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Abstract:

• Let X(i) ={Xgi(n)}n≥1, i=1, 2, be sequences of random variables, where {gi(n)}n≥1

are disjoint and strictly increasing sequences of integer numbers such that {g1(n)}n≥1 ∪
{g2(n)}n≥1 = N. Using superposition of point processes, we study the extremal be-
haviour of a superposed sequence

{Xn}n≥1 = {Xg1(n)}n≥1 ∪ {Xg2(n)}n≥1 ,

where we consider the proportion of variables superposed from each sequence asymp-
totically constant and {Xn}n≥1 verifying some dependence conditions. We apply the
obtained results in the computation of the bivariate extremal index.
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1. INTRODUCTION

Let X(i) = {Xgi(n)}n≥1 be stationary sequences of random variables on the

same probability space (Ω,ℑ, P ) with common distribution function F (i), i=1, 2,
respectively. Let us suppose that {gi(n)}n≥1, i = 1, 2, are disjoint and strictly
increasing sequences of integer numbers, such that

{g1(n)}n≥1 ∪ {g2(n)}n≥1 = N .

In this paper we consider sequences that arise from the superposition of the
variables of the sequences X(i), i=1, 2, when considering asymptotically constant
the proportion of variables to superpose from each of the sequences, that is,

(1.1)
si(n)

n
−−−→
n→∞

Li , i = 1, 2, L1 + L2 = 1 ,

where si(n) = #
{
gi(j) : 1 ≤ j ≤ n ∧ 1 ≤ gi(j) ≤ n

}
, i = 1, 2.

We study the extremal limiting behaviour of the superposed sequence

{Xn}n≥1 = {Xg1(n)}n≥1 {Xg2(n)}n≥1 ,

usually a nonstationary sequence. Such a behaviour is derived from the con-
vergence in distribution of the sequence, {Sn}n≥1, of the point processes of ex-
ceedances of real numbers un, n≥1, generated by the sequence {Xn}n≥1, defined
by

Sn(B) = Sn[Xi, un](B) =
n∑

i=1

1{Xi>un} δ i
n
(B) , n ≥ 1 ,

where B is a Borel subset of [0, 1], δx(·) denotes the Dirac measure at x ∈ R and
1A the indicator function of the event A.

By considering, for each i = 1, 2,

S(i)
n (B) = Sn[Xgi(j), un](B) =

n∑

j=1

1{Xgi(j)
>un} δ gi(j)

n

(B) ,

then
Sn(B) = S(1)

n (B) + S(2)
n (B) ,

that is, the sequence of point processes {Sn}n≥1 is the superposition of the point

processes {S
(i)
n }n≥1, i=1, 2.

We briefly present, in what follows, some important results concerning the
theory of exceedances point processes generated by dependent sequences, both
stationary and nonstationary.
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Recall that the type of long range dependence condition appropriate for
studying the convergence in distribution of {Sn}n≥1 is the condition ∆(un) de-
fined by Hsing et al. (1988), in the following way.

Definition 1.1. Let {Xn}n≥1 be a sequence of random variables and

{un}n≥1 a sequence of real numbers. For each 1 ≤ i ≤ j, set Bj
i (un) as the

σ-field generated by the events {Xs ≤ un}, i ≤ s ≤ j, and, for 1 ≤ l ≤ n−1,

αn,l = sup
1≤k≤n−l

{∣∣P (A ∩ B) − P (A)P (B)
∣∣ : A ∈ Bk

1(un), B ∈ Bn
k+l(un)

}
.(1.2)

The condition ∆(un) is said to hold if there exists a sequence ln = o(n),
as n → ∞, such that

αn,ln −−−→
n→∞

0 .

Note that by taking in (1.2) only events of the form A = {Xi1 < un, ...,

Xip<un} and B = {Xj1 < un, ..., Xjq < un} with

1 ≤ i1 < · · · < ip < ip + l < j1 < · · · < jq ≤ n ,

we obtain Leadbetter’s D(un) condition.

Under condition ∆(un) and additional assumptions of equicontinuity and
asymptotic negligibility, Nandagopalan (1990) characterized the possible distrib-
utional limits for {Sn}n≥1, as stated in Proposition 1.1.

