No.19

・网络与通信・

Vol.33

文章编号: 1000-3428(2007)19-0125-03

文献标识码: A

中图分类号: TP393

# 集群环境中影响 NFS 文件系统带宽的测试与分析

曹立强,罗红兵,张晓霞

(北京应用物理与计算数学研究所,北京 100088)

摘 要:NFS 是集群系统中提供全局文件共享的主要手段,研究影响 NFS 带宽的因素对于优化集群系统的性能十分重要。该文针对集群系统中 I/O 特征建立了 NFS 的带宽模型,设计和实现了基于 MPI 开发的并行文件系统测试工具 Mpbonnie,在集群系统中测试和分析了多种因素对 NFS 性能的影响。结果表明,除已知的存储和网络因素外,与 NFS 带宽关系密切的因素还包括客户端数量、服务器文件系统类型、读写方式和服务器处理能力等。

**关键词:**NFS;带宽;性能分析

## Measurement and Analysis of Factors Affecting NFS Bandwidth in Cluster

CAO Li-qiang, LUO Hong-bing, ZHANG Xiao-xia

(Institute of Applied Physics and Computational Mathematics, Beijing 100088)

[Abstract] NFS is a predominant distributed file system in the cluster. Besides network bandwidth and storage bandwidth, there are some other factors affecting NFS bandwidth as well. With a new MPI-based parallel I/O benchmark Mpbonnie, this paper measures and analyses NFS performance with different configurations in the cluster. It proves server side file system, I/O mode and server side processor have great impact on NFS performance.

**Key words** NFS; bandwidth; performance analysis

集群是当前高性能计算机的主流体系结构,使用工业化标准技术和部件是构建集群的主要形式。作为实现文件单一映像和全局 I/O 的主要手段,NFS 被广泛地应用在集群系统中。例如,以联想深腾 6800 和曙光 4000A 为代表的国内高性能计算机系统均部署有 NFS 文件系统。高性能计算机服务于大规模并行计算,大规模并行计算对 I/O 性能有巨大的需求,因此,研究集群系统中影响 NFS 文件系统性能的因素十分重要。

已有研究表明,基于高带宽的网络与快速I/O设备建立的NFS文件系统具有较好性能,目前的工作大多局限于这两个方面<sup>[1-2]</sup>,但是上述因素并不是决定NFS性能的充分条件。经过分析发现,服务器文件系统类型、读写方式、服务器处理能力、缓存大小和同时读写的客户端数量也是影响NFS文件系统性能的重要因素。利用测试程序评价文件系统性能是一种重要的研究方法。已有的NFS测试程序面向单个节点或者事务处理的办公环境,为在集群环境下面向科学计算程序测试NFS文件系统性能造成了障碍。在分析集群环境NFS测试需求和已有测试程序不足的基础上,本文介绍了新研发的基于MPI通信与同步的读写密集型I/O测试程序Mpbonnie。在一个典型的集群环境中,分析测试了影响NFS性能的各个因素,并根据测试结果评价它们对NFS性能影响的大小。

#### 1 NFS 带宽模型

NFS接收用户发出的文件系统调用,通过RPC将请求转发到服务器。在服务器端,它调用服务器上的本地文件系统,完成调用请求。本文建立NFS的带宽模型如图 1 所示。NFS

请求如果在客户端缓存中命中,则它的最高带宽为客户端系统的内存总线带宽 $b_1$ ,如果未命中,则通过网络发送到服务器。如果请求服务能够在服务器缓存中完成,由于内存总线带宽远高于网络带宽,此时最高带宽为 $\min(b_2,b_3)=b_2$ ;如果需要读取存储资源,则最高带宽为 $\min(b_2,b_3,b_4)=\min(b_2,b_4)$ 。设 $B_{NFS}$ 为NFS带宽,则

$$B_{NFS} = egin{cases} b_1$$
,客户端缓存命中  $b_2$ ,服务器缓存命中  $min(b_2,b_4)$ ,客户端服务器缓存未命中

网络带宽 $b_2$ 和存储资源 $b_4$ 是NFS带宽的决定性因素,提高这些资源的性能能够提高NFS的带宽。而客户端缓存和服务器缓存,尤其是前者,能够提高NFS文件系统的性能。

