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Abstract

We first present a protocol which reduces 1-out-of-n oblivious transfer OTm
l to 1-

out-of-n oblivious transfer OTk
m for n > 2 in random oracle model, and show that

the protocol is secure against malicious sender and semi-honest receiver. Then, by
employing a cut-and-choose technique, we obtain a variant of the basic protocol
which is secure against a malicious receiver.
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1 Introduction

Oblivious transfer (OT) is a fundamental cryptographic primitive that may
be used in secure multi-party computations and a wide variety of other cryp-
tographic protocols. It is still an open problem if OT can be based on one-way
functions. Partial answers to this problem were given [1]. Impagliazzo and
Rudich [1] showed that a black-box reduction from oblivious transfer to a
one-way function (or a one-way permutation) would imply P6=NP. It is even
not known whether a non-black-box reduction from oblivious transfer to one-
way functions exists.
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However, a result of Beaver [2] shows that one-way functions are sufficient to
extend a few oblivious transfers into many. By this result, one could implement
a few oblivious transfers using, for example, public-key primitives[3–7], physi-
cal methods or multi-party computations, and then use one way functions for
the rest. Unfortunately, Beaver’s reduction is inherently non-black-box with
respect to the one-way function it uses and appears to be inefficient in practice.

In [8], an efficient and simpler protocol of extending oblivious transfers was
proposed in the random oracle model in black-box way. However, the reduction
in [8] is only applied to the type of 1-out-of-2 OT. It is natural to ask whether
similar things can be done to the type of 1-out-of-n OT and even more to the
more general type of k-out-of-n OT?

In this paper, we answer the above questions by constructing a new protocol
which is a modification and generalization of the protocol in [8]. The new
protocol is shown to be secure for arbitrary sender and semi-honest receiver.
The protocol may be modified so that it is secure against a malicious receiver
by applying a cut-and-choose technique similar to that used in [8].

Convention: We use capital letters to denote matrices and the corresponding
small letters to denote the entries and the boldfaced letters to denote the rows
and columns. E.g., if we use U to denote a matrix, we use uij to denote the
entry located in ith row and jth column, and ui the ith row and uj the jth
column of matrix U .

This paper is organized as follows. In section 2, we briefly introduce oblivious
transfers within the framework of secure two party computation, random ora-
cle, and black-box reduction. In section 3, by using random oracle, we propose
a protocol which securely reduces 1 out of n (n > 2) oblivious transfers with
parameters l and m to 1 out of n oblivious transfers with parameters m and
k efficiently in the semi-honest model. In section 4, we modify the protocol
presented in section 3 and obtain a new protocol which is secure against a
malicious receiver. We conclude our paper in section 5 by summarizing what
we have done.

2 Oblivious Transfer Protocols

We view oblivious transfer protocols within the more general framework of
secure two-party computation. We assume readers’ familiarity with standard
simulation-based definitions of secure computation from the literature. For
more details, please refer to [9,10].

Secure two-party computation. A secure two-party computation task
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is specified by a two-party functionality, i.e., a function mapping a pair of
inputs to a pair of outputs. A protocol is said to securely realize the given
functionality if an adversary attacking a party in a reallife execution of the
protocol can achieve no more than it could have achieved by attacking the
same party in an ideal implementation which makes use of a trusted party. In
particular, the adversary should not learn more about the input and output
of the uncorrupted party than it must inevitably be able to learn. This is
formalized by defining a real process and an ideal process, and requiring that
the interaction of the adversary with the real process can be simulated in the
ideal process.

Oblivious transfers. An OT protocol can be defined as a secure two-party
protocol between a sender S and a receiver R realizing the OT functionality.
The OT functionality discussed in this paper is defined in section 3.

The use of a random oracle. There is an augmentation to the standard
model of secure two-party computation with a random oracle H in the con-
struction of protocol. The random oracle is assumed to be a function with the
property that if a value in its domain is not queried before then the correspond-
ing function value is a random value, i.e., can not be predicted. Accordingly,
the simulation in the ideal process is required to be indistinguishable from the
real execution even if the distinguisher is allowed to adaptively make polyno-
mially many queries to the same H that was used in the process (real or ideal)
generating its input.