Let J1, ..., Jkn
, n ≥ 1, be a sequence of partitions of [0, 1] such that for each

i = 1, 2, ..., kn, P (Sn(Ji)>0) > 0, after certain order n0. For each n ≥ n0 define
the following sequences of measures:

νn(B) =

kn∑

i=1

P
(
Sn(Ji)>0

) m(B ∩ Ji)

m(Ji)
, B ∈ B([0, 1]) ,

where m denotes the Lebesgue measure,

Πn,x(k) =

kn∑

i=1

Πn,i(k) δx(Ji) , k ∈ N, x ∈ [0, 1] ,

where
Πn,i(k) = P

(
Sn(Ji) = k | Sn(Ji) > 0

)
, k ∈ N .

Finally for each a ∈ R+ define the functions

gn,a(x) =

∫

N

(
1 − exp(ak)

)
dΠn,x(k) .
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Proposition 1.1. Let {Xn}n≥1 be a sequence of random variables verify-
ing condition ∆(un),

(1.3) g(ǫn) = sup
{

P
(
Sn(I)>0

)
: I⊂ [0, 1], m(I)≤ǫn

}
−−−→
n→∞

0 if ǫn −−−→
n→∞

0

and

(1.4) lim inf
n→∞

P
(
Sn([0, 1])=0

)
> 0 .

If {kn}n≥1 is a sequence of integer numbers such that

(1.5) kn

(
αn,ln + g

(
ln

n

))
−−−→
n→∞

0

and J1, ..., Jkn
, is a partition of [0, 1] satisfying

max
{
m(Ji) : i = 1, 2, ..., kn

}
−−−→
n→∞

0

and

for each a ∈ G, where G is some nonempty open subset of R+,

the sequence {gn,a}n≥1 is equicontinuous,

then the following propositions are equivalent

(1) The sequence of point processes {Sn}n≥1 converges in distribution to
some point process S with Laplace transform, LS , given by

(1.6) LS(f) = exp

(
−

∫

[0,1]

∫

N

(
1 − exp

(
−kf(x)

))
dΠx(k) dµ(x)

)
,

for each non-negative measurable function, f , on [0, 1], where µ is a finite measure
on [0, 1] and Πx is a probability measure on N.

(2) νn converges weakly to a finite measure µ and Πn,x converges weakly
to a probability measure Πx on N, for each x ∈ [0, 1].

Furthermore, Nandagopalan (1990) proves that under conditions
(1.3), (1.4) and (1.5) for some partition J1, ..., Jkn

of [0, 1] such that

max{m(Ji) : i = 1, 2, ..., kn}−−−→
n→∞

0, if Sn
d

−−−→
n→∞

S, the Laplace Transform LS is

given by (1.6).

The result of Hsing et al. (1988) which gives the convergence in distribution
of exceedances point processes of a stationary random sequence is contained in the
preceeding proposition. In fact, in the case of stationary sequences for normalized
levels and sequences of integer numbers {kn}n≥1, such that

(1.7) kn −−−→
n→∞

∞ , knαn,ln−−−→
n→∞

0 ,
knln

n
−−−→
n→∞

0 ,
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the assumptions established in the above proposition are verified and, furthermore
the multiplicity distribution does not depend on the position of the atom, Πx = Π,
for each x ∈ [0, 1], and the intensity measure µ is equal to a constant times the
Lebesgue measure, µ(·) = ν m(·).

For the class of stationary sequences verifying condition ∆(un), if there
exists the extremal index θ ∈ [0, 1] (Leabetter (1974)), then such a parameter is
given by the inverse of the limiting mean cluster size of exceedances. Indeed, if

P
(
Sn([0, 1])=0

)
−−−→
n→∞

e−ν

and

ESn([0, 1]) = nP (X1 >un)−−−→
n→∞

τ > 0

then

θ =
(

lim
n→∞

E Πn

)−1

= lim
n→∞

P
(
Sn

(
[0, k−1

n ]
)

> 0
)

E Sn([0, 1])

=
ν

τ
.

In section 2 we introduce a condition that guarantees, locally, the asymp-
totic independence among the maxima of the variables of the sequences, X(i),
i = 1, 2, to superpose. Under this condition, for each non-negative integer k, the
probability of occurrence of k exceedances of the level un by the variables of the
superposed sequence {Xn}n≥1, in intervals of length [ n

kn
], is asymptotically equal.