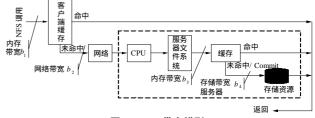



图 1 NFS 带宽模型

在实际的应用过程中,由于网络因素和存储因素相对固

基金项目:中国工程物理研究院科学技术基金资助项目(20060647)

**作者简介:**曹立强(1976 - ) , 男 , 博士 , 主研方向:并行文件系统及

性能优化;罗红兵,副研究员;张晓霞,高级工程师 **收稿日期:**2006-10-25 **E-mail:**clq@iapcm.ac.cn 定,因此影响 NFS 性能的因素主要有服务器处理能力、读写方式、缓存以及客户端数量等。

服务器处理能力不仅决定了服务器能够服务请求的数量,而且更多更快的处理器能够处理 NFS 请求。不同的服务器文件系统组织数据存储的方式不同,能够提供的读写带宽也不同。一些文件系统采取了延后写方式,将原本大量的小数据块读写合并为较少量大数据块的读写,期望提高读写带宽。

在集群系统环境相对固定的前提下,实际可以获得的网络带宽与参与读写的客户端数量相关。多个客户端同时读写数据导致网络中的数据包数量增加。在网络能够允许的范围内,更多的数据包能够充分地利用网络带宽,提高单位实际内传输数据量,有利于提高文件系统聚集读写性能。然而当数据包进一步增加,超过网络能够承受的范围时,会发生过多的网络冲突现象,使得网络带宽波动或者下降,进而影响到 NFS 带宽,因此,参与读写的客户端数量也是一个影响NFS 性能的因素。

### 2 测试方法

常用的文件系统测试工具有开放源码的Bonnie、Iozone<sup>[3]</sup> 和SPEC(standard performance evaluation corporation)公司维 护的Specfs<sup>[4]</sup>等。Bonnie是一个用标准C库函数实现的文件系 统存取速度测试工具。它测量文件系统在顺序读、顺序写和 随机定位 3 种模式下的传输速率和CPU占用率,而其中顺序 读写又分为字符读写和块读写两种方式。Iozone的测试手段 与Bonnie类似,但是它能够每次读写步长,并测试读写不同 大小文件的性能。Specfs是一种专用干测量NFS吞吐率和响应 时间的工具,其中集成了NFS客户端,并通过RPC与服务器 通信。Specfs提取了典型办公环境下的文件大小分布和各种 文件操作的比例,抽象成为测试用负载。它测量NFS服务器 在不同负载状态下的响应时间,并用这个值反映系统的性能。 分析发现,这些工具并不完全适用于集群环境中NFS性能的 测试。Bonnie和Iozone是运行于单个节点上的文件系统测试 工具,使用它只能够获得一个NFS客户端的性能。Specfs的工 作负载模拟了典型的办公环境下工作负载,其读写请求数量 占总请求数量的 27% 然而通过在深腾 6800 上面搜集文件读 写特征发现,95%以上的操作是读写操作。特征差异很大, 参考Specfs测试结果不能如实地反映NFS在集群系统中的性 能。

基于 MPI 消息通信环境,开发了一个集群环境下并行读写带宽测试程序 Mpbonnie,其主体结构如图 2 所示。

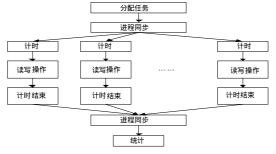



图 2 Mpbonnie 的结构

Mpbonnie 的设计目标在于获得多进程并同时读写全局文件系统的性能。程序的 0 号进程在程序初始化之后在各个进程之间均匀分配负载,然后调用 MPI\_Barrier()同步;接下

来各个进程依据 0 号进程分配的 I/O 负载操作并计时,待所有进程完成 I/O 操作后 0 号进程统计并行 I/O 的读、写带宽并输出结果。Mpbonnie 的输入参数中规定了读写文件的大小,各个进程的读写操作是它的主要流程,因此它是一个读写密集型并行 I/O 测试程序。由于利用了 MPI 通信库可扩展性好、同步效率高的优点,因此它能够精确地反映集群环境下应用程序所能够获得的并行 I/O 带宽。

