

(a) T ← T + R[i]
(b) Q← Q + T

7. Accept if Q = σP , else reject.

Fig. 3. Complex exponent test using Frobenius maps

Table 6. The maximum weight k in each S1 and S2

` 10 20 40 60 80

S1 (q = 2, e = 153) 2 3 6 10 15

S2 (q = 2, e = 153) 2 3 6 10 15

S1 (q = 4, e = 74) 2 3 6 10 14

S2 (q = 4, e = 73) 2 3 5 8 12

S1 (q = 8, e = 49) 2 3 6 9 13

S2 (q = 8, e = 47) 1 2 4 7 9

` 10 20 40 60 80

S1 (q = 3, e = 95) 2 3 6 10 15

S2 (q = 3, e = 94) 2 3 6 9 13

S1 (q = 5, e = 64) 2 3 6 9 14

S2 (q = 5, e = 62) 1 3 5 8 11

S1 (q = 7, e = 52) 2 3 6 9 13

S2 (q = 7, e = 51) 1 2 5 7 10



5 Conclusion

In this paper, we developed two batch verification algorithms using sparse
exponents with small weights. The first one makes use of exponents of
(signed) binary representation. We can take exponents whose weight is
less than `/4 with binary expansion and `/5.5 with signed binary expan-
sion while the average weight of exponents is `/2 in the small exponent
test. Hence we expect that our test is about twice faster. If we use a group
whose order is secret, e.g. RSA group, we can extend our algorithm to
allow longer exponents to reduce the weight of exponents.

The second one can be applied only to special family of elliptic curves
defined over small finite fields. It utilizes the exponents with sparse φ-adic
expansion. By enlarging the coefficients set of the expansion, we obtained
a complex exponent test much faster than sparse exponent test.
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