For each sequence of this class we can apply the results stated in Proposi-
tion 1.1, obtaining a compound Poisson limit S[ν,Π] to {Sn}n≥1. The sequence
{Sn}n≥1 behaves asymptotically as though the sequence {Xn}n≥1 is stationary,
that is, the multiplicity distribution does not depend on x, Πx = Π, for each
x ∈ [0, 1], and the intensity measure is equal a constant times the Lebesgue mea-
sure, µ(·) = ν m(·).

The relations between the intensity measure ν m(·), the distribution of mul-
tiplicities Π(·) and the corresponding measures ν(i)m(·) and Π(i)(·), for each of the
sequences to superpose, will be analyzed in section 3. We prove that ν =ν(1)+ν(2)

and Π(k) =
∑2

i=1
ν(i)

ν
Π(i)(k), with ν(i) = θ(i) τ (i)Li, τ (i) = lim

n→∞
nP (Xgi(1) >un)

and Li is given in (1.1), i = 1, 2.

In section 4 we will apply the results in the computation of the bivariate
extremal index.
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2. LIMIT DISTRIBUTION OF THE NUMBER OF EXCEEDAN-
CES IN THE SUPERPOSED SEQUENCE

We define a new condition that guarantees locally, that the maxima of the
random variables of the sequences to superpose are asymptotically independent.
This condition will be essential to obtain the results in this section.

Definition 2.1. The sequence {Xn}n≥1 verifies the condition
•
D (un) if

kn βn −−−→
n→∞

0

where

βn = sup

{∣∣∣∣P
(
M (1)

n (J)≤un, M (2)
n (J)≤un

)
−P

(
M (1)

n (J)≤un

)
P
(
M (2)

n (J)≤un

)∣∣∣∣ :

J ⊂ [0,+∞[, m(J)=

[
n

kn

]}
,

M
(i)
n (J) = max

{
Xgi(j) : 1 ≤ gi(j) ≤ n, gi(j) ∈ J

}
and {kn}n≥1 is a sequence of

integer numbers that verifies (1.7).

Under condition
•
D (un) for the superposed sequence {Xn}n≥1 we can, for

each non-negative integer k, approach

P
(
Sn(Jj)=k

)
by P

(
Sn(Jl)=k

)

where Ji =
[
(i−1)[ n

kn
] 1
n
, i[ n

kn
] 1
n

]
, j, l ∈ {1, 2, ..., kn} and j 6= l.

Proposition 2.1. Suppose that the sequence {Xn}n≥1 resulting from the
superposition of the variables of the stationary sequences {Xgi(n)}n≥1, i = 1, 2,

verifies condition
•
D (un), where {un}n≥1 is a sequence of real numbers such that

(2.1) nP
(
Xgi(1) >un

)
−−−→
n→∞

τ (i) , i = 1, 2 .

Then, for each non-negative integer k, we have

knP
(
Sn(Ji)=k

)
= knP

(
Sn(J1)=k

)
+ o(1) .

Proof: Since {Xgi(n)}n≥1, i=1, 2, are stationary sequences

knP
(
Sn(Ji)=k

)
= knP

(
S(1)

n (Ji)=k
)

+ knP
(
S(2)

n (Ji)=k
)

+ kn

∑

s1+s2=k

s1>0, s2>0

P
(
S(1)

n (Ji)=s1, S(2)
n (Ji)=s2

)

= knP
(
S(1)

n (J1)=k
)

+ knP
(
S(2)

n (J1)=k
)

+ kn

∑

s1+s2=k

s1>0, s2>0

P
(
S(1)

n (Ji)=s1, S(2)
n (Ji)=s2

)
.
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Attending now to condition
•
D (un) we can write

kn

∑

s1+s2=k

s1>0, s2>0

P
(
S(1)

n (Ji)=s1, S(2)
n (Ji)=s2

)
≤

≤ knP
(
S(1)

n (Ji) > 0, S(2)
n (Ji) > 0

)

≤ knβn + knP
(
S(1)

n (Ji)>0
)
P
(
S(2)

n (Ji)>0
)

= o(1) .