在使用 Mpbonnie 的过程中,发现 NFS 读性能受缓存影响明显,而写操作受缓存影响小。其原因在于为了保证写入数据的安全,NFS 要求在关闭文件操作返回之前将所有修改后的数据写入存储资源。因此,将文件关闭操作置于计时结束之前,使得计时结束时所有数据已经写入存储资源,确保测试结果真实地反映文件系统性能。

#### 3 NFS 性能分析

本文重点调试了 NFS 文件系统的写性能。这是由于受到文件系统缓存的影响,NFS 的读性能好,而写性能差,应用程序写数据的性能瓶颈制约更明显。其次,由于 NFS 文件系统持续写流程与持续读流程一致,因此对 NFS 写性能的调试手段也能够应用于 NFS 读性能调试中。

在本文的集群测试环境中,服务器通过千兆以太网接入网络,而客户端通过百兆以太网接入。测试调节服务器本地文件系统的类型、使用方式、服务器 CPU 的数量、改变缓存大小等条件后单个 NFS v3 客户端写数据所能够获得的性能,并与之前的性能比较;然后利用 bonnie 或者 Mpbonnie 测试程序测试了多客户端数量情况下的 NFS v3 性能 ,并比较不同客户端数量能够取得的聚集带宽。

在本文的试验环境和试验条件下可以得出如下的规律:服务器本地文件系统类型、读写方式和服务器的处理能力是影响 NFS 文件系统性能的关键因素;而 18 个以上客户端进程同时写 NFS 服务造成了性能下降并明显波动。

#### 3.1 服务器文件系统对性能的影响

NFS 服务建立于服务器本地文件系统之上,不同的本地文件系统影响 NFS 的性能。利用单机的 Bonnie 测试程序本文分别测试了本地文件系统性能和以此为基础的 NFS 性能,每次读写文件大小 1GB, 取它们的写性能。

在本地文件系统测试中, VxFS 文件系统比 UFS 文件系统 UFS 文件系统写性能好,但是以 VxFS 为基础的 NFS 性能比以 UFS 为基础的 NFS 写性能差。两者之间的差距可以高达 30%,结果如表 1 所示。

表 1 NFS 在 VxFS 和 UFS 上的写性能比较

|         |        | 14       | 5 III 150 PC 177 |
|---------|--------|----------|------------------|
| VxFS    | UFS    | NFS+VxFS | NFS+UFS          |
| 145 059 | 39 210 | 7 792    | 11 027           |

NFS 文件系统支持两种写模式:同步写模式和异步写模式。同步方式下的服务器依据数据包的接收顺序将数据写入存储资源中,而异步方式下的服务器可以调度接收到的数据包,合并小的操作成为大块数据操作,因此,可以期望异步写具有较好的性能。在安装 NFS 时增加 nosync 开关,可以使服务器缺省的同步写方式改为异步写方式,其他环境不变。利用 Mpbonnie 测试程序对上述两种写方式进行对比,每次每客户端写数据大小为 100MB,结果如图 3 所示。

可以看到大多数情况下异步写方式性能好于同步写方式,这种性能改善的代价在于略微增加了服务器崩溃时数据 丢失的数量。

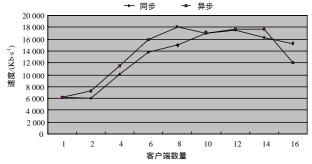



图 3 同步和异步写性能比较

#### 3.2 服务器性能对文件系统性能的影响

本文在其他环境与上面测试相同的情况下利用 Mpbonnie 测试程序比较了双 CPU 系统与单 CPU 系统在客户 端数量增长情况下的性能曲线,结果如图 4 所示。在客户端 数量少的情况下,单 CPU 系统的性能略好,但是客户端数量 持续增长之后的双 CPU 系统性能好于单 CPU 系统 NFS 写 性能。

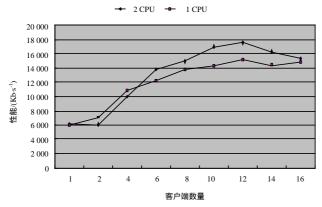



图 4 双 CPU 与单 CPU 写性能比较

双 CPU 系统的最高值可以达到 17~531~Kb/s,单 CPU 系统最高值为 15~170Kb/s。虽然上述两种测试过程中服务器的 CPU 资源都没有使用到饱满的程度(CPU%>90),但是双 CPU 系统性能好于单 CPU 系统性能,可以期望,当 CPU 数量更多或者更快时,NFS 会有更好的性能。

