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Abstract

In this paper, for given N = pg with p and ¢ different odd primes, and
m = 1,2,---, we give a public key cryptosystem. When m = 1 the system is
just the famous RSA system. And when m > 2, the system is usually more
secure than the one with m = 1.

1 Introduction

In this paper, we present a series of generalizations of the famous RSA public
key cryptosystem (cf.[1],[2]), they are more secure in general.

Let n be a positive integer, Z,* be the group of invertible elements in Z,, = Z/nZ.
RSA crytosystem works on Z,*.

Let A be a commutative ring with identity element 1, P = 2™ + a;2™ ' +
am-12 + am € Alz]. Denote by Ap the quotient ring A[z|/P, and A}, the group
of invertible elements in Ap. For A = Z,, we use Z, p to replace (Z,)p. Thus
our cryptosystems work on Z* . and when P = x 4+ a € Zy|z], Z} p = Z;,, our
cryptosystem is the same as RSA. 7

RSA took N = pq, where p,q are big primes. For such N, we call P = 2™ +
a1x™ 1+ +ap, € Zy[z] to be special to N if P mod p and P mod q are irreducible
over the fields F}, and Fj respectively. The number of the elements in Z}; p denoted
by ¢(N, P) will be proved to be (p™ — 1)(¢™ — 1). ’

For general P, ¢(N, P) depends also on ay,-- -, a,, and is usually very difficult
to calculate, since it concerns solving congruence equations of degree m. For m = 2,
the formula for ¢(NV, P) is given in section 2.

In our generalizations of the RSA system, public key K is (N, P, e), where e €
{2,3,---,¢(N, P) — 2} with ged(e, ¢(N, P)) = 1 can be randomly chosen, and d €
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{27"'7¢(N7P)_2} with
ed =1 mod ¢(N, P)

is the secret key. Notice that any element in Zx p is uniquely expressed as
y="biz™ 4 byx™ 24+ by, (1)

with b; € Zy. y®mod P can be calculated on computer, by e.g. the software
package "Powmod” in Maple. Thus the encryption and decryption function e, d:
Ly p — Ly p are defined by

Since the order of any element in Z}, p is a divisor of o(N, P), y?WN-P) = 1 in
Zn,p. Thus

v =yeLyp

In the case of P being special to N, we will prove that y*¢ = y is actually true
for any y € Zn p.

For any y € Zy,p with P special to N, there exists a smallest positive integer 3
such that ;

y© =y €Znp

We call 3 the Simmons period of y in Zx p with respect to e . Note that Z}; is a
subgroup of Z} p consisting of elements y in the form (1) with by = -+ - = b1 =0,
by € Z}. The number of the elements of the quotient group Z}, p/Z} is

P =" =1/ p—-D(g—1) =@ +p" P+ + (" +¢" T+ + 1)

Especially when m = 2, this number is (p + 1)(¢ + 1).

In RSA system, to prevent the Simmons attack, one has to choose p and ¢ to
make Simmons period big enough, e.g. to let p — 1 and ¢ — 1 having big prime
factors. Now we see that if y € Z} p — Z};, the Simmons period of y will be usually
much bigger than those of the elements in Zy. To ensure this, we may require
p™ 4 ...+ 1and ¢! + .- 41 to have big prime factors.

In the practice of using RSA system, to ensure the security, one has to choose
big primes p, g and e to satisfy certain additional conditions. This is not easy. While
for us, when p and ¢ are fixed (they may not satisfy some additional conditions),
we can just choose suitable m to increase the security, e.g. increasing the Simmons
period.

Notice that in the case of P special to N, ¢(N, P) can be replaced by any common
multiple M of p™ — 1 and ¢ — 1, and

ed = 1mod M

When M < ¢(N, P), the calculation of d from e should be easier.



2 Theoretic Preparations

Let A be a unital commutative ring, A[z] be the polynomial ring over A with
one variable z. For any P = 2™ + aj2™ ! + -+ + a,, € A[z], any element of the
quotient ring Ap = A[z]/P is uniquely expressed as y1z™ ! + yo2™ 2 + .-+ + y,.
So Ap is a free module over A with 1,z,---,2™ ! as a free basis.

Let b=biz™ ' +boa™ 2+ ... +b,, € Ap. We define a map
Mb : AP — Ap

given by My(y) = by, where by is the product of b and y in the ring Ap.
It is easily seen that Mp is a linear transformation of Ap as A-module. Writing
My(y) as y1a™ !+ ypa™ % + -+ yp,, then

/

Yy biin - bim Y1
o= (2)

where b;; € A. By abuse of notations, we use still M} to denote the matrix (b;;),
and |Mp| the determinant of M. Let A}, be the group of invertible elements in Ap.
We have
Lemma 1. b € Ap is in A} iff [M] € A*.

Proof. b being in A} implies that there is a ¢ € Ap such that bc = 1. Thus
MM, is the identity matrix, hence |Mp||M,.| =1, and |M,| € A*.