Reductions. A functionality f is said to be securely reduced to a function-
ality g, if a protocol for securely computing f can be designed by using the
functionality g. This protocol may be viewed as a secure reduction from f
to g. Composition theorems, e.g. from [9], guarantee that the call to g can
be replaced by any secure protocol realizing g, without violating the security
of the high level protocol. Moreover, these theorems relativize to the random
oracle model. Thus, it suffices to formulate and prove our reductions using the
hybrid model where the parties in the high level protocol are allowed to invoke
g, i.e., a trusted party to which they can securely send inputs and receive the
corresponding outputs.

Black-box reductions. In our construction of protocol, the reduction we
use is black-box reduction, i.e., the protocol and its security proof do not
depend on the implementation of low level primitive OT k

m. For comparison,
Beavers reduction [1] is clearly non-black-box with respect to the one-way
function (or PRG) on which it relies. We refer the reader to [11,12] for a more
thorough and general exposition to black-box reductions in cryptography.
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3 Reduction from OTm
l to OTk

m: 1 out of n, n > 2

The OT primitive we consider, denoted OTm
l , realizes m 1-out-of-n oblivious

transfers of l−bit strings. The OTm
l functionality is as follows.

Inputs: S holds m n−tuples (x11, · · · , x1n), · · · , (xm1, · · · , xmn) of l−bit strings.
R holds m selection numbers r = (r1, · · · , rm), 1 ≤ rj ≤ n.

Outputs: R outputs xjrj
for 1 ≤ j ≤ m. S has no outputs.

As indicated in [8], the task of extending oblivious transfers can be defined as
that of reducing OTm

l to OTk
k, due to the possibility for a more efficient direct

implementation of the primitive OTk
k than via k separate applications of OT1

k

[3], where k is a security parameter and m > k. And the critical reduction is
from OTm

l to OTk
m. Hence, we will only present a protocol of reducing OTm

l

to OTk
m and arrive a general conclusion for the reduction of OT.?

We express the number rj by a bit vector pj where the rjth element is 1 and
the others are all 0. In this way, the selection vector r corresponds to a m×n
matrix P . In the following construction we suppose that the receiver hold the
selection matrix P instead of the selection numbers r.

Now we give the protocol of reduction for 1 out of n OT.

Protocol 3.1 (Reduction from OTm
l to OTk

m)

Input of S : m n−tuples (x11, · · · , x1n), · · · , (xm1, · · · , xmn) of l−bit strings.

Input of R: m× n selection matrix P satisfying that there is one and only
one entry equal to 1 in each row, where pji = 1 means R receives ith string
out of jth n−tuples (xj1, · · · , xjn).

Common Input: a security parameter k.

Oracle: a random oracle H : [m]× [n]× {0, 1}k → {0, 1}l.

Cryptographic Primitive: an ideal 1 out of n OTk
m primitive.

(1) S initializes a random k × n matrix U satisfying that there is one and
only one entry equal to 1 in each row, and R initializes a random m× k
bit matrix T .

(2) The parties invoke the 1 out of n OTk
m primitive: S acts as a receiver with

input k × n matrix U and R as a sender with inputs (p1 ⊕ ti, · · · ,pn ⊕
ti), 1 ≤ i ≤ k. Let Q be the m× k matrix of values received by S. (Note
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that qi = ui1 · p1⊕ · · · ⊕ uin · pn ⊕ ti,qj = pj1 · u1T ⊕ · · · ⊕ pjn · unT ⊕ tj,
where uiT denote the transpose of the column vector ui.)

(3) S queries the random oracle H by (j, i,qj ⊕ uiT ), 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Let H(j, i,qj⊕uiT ), 1 ≤ i ≤ n, 1 ≤ j ≤ m, be the reply from the random
oracle H.