So
knP

(
Sn(Ji)=k

)
= knP

(
Sn(J1)=k

)
+ o(1) .

We will prove next that when the superposed sequence verifies conditions
•
D (un) and ∆(un) we can apply to it the results stated in Proposition 1.1.
Furthermore, and as said before, the sequence {Sn}n≥1 behaves asymptotically as
though the sequence {Xn}n≥1 is stationary, that is, the multiplicity distribution
does not depend on x, Πx = Π, for each x ∈ [0, 1], and the intensity measure is
equal a constant times the Lebesgue measure, µ(·) = ν m(·).

Proposition 2.2. Suppose that the superposed sequence {Xn}n≥1 veri-

fies conditions ∆(un) and
•
D (un), where {un}n≥1 is a sequence of real numbers

verifying (2.1). If the sequence {Sn}n≥1 converges, then we have Sn
d

−−−→
n→∞

S[ν,Π],

with ν = lim
n→∞

knP
(
Sn([0, k−1

n ])>0
)

and Π is a probability measure such that

Π(k) = lim
n→∞

P
(
Sn([0, k−1

n ])=k | Sn([0, k−1
n ])>0

)
, k ∈ N.

Proof: We are going to prove that the superposed sequence satisfies the
assumptions of Proposition 1.1 with Ji =

(
(i−1)[ n

kn
] 1
n
, i[ n

kn
] 1
n

]
, i=1, 2, ..., kn.

For I ⊂ [0, 1] with m(I) ≤ ǫn and ǫn−−−→
n→∞

0 we have

P
(
Sn(I)>0

)
≤ n ǫn max

(
P (Xg1(1) >un), P (Xg2(1) >un)

)
= o(1) ,

since, for each i=1, 2, the sequence {Xgi(n)}n≥1 verifies (2.1).

For each set I ⊂ [0, 1] with Lebesgue measure not greater than ln
n

we also
have

knP
(
Sn(I)>0

)
≤ kn

ln

n
n max

(
P (Xg1(1) >un), P (Xg2(1) >un)

)
= o(1) ,

because {kn}n≥1 is a sequence of integer numbers verifying (1.7).

Since

lim inf
n→∞

P
(
Sn([0, 1])=0

)
= 1 − lim sup

n→∞
P
(
Sn([0, 1])>0

)
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and

lim sup
n→∞

P
(
Sn([0, 1])>0

)
≤ lim sup

n→∞
max

(
P
(
S(1)

n ([0, 1])>0
)
, P
(
S(2)

n ([0, 1])>0
))

≤ max
(
e−ν(1)

, e−ν(2))

< 1 ,

we obtain (1.4).

For each a∈R+, the sequence {gn,a}n≥1 is equicontinuous since if |x−x′|<ε

we have from a certain order
∣∣gn,a(x) − gn,a(x

′)
∣∣ ≤

∑

k≥1

∣∣Πn,i(k) − Πn,j(k)
∣∣ ,

for some pair of indexes i and j in {1, ..., kn} such that Ji and Jj are separated
by a length not greater than ε.

By Proposition 2.1, for each Borel subset B of [0, 1], we have

νn(B) =

kn∑

i=1

P
(
Sn(Ji)>0

) m(B ∩ Ji)

m(Ji)

=

kn∑

i=1

(
P
(
Sn(J1)>0

)
+ o(k−1

n )
) m(B ∩ Ji)

m(Ji)

= kn m(B)P
(
Sn(J1)>0

)
+ o(k−1

n ) kn m(B)

= kn m(B)P
(
Sn(J1)>0

)
+ o(1) .

Under condition ∆(un) it follows, by the Lemma of asymptotic indepen-
dence of maxima over disjoint intervals (Leadbetter (1974)), that

exp(−ν) = lim
n

P
(

max
1≤i≤n

Xi ≤ un

)

= lim
n

kn∏

i=1

P
(
Sn(Ji)=0

)
,

so, by Proposition 2.1,

exp(−ν) = lim
n

P kn
(
Sn(J1)=0

)

and consequently
ν = lim

n
knP

(
Sn(J1)>0

)
.

Thus, νn
w

−−−→
n→∞

ν m.