Now assume |M;| € A*. Substitute yj = --- =y/,_; =0, and y/, = 1 into (2),
we get an equation on the variable yi,-- -, ym:

0,--,0, )" = My(y1, -+, ym)"

|M,| € A* implies that there is an m x m matrix M, ' with entries in A such
that M(,Mb_l is the m x m identity matrix.

Let lel(O7 0,7 = (c1,---,em)T. Then ¢ = c1z™ ™t + cox™ 2+ - + ¢y, is
the inverse of b in Ap. Hence b € Ap. The lemma is proved.

For P = 22 4+ a1z + ag, b = byw + by, we have — M), = b3 — a1b1by + azb?.

Let N = pq with p and ¢ different odd prime. When a # 0 mod p, let (%) be the
Legendre symbol. We introduce the following notations:

e (N+1)? o _
A 0, . if %al = a9 modp
= (N+1)* 2
b <4 pal a2> , otherwise
. +1)2 9 _
A 0, . if %al = as mod q
— (N+1) 2_
¢ <4qa1a2> , otherwise
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Then we have

Proposition 1. Let P and N be as above, then

(P —1)(¢* - 1), ifA, = A, =—1
=g -1)pe—p—q+5), ifA,=A4,=1
p—D(@-Dpe+p—q+1), ifA,=1,A;,=—
P—D@—Dpg—p+q+1), ifA,=-1,A,=1
o(N,P)=< (p—1)(¢—1)(pg—p+3), ifA,=0,A,=1
(p—D(@—1D(pg—q+1), if Ay =0, =—1
(p—1)(g—1)(pg —q+3), A, =1,A,=0
(p—D(@-1D(pg+qg+1), ifA,=-1,A=0
(p—1)(qg—1)(pqg +2), if Ay, =0,4,=0

Proof. By Lemma 1, b € Zn p — Z?\/,P iff
|Mp| = 0 mod p or M =0 mod ¢
We have

b% —aibibs + agbl
(bg — N+1a1b ) (%a%blf + agb%
2
= (b — Mappy)? — p2(YH 62 g5) mod N

|
=
(1

Thus we need look at the following equations

N+1 N +1)?

(be — a1b1)2 = b%(( 1 a% — az) modp (3)
N+1 N +1)2
(be — arb)? = b%((ll)a% — az) mod ¢ (4)

Case 1. If by = 0 mod p, then (3) holds iff b = 0 mod p, and if b = 0 mod ¢,
then (4) holds iff b = 0 mod gq.

Case 2. by # 0 mod p. Then for fixed by mod p, there are 0,1, or 2 solutions
by mod p for (3) iff
A, =—-1,0,0rl

When A, = 0, the solution is

bQE

1
a1b; mod p (5)

When A; =1, there is an A Z 0 mod p such that

N+1 _(N+1)%,

(be — 5 a1)? = 1 a} —as = h* mod p



Thus

N+1 N +1)2
(bg — 5 aiby)® = b%(( 1 ) aj — az) = (b1h)® mod p.
Hence N1
by — ; a1by = £b1h mod p
ie. N1
by = by ( i a; = h) mod p (6)

2
Similarly, when A, = 0, the solution of (4) is

N +1
bQE 5

a1by mod ¢ (7)
When A, = —1, (4) has no solution, and when A, = 1, there is a £ # 0 mod ¢ such
that the solutions of (4) are

N+1
2

by = by ( a; £ k) mod ¢ (8)
Now according to the values of A, and A,, we need to treat 9 cases.
Case (-1,-1): A, = Ay = —1.

In this case, (3) and (4) have no solutions, so b € Zy p — Z} p iff

by = by =0 mod p 9)

or
by = by = 0 mod ¢ (10)

The number of the pairs (b1, bs) mod N satisfying (9) is ¢, and the number of
those satisfying (10) is p?>. By Chinese Remainder Theorem, the number of the pairs
(b1, b2) mod N satisfying both (9) and (10) is 1. So the total number of the elements
in Zyp—Zpis p* +¢* — 1.

Therefore, A, = A, = —1 implies

¢(N,P)=p°¢ —p*—¢*+1=p*—1)(¢* — 1)

Case (0,0): A, =A, =0.
In this case, the number of the solutions (b, by) mod N withb; # 0 mod p,by #
0 mod g of (5) and (7) are (p —1)(¢ — 1)q and (p — 1)(¢ — 1)p, since the number of
by mod N satisfying b; #Z 0 mod p and by # 0 mod ¢ is (p — 1)(¢ — 1). For any such
by mod N, by Chinese Remainder Theorem, there is just one by mod N satisfying
both (5) and (7). Thus the total number of the elements in Zy,p — Z}, p is

P+¢—1+(p—-1(g-1g+@p-1)(q¢—Dp—(p—1)(¢—1)



Hence
¢(N,P)=(p—1)(qg—1)(pqg+2)

Case (1,1): A, = A, = 1. Then the number of the solutions (b, b2) mod N with
b1 # 0 mod p and by # 0 mod g of (6) and (8) are 2(p—1)(¢—1)g and 2(p—1)(¢—1)p
and the number of the common ones for (6) and (8) is 4(p — 1)(¢ — 1). Thus

¢(N,P)=(p—-1)(¢g—1)(pg—p—q+5)

Case (1,-1). For by mod N with b; # 0 mod p and b; # 0 mod ¢, (6) has
2(p — 1)(q — 1)q solutions (b1, b2) mod N, and (4) has no solution. Thus

¢(N,P)=(p—1)(g—1)(pg+p—q+1)

Symmetrically, we have the result for

Case (-1,1): ¢(N,P) = (p—1)(¢ - D(pg—p+q+1).