(4) S sends yji = xji ⊕H(j, i,qj ⊕ uiT ), 1 ≤ i ≤ n, 1 ≤ j ≤ m.
(5) R outputs zj = yji ⊕H(j, i, tj) whenever pji = 1.

Correctness. It is easy to verify that the outputs of Protocol 3.1 are correct,
i.e., zj = xji when both parties follow the protocol.

Security. We will show that Protocol 3.1 is secure against a malicious sender
and a semi-honest receiver. Specifically, we will show a perfect simulator for
any malicious sender S∗ and a statistical simulator for R. In the latter case,
the output of the ideal process involving the simulator is indistinguishable
from that of the real process even if the distinguisher is allowed to adaptively
make e

k
n /kω(1) additional calls to H.

All we need to do in proving the security of Protocol 3.1 is construct two
simulators S’ and R’ according to the definition of security for protocols
given in [10].

Simulator S’. We construct simulator S’ as follows.

• S’ randomly choose a string λ′ as its random input.
• S’ randomly generate a k × n matrix U ′ satisfying that there is one and

only one entry equal to 1 in each row.
• S’ generate a random m × k matrix Q′ and take the columns of Q′ as the

reply from the OTk
m primitive.

• S’ queries the random oracle H by (j, i,q′j ⊕u′i), 1 ≤ i ≤ n, 1 ≤ j ≤ m. Let
H(j, i,q′j ⊕ u′i), 1 ≤ i ≤ n, 1 ≤ j ≤ m, be the reply from the random oracle
H.

• S’ output all the above values.

Theorem 3.1 Protocol 3.1 is perfectly secure with respect to an arbitrary
sender.

PROOF. In a real execution of Protocol 3.1, the view of the sender S∗ is
composed of the input (x11, · · · , x1n), · · · , (xm1, · · · , xmn), the random input,
the matrix Q, i.e., the message received from the OTk

m and the message
H(j, i,qj ⊕ uiT ), 1 ≤ i ≤ n, 1 ≤ j ≤ m, received from the random oracle
H. Comparing the view of the sender S∗ in the real execution and the output
of the simulator S’ term by term we can conclude that the two distribu-
tions are identical. In the real execution the outputs of the receiver R are
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zj = yji⊕H(j, i, tj) where the indices satisfying pji = 1, and the output of the
1 out of n OTm

l functionality are xji whenever pji = 1. From the correctness
of Protocol 3.1 these two outputs are equal. According to the definition for
protocol’s security in [10], we have proven the security of Protocol 3.1, and
the simulator S’ is perfect. Note that the above simulation remains perfect
even if the distinguisher makes an arbitrary number of calls to H.

In the sense that even if the sender S∗ violates the protocol maliciously he
still can not get any information about the receiver’s inputs yet, Protocol 3.1
is said to be secure with respect to a malicious sender. 2

Simulator R’. Simulator R’ is constructed as follows.

• R’ invokes Protocol 3.1, where the inputs of S is given by substituting the
values zj for the known inputs xji and 0l for the unknown inputs of S, and
the inputs of R is given the selection matrix P and the random input of R
in the real execution.

• R’ outputs the entire view of R.

Theorem 3.2 As long as n = o(k) and n > 2, Protocol 3.1 is secure with
respect to a semi-honest receiver and a polynomial-time distinguisher having
access to the random oracle.

PROOF. According to the definition for protocol’s security given in [10] we
need to show that for fixed inputs of S and R the view of R in the real execu-
tion is indistinguishable from the output of the simulator R’. If we check the
description of Protocol 3.1 step by step, we will see that the most problematic
issue is the values of the random oracle H used for masking the values xji

which are unknown to the receiver. But the values of H used in Step (4) of
Protocol 3.1 are uniformly random and independent of the receiver’s view and
independent of each other. Thus, it is clear that the output of the simulator
R’ is identically distributed to the output of R in the real execution.

However, to make a meaningful security statement in the random oracle model,
we must allow the distinguisher to make additional calls to H.