Finally, we observe that for each i = 1, 2, ..., kn,

Πn,i(k) =
P
(
Sn(Ji)=k

)

P
(
Sn(Ji)>0

) =
knP

(
Sn(J1)=k

)
+ o(1)

knP
(
Sn(J1)>0

)
+ o(1)
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and as a consequence,

Πn,x(k) =
kn∑

i=1

Πn,i(k) δx(Ji)

= Πn,1(k)
kn∑

i=1

δx(Ji) + o(1)
kn∑

i=1

δx(Ji)

= Πn,1(k) + o(1) , independent of x .

By Proposition 1.1 we can conclude that if the sequence {Sn}n≥1 converges
in distribution then the limit point process, S, has Laplace Transform given by

LS(f) = exp

(

−ν

∫

[0,1]

∫

N

(
1 − e−kf(x)

)
dΠ(k) dx

)

that is, {Sn}n≥1 converges to a compound Poisson process with intensity measure
ν and multiplicity distribution Π.

It must be noted that under condition ∆(un) for the superposed sequence
{Xn}n≥1 we also have the validation of such condition for the sequences to su-

perpose, {Xgi(n)}n≥1, i = 1, 2, and so, if the sequence {S
(i)
n }n≥1 converges then

the limit point process is a compound Poisson process, S[ν(i),Π(i)], i=1, 2.

3. DESCRIPTION OF THE ASYMPTOTIC BEHAVIOUR OF
THE SEQUENCE {Sn}n≥1 FROM {S

(i)
n }n≥1, i = 1, 2

The condition
•
D (un) allow us to describe the asymptotic behaviour of

{Sn}n≥1 from {S
(i)
n }n≥1, i=1, 2, as presented in the next result.

Proposition 3.1. Suppose that the conditions of Proposition 2.2 hold,
the sequences {Xgi(n)}n≥1, i = 1, 2, have extremal indexes θ(i), i = 1, 2, respec-
tively, and the proportion of variables to superpose from each of these sequences
is asymptotically constant as established in (1.1).

If, for each i = 1, 2, we have

S(i)
n

d
−−−→
n→∞

S[ν(i),Π(i)]

then
knP

(
Sn([0, k−1

n ])>0
)
−−−→
n→∞

ν = ν(1) + ν(2)

and

Πn(k) = P
(
Sn([0, k−1

n ])=k | Sn([0, k−1
n ])>0

)
−−−→
n→∞

Π(k) =
2∑

i=1

ν(i)

ν
Π(i)(k) ,

with ν(i) = θ(i) τ (i)Li and τ (i) given in (2.1), i=1, 2.
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Proof: By using analogous arguments to the ones used in the proof of
Proposition 2.1, we obtain

lim
n→∞

knP
(
Sn([0, k−1

n ])>0
)

=

= lim
n→∞

knP
(
S(1)

n ([0, k−1
n ])>0

)
+ lim

n→∞
knP

(
S(2)

n ([0, k−1
n ])>0

)

− lim
n→∞

knP
(
S(1)

n ([0, k−1
n ])>0, S(2)

n ([0, k−1
n ])>0

)

= ν(1) + ν(2) .

Relatively to the cluster size of exceedances distribution we have

Πn(k) = P
(
Sn([0, k−1

n ])=k | Sn([0, k−1
n ])>0

)

=
1

P
(
Sn([0, k−1

n ])>0
)
(
P
(
S(1)

n ([0, k−1
n ])=k

)
+ P

(
S(2)

n ([0, k−1
n ]) = k

))

+
1

P
(
Sn([0,k−1

n ])>0
) P




⋃

s1≥1, s2≥1
s1+s2=k

(
S(1)

n ([0,k−1
n ])=s1, S(2)

n ([0,k−1
n ])=s2

)


 .

Since, for each i = 1, 2, we have

P
(
S

(i)
n ([0, k−1

n ])=k
)

P
(
Sn([0, k−1

n ])>0
) = Π(i)

n (k)
knP

(
S

(i)
n ([0, k−1

n ])>0
)

knP
(
Sn([0, k−1

n ])>0
) −−−→

n→∞

1

ν
Π(i)(k) ν(i) ,

and, under condition
•
D (un)

1

P
(
Sn([0, k−1

n ])>0
) P




⋃

s1≥1, s2≥1
s1+s2=k

(
S(1)

n ([0, k−1
n ])=s1, S(2)

n ([0, k−1
n ])=s2

)


 ≤

≤
1

P
(
Sn([0, k−1

n ])>0
) P
(
S(1)

n ([0, k−1
n ])>0, S(2)

n ([0, k−1
n ])>0

)

= o(1) ,

the result follows.