#### 3.3 NFS 缓存的大小对性的影响

而NFS v3 采取了初始化过程中协商机制确定缓存大小,不同系统间的缓存大小可以不同,并可以手工调节 $^{[5]}$ 。通过安装NFS文件系统时指定rsize与wsize选项客户端在 16KB与 256KB之间调节NFS的读写缓存大小。使用Bonnie测试 10 次,取平均值作为结果,如表 2 所示。

表 2 缓存大小对 NFS 写性能的影响

|        |       |        | - 1-10 |        |        |  |
|--------|-------|--------|--------|--------|--------|--|
| 缺省值    | 16KB  | 32 KB  | 64 KB  | 128 KB | 256 KB |  |
| 16 920 | 5 004 | 18 497 | 15 625 | 15 787 | 17 971 |  |
| 4 577  | 3 844 | 5 834  | 5 952  | 6 346  | /      |  |

可以看出,使用 NFS v3 网络文件系统的缺省缓存大小能够取得较好的性能。手工调节其缓存大小,低于 32KB 的缓存使得 NFS 性能差;达到 32KB 时 NFS 系统性能较好,从32KB 进一步增大时,性能变化并不显著。

#### 3.4 多客户端情况下的性能下降与波动

使用 Mpbonnie 测试程序,每次每客户端写 10MB 大小

的数据,本文测试了客户端线性增长到 22 个情况下 NFS 聚合性能的曲线。为了获得比较准确的数值,在每种条件下连续测量 10 次,取它们的平均值作为测试结果。为了表示多次测量结果之间的波动情况,取每次测试所获得的样本的平均方差作为参考值,结果如图 5 所示。

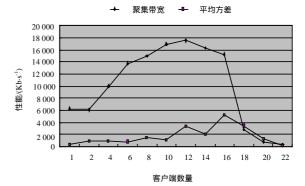



图 5 NFS 聚集写性能与平均方差随客户端变化曲线

可以发现,在客户端数量持续增长的过程中,NFS 性能曲线表现出首先持续增高,当客户端数量增长到 18 个后,系统性能有大幅度的下降,而 10 次测量的平均方差有随客户端数量增加而增长的趋势,在 18 到 20 个客户端的条件下,多次测量样本的标准方差甚至超过了带宽的平均值。这说明测量样本之间的差异较大,波动明显。

图 5 中只标明了 22 个客户端以内的性能曲线,当客户端数量持续增大时,NFS 的聚集带宽一直保持在较低的水平,例如,测试表明,32 个客户端同时写文件的聚集带宽最高为3 779 Kb/s,尚不如单一读写进程所获得性能好。

#### 4 小结

综上所述,在建立 NFS 的带宽模型,分析影响 NFS 性能因素的基础上,本文利用 Mpbonnie 及其他测试手段在集群系统中分析评价了它们对 NFS 带宽的影响。在网络与存储等硬件系统确定的集群环境中,得到如下结论:

- (1)服务器文件系统类型、服务器处理能力和文件系统的 读写方式是影响 NFS 文件系统性能的关键因素。
- (2)保持同时读写的客户端数量在一定范围内是获得稳定高速并行 I/O 性能的关键。
- (3)缺省值基础上进一步增大 NFS 缓存对优化性能意义不大。

#### 参考文献

- 1 Martin R. Culler D. NFS Sensitivity to High Performance Networks[C]//Proc. of SIGMETRICS '99. 1999-05.
- 2 Lever C, Honeyman P. Linux NFS Client Write Performance[C] //Proceedings of the Usenix Technical Conference on FREENIX Track, Monterey. 2001-06.
- 3 Norcott W D, CappsD. IOZone Filesystem Benchmark[Z]. (2006-07). http://www.iozone.org.
- 4 Standard Performance Evaluation Corporation (SPEC)[Z]. SFS 3.0. (2001-07). http://www.spec.org.
- 5 Sun Microsystems Inc. NFS Server Performance and Tunning Guide for Sun Hardware[Z]. 1998.