Specifically, after given the view of R in the real execution and the output of
the simulator R’, the distinguisher can query the random oracle H many times
and apply the reply from H to distinguish the above two random variables.

If R’ can know definitely that some xjs 6= 0 with pjs 6= 1, then the dis-
tinguisher can tell that the view is from the real process, and therefore can
distinguish the real process from the ideal process.
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Since we suppose H to be a random oracle, it seems that there is no problem
in obtaining any information about xjs with pjs 6= 1. The problem arises only
when the distinguisher can ”guess” the oracle query used in the real process
to mask some secret xjs, pjs 6= 1. Since S queries the random oracle H by
(j, s,qj ⊕ us), and qj ⊕ us = ui ⊕ us ⊕ tj with pji = 1 and R knows tj, the
problem is reduced to the probability that the distinguisher guesses ui ⊕ us

for some 1 ≤ s ≤ n, s 6= i. For n > 2, this probability is almost the same as
that the distinguisher guesses us for some 1 ≤ s ≤ n. Since

Pr[us = α] =
(n− 1)k−w

nk
, for each α including w 1,

the probability that the distinguisher guesses us to be α is (n−1)k−w

nk ≤ (1− 1
n
)k,

and is less than e−
k
n .

So, even if the distinguisher makes e
k
n

kω(1) additional calls to H, the probability

that the distinguisher guesses the value of us is less than e
k
n

kω(1) × e−
k
n ≤ 1

kω(1) .

Whereas e
k
n

kω(1) is greater than any polynomial in k when k → ∞ under the
condition n = o(k).

On the other hand, as long as the distinguisher does not guess such a crit-
ical query, the masks remain random and independent given its view, and
so indistinguishability is remained. It follows that the probability that the
distinguisher wins is negligible. 2

4 A Secure Protocol against Malicious Receiver

By employing a cut-and-choose technique similar to that used in [8], we may
modify Protocol 3.1 to obtain a protocol which is secure against a malicious
receiver. The scheme can be described informally as follows.

Let σ denote a statistical security parameter. The players engage in σ (parallel)
executions of the previous protocol, where all inputs to these executions are
picked randomly and independently of the actual inputs. Next, the sender
challenges the receiver to reveal its private values for a random subset of σ/2
executions, and aborts if an inconsistency is found. This ensures S that except
with 2−Ω(σ) probability, the remaining σ/2 executions contain at least one good
execution where the receiver was well-behaved in the above sense. Finally, the
remaining executions are combined as follows. Based on its actual selection
numbers (matrices), the receiver sends a correction number for each of its
mσ/2 random selections in the remaining executions, telling S to shift the
choice of the input strings. For each of its actual secrets xji, the sender sends
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the exclusive-or of this secret with the σ/2 (random) inputs of the remaining
executions which correspond to xji after performing the shifts indicated by
the receiver. Having aligned all of the selected masks with the selected secrets,
the receiver can now easily recover each selected secret xji where (j, i) satisfies
pji = 1.

This protocol is formally described as follows.

Protocol 4.1

Input of the sender S : m n−tuples (x11, · · · , x1n), · · · , (xm1, · · · , xmn) of
l−bit strings.

Input of the receiver R: m×n selection matrix P satisfying that there is one
and only one entry equal to 1 in each row, where pji = 1 means R receives
ith string out of jth n−tuples (xj1, · · · , xjn).

Common Input: security parameters k, σ

Oracle: a random oracle H : [σ]× [m]× [n]× {0, 1}k → {0, 1}l.

Cryptographic Primitive: an ideal 1 out of n OTσk
m primitive.

(1) For each p, 1 ≤ p ≤ σ, S prepares randomly a k×n matrix U (p) satisfying
that there is one and only one entry equal to 1 in each row, and m
n−tuples (x

(p)
11 , · · · , x

(p)
1n ), · · · , (x

(p)
m1, · · · , x(p)

mn) of l−bit strings.
For each p, 1 ≤ p ≤ σ, R prepares a random m×n matrix V (p) satisfying
that there is one and only one entry equal to 1 in each row, and a random
m× k bit matrix T (p).