Corollary 3.1. Under the conditions of the Proposition 3.1, the extremal
index of the superposed sequence verifies

θ =
θ(1)τ (1)L1 + θ(2)τ (2)L2

τ (1)L1 + τ (2)L2
.

Note that the extremal index of the superposed sequence depends on
lim
n

∑n
i=1 P (Xi >un) = τ (1)L1 + τ (2)L2, as expected since {Xn}n≥1 is a non-

stationary sequence.
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We finish this section with some remarks about the results obtained previ-
ously.

Remark 3.1. Let us suppose that θ(1)=θ(2), F1 6=F2 and for each i=1, 2,
Fi belongs to the domain of attraction of an extreme value distribution, G.
So we have

P

(
max
1≤i≤n

Xi≤un(x)

)
−−−→
n→∞

Gθ(1)
(x) .

We have in this way found a class of non-stationary sequences for which the
so-called Extremal Types Theorem of Leadbetter is still valid.

Remark 3.2. Suppose that the superposed sequence is stationary. Then,
under the long range dependence condition ∆(un) if {Sn}n≥1 converges in distri-
bution to some point process S then S is necessarily a compound Poisson process

and the extremal index θ = lim
n→∞

P
(
Sn([0,k−1

n ])>0
)

ESn([0,1]) .

So it seems natural to ask: When the superposed sequence is stationary are
there any advantages in the application of the results established in this section?
We shall find an affirmative answer.

In the stationary case, the introduction of local dependence conditions
(Leadbetter (1983), Leadbetter and Nandagopalan (1989), Ferreira (1994))
enables us to obtain processes with practical interest to compute the extremal
index, θ.

By assuming that each sequence X(i), i = 1, 2, does not oscillate rapidly
near high extremes in the sense of the usual local dependence conditions we have
not, in general, the validition of these conditions by the superposed sequence and
consequently we can not apply directly to {Xn}n≥1 the avaiable results.

In this case, the application of Proposition 3.1 facilitates the computation
of the extremal index θ of the superposed sequence since we can apply the results
under local dependence conditions to each one of the sequences superposed.

4. APPLICATIONS

As an application of the results established previously we point out the
computation of the extremal index of a stationary sequence of random vectors

X = {(X
(1)
n ,X

(2)
n )}n≥1 with common distribution function, F , belonging to the

domain of attraction of a bivariate extreme value distribution, G.

Let us denote by X̂ the independent sequence associated with X and by

max
1≤j≤n

X̂
(i)
j , n≥1, i=1, 2, the corresponding sequences of partial maxima.
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We remember the definition of bivariate extremal index introduced by
Nandagopalan (1990) and that is a generalization of Leadbetter’s definition for
unidimensional sequences.

Definition 4.1. The sequence X=
{
(X

(1)
n ,X

(2)
n )
}

n≥1
has an extremal

index θ(τ (1), τ (2)) ∈ [0, 1], τ = (τ (1), τ (2)) ∈ R
2
+, when for each τ ∈ R

2
+, there are

u
(τ)
n = (u

(τ (1))
n , u

(τ (2))
n ), n≥1, verifying

nP
(
X

(i)
1 >u(τ (i))

n

)
−−−→
n→∞

τ (i) , i = 1, 2 ,

P

(
max

1≤j≤n
X̂

(1)
j ≤ u(τ (1))

n , max
1≤j≤n

X̂
(2)
j ≤ u(τ (2))

n

)
−−−→
n→∞

G(τ)

and

P

(
max

1≤j≤n
X

(1)
j ≤ u(τ (1))

n , max
1≤j≤n

X
(2)
j ≤ u(τ (2))

n

)
−−−→
n→∞

G(τ)θ(τ) .

If X has extremal index θ(τ) then, for each i=1, 2, {X
(i)
n }n≥1 has extremal

index θ(i) = lim
τ(j)→0+

j 6=i

θ(τ (1), τ (2)).