Case (0,1). For by mod N with b; # 0 mod p and b; # 0 mod ¢, (5) has
(p — 1)(¢ — 1)gq solutions (b1,b2) mod N, and (8) has 2(p — 1)(¢ — 1)p solutions
(b1,b2) mod N with 2(p — 1)(g — 1) solutions in common with (5)’s. Thus

¢(N,P)=(p—1)(¢g—1)(pg—p+3)

Symmetrically, we have the result for

Case (1,0): (N, P) = (p—1)(¢ = 1)(pg — ¢+ 3).
Case (0,-1). The same argument as above leads to

¢(N,P)=(p—1)(¢—1)(pg+p+1)

Case (-1,0). ¢(N,P) = (p—1)(¢—1)(pg+q+1).
The proof is complete.

In Prop. 1, in the case A, = A, = —1, we see that b € Z} p iff (b1,b2) #
(0,0) mod p, and (b1,b2) # (0,0) mod ¢; and A, = A, = —1 is equivalent to
22 + a1 + as being irreducible both over Fj, and Fj.

Since then F,» = Zy[z]/P mod p, and F2 = Zy[z]/P mod g, we see that
beZypiff bmodp € F}:‘Q and bmod q € F;‘z. Thus there is a group isomorphism:

* * *
ZN,P — Fpg X Fqg

This deduction can be generalized to the following:
Proposition 2. Let N = pg with p and ¢ odd primes, and P = 2™ + a12™ ! +
-+ + an, be irreducible both over Fj, and Fj. Then the map Zy p — Fpm X Fym
given by
b="biz™ '+ ... 4+ b, — (bmod p,bmod q)



induces a group isomorphism
Z}k\ﬂp — F;m X F;m

and
(N, P)= (™ —1)(¢" - 1)

Proof. By Lemma 1, b € ZY, p iff | M| € Z3,. And | M| € Z; iff [Mp| mod p # 0
and |Mp| mod ¢ £ 0, i.e. b modio € Fjyn and b mod g € Fyn. Moreover, by Chinese
Remainder Theorem, it is easily seen that the map b — (b mod p,b mod ¢) is a
bijection between Zy p and Fpm x Fym. Hence Z}k\f, p — Fpm X Fym is an isomorphism
and ¢(N,P) = (p™ — 1)(¢"™ — 1). The proof is complete.

3 Correctness of the systems

As we state in the introduction, for N = pg with p and ¢ big different primes,
P=2"+a 2™ ' 4+ ..+ a,, being special to N, M being any common multiple of
p" —1and ¢ —1,e € {2,3,---, M — 1} with ged(e,M) =1,d € {2,---,M — 2}
with

ed =1 mod M

the public key K of the system is (IV, P, e), and the secret key is d . For any y € Zy p,
if y € Zy p, then

ed —

Y y mod P

To ensure the correctness of the system, we have to prove that the above formula
is also true for any y € Zn,p — Zy p-

Let y # 0 be so. We may assume y mod p = 0 € Fm». Then y mod ¢ # 0 as an
element of Fym.

Since the number of Fjm is ¢™ — 1, we have

y?" ' =1 mod PonF;
Let ed =1+ kM, where k € Z, and M' = M/(¢™ — 1). We have then
yk(qul)M/ = 1 mod Pon F,

ie. if regarding y = y1z™ ' + - + yp, € Z[z], and y*M € Z[z] is written as
212™ o 4 2, + Q(2) P(z), then

22" btz = 1 g™ )

for some u; € Z,i = 1,---,m. According to the assumption on y, y = p(viz™ ! +
-+ vy,) for some v; € Z,i =1,---,m. Thus

YR =yt pg(un ™ ) (0™ o)+
p(o1z™ -+ 0 Q(2) P(2)



kM+1

So y =y =yinZ ~,p, and any message y € Zy p is recovered by yel.

Notice that if one of the A, and A,vanishes, say A, = 0, then P = 22 +a1x+a2 =
(x 4 a)? mod p for some a € Z. Thus for

y::E—I—aEZMp

y? WP = (2 4+ a)?(z + a)?NP)/2 = 0 mod P and p, since ¢(N, P)/2 € Z. Now if
ed =1+ k¢(N, P) with 0 # k € Z, we have

y°* = 0mod P and p

So y°% # y in Zn,p, since y # 0 mod P and p. Thus we have the following
Question. For P = 22 + ajz + a2 not special to N = pq with |A,| = |A,] =
1,ed = 1 mod ¢(N, P), is y* = y for any y € Zy p?
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