(2) S and R invoke OTσk
m with S as a receiver and R as a sender, where

the inputs of S are U (p), 1 ≤ p ≤ σ, and the inputs of R are (v(p),1 ⊕
t(p),i, · · · ,v(p),n ⊕ t(p),i), 1 ≤ p ≤ σ, 1 ≤ i ≤ k. Let Q(p) denote the pth
m× k matrix of the values received by S.

(3) S picks a random subset S ⊂ [σ] of size σ/2, and challenges R to reveal
all matrices V (p) and T (p) with p ∈ S. If the reply of R is not fully
consistent with the values received in Step 2, S aborts.

(4) For each p /∈ S and 1 ≤ j ≤ m, S sends

y
(p)
ji = x

(p)
ji ⊕H(p, j, i,q

(p)
j ⊕ u(p),iT ).

(5) For each p /∈ S and 1 ≤ j ≤ m, R sends a correction number c
(p)
j with

c
(p)
j = i′ − i (mod n), in which i and i′ satisfy pji = 1,v

(p)
ji′ = 1.

(6) For 1 ≤ j ≤ m and 1 ≤ i ≤ n, S sends

wji = xji ⊕
⊕
p/∈S

x
(p)

j,i]c
(p)
j

,
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where the operation ’]’ is the same as the addition module n except that
replacing the result by n when it is zero.

(7) For 1 ≤ j ≤ m, R outputs

zj = wji ⊕
⊕

p/∈S,v
(p)

ji′ =1

x
(p)
ji′

whenever pji = 1.

Note that the above protocol does not give a malicious S∗ any advantage in
guessing the inputs of R. Moreover, except with 2−Ω(σ) failure probability,
security against a malicious R∗ reduces to security against a well-behaved R’.

Efficiency. The modification described above increases the communication
and time complexity of the original protocol by a factor of σ. The probability
of R∗ getting away with cheating is 2−Ω(σ)[7]. In terms of round complexity,
the protocol described above adds a constant number of rounds to the original
protocol.

5 Conclusion

We first present a protocol which reduces 1-out-of-n oblivious transfer OTm
l to

1-out-of-n oblivious transfer OTk
m for n > 2 in random oracle model, and show

that the protocol is secure against malicious sender and semi-honest receiver.
Then, by employing a cut-and-choose technique, we obtain a variant of the
basic protocol which is secure against a malicious receiver.

Similar to the comments in [8], we may partition the task of extending obliv-
ious transfers into several parts. The first part is what has been done in this
paper and [8]: reducing OTm

l to OTk
m, where k is a security parameter and

m > k. The second part is reducing OTk
m to OTk

k, which can be easily done in
random oracle model by generating n ·m pseudo-random bits as masks of the
strings to be sent, similar to that pointed out in [8]. The third part is to reduce
OTk

k to OT1
k by invoking k OT1

k in parallel, while OT1
k can be realized by di-

rect implementations or reduced to OT1
1[13]. Thus, we may take OT1

1 or OTk
k

to be the cryptographic primitive and reach any type of OT protocols. Note
that in all the above, we always mean 1-out-of-n OT whereas the parameter
n does not occur apparently in the notation.

In general, the results obtained in this paper can be summarized as follows.

Theorem 5.1 Let k denote a computational security parameter. Let n > 2.
For any constant c > 1 it is possible to reduce kc 1-out-of-n oblivious transfers
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to k 1-out-of-n oblivious transfers in random oracle model under the condition
n = o(k).

Combining this conclusion with that in [8], we can have

Theorem 5.2 Let k denote a computational security parameter. For any con-
stant c > 1 and any n ≥ 1 it is possible to reduce kc 1-out-of-n oblivious
transfers to k 1-out-of-n oblivious transfers in random oracle model under the
condition n = o(k).
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