We shall assume, without loss of generality, that the common distribution F

of the vectors of the stationary sequence X=
{
(X

(1)
n ,X

(2)
n )
}

n≥1
has unit Fréchet

margins, id est,

F1(x) = F2(x) = exp(−x−1) , x > 0 .

For fixed τ (1) and τ (2) and normalized levels u
(τ (i))
n = n

τ (i) for {X
(i)
n }n≥1,

i=1, 2, we have

P

(
max

1≤j≤n
X

(1)
j ≤ u(τ (1))

n , max
1≤j≤n

X
(2)
j ≤ u(τ (2))

n

)
=(4.1)

= P

(
max

1≤j≤n
X

(1)
j ≤

n

τ (1)
, max

1≤j≤n
X

(2)
j ≤

n

τ (2)

)

= P

(
max

1≤j≤n
τ (1)X

(1)
j ≤ n, max

1≤j≤n
τ (2)X

(2)
j ≤ n

)
.

Let us consider the stationary sequences
{
Xgi(n) = τ (i)X

(i)
n

}
n≥1

, i = 1, 2.
By superposing the variables of these sequences we can form different sequences
{Xn}n≥1 but the limiting behaviour of {Sn}n≥1 is only affected by the asymptotic
proportion of variables to superpose from each one of these sequences and not by
the order of the variables of the superposed sequence.

By considering, for example,

{Xn}n≥1 =
{

τ (1)X
(1)
1 , τ (2)X

(2)
1 , τ (1)X

(1)
2 , τ (2)X

(2)
2 , ..., τ (1)X(1)

n , τ (2)X(2)
n

}

n≥1
,
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we can rewrite (4.1) in the following way

(4.2) P

(
max

1≤j≤2n
Xj ≤ n

)
.

Since, for each i=1, 2,

si(n)

n
=

n
2

n
−−−→
n→∞

Li =
1

2
,

then, under the conditions established in Proposition 3.1, we have

(4.3) lim
n→∞

P

(
max

1≤j≤2n
Xj ≤ n

)
= exp

[
−

1

2

(
θ(1)τ ′(1) + θ(2)τ ′(2)

)]

with

(4.4) τ ′(i) = lim
n→∞

nP
(
τ (1)X

(i)
1 >n

)
= lim

n→∞
n
(
1 − e−

τ(i)

n

)
= τ (i) .

By paying attention to (4.1), (4.2), (4.3) and (4.4) we can write

lim
n→∞

P

(
max

1≤j≤n
X

(1)
j ≤ u(τ (1))

n , max
1≤j≤n

X
(2)
j ≤ u(τ (2))

n

)
=(4.5)

= exp

[
−

1

2

(
θ(1)τ (1) + θ(2)τ (2)

)]
.

On the other hand, from the definition of extremal index θ(τ (1), τ (2)),

lim
n→∞

P

(
max

1≤j≤n
τ (1)X

(1)
j ≤ n, max

1≤j≤n
τ (2)X

(2)
j ≤ n

)
=(4.6)

=

(
lim

n→∞
P

(
max

1≤j≤n
τ (1)X̂

(1)
j ≤ n, max

1≤j≤n
τ (2)X̂

(2)
j ≤ n

))θ(τ (1),τ (2))

=

[
exp

[
−

1

2

(
τ (1) + τ (2)

)]]θ(τ (1),τ (2))

,

since under condition
•
D (un) for {Xn}n≥1, the sequence {X̂n}n≥1 also satisfies

•
D (un) and, for each i=1, 2, Ŝ

(i)
n ([0, 1]) = Sn[X̂

(i)
n , u

(τi)
n ]([0, 1]) converges in dis-

tribution to a random variable with Poisson distribution with parameter τ (i).

By attending to a (4.5) and (4.6) it follows that

exp

[
−

1

2

(
θ(1)τ (1) + θ(2)τ (2)

)]
=

[
exp

(
−

1

2

(
τ (1) + τ (2)

))]θ(τ (1),τ (2))

and so

(4.7) θ
(
τ (1), τ (2)

)
= θ(1) τ (1)

τ (1) + τ (2)
+ θ(2) τ (2)

τ (1) + τ (2)
.
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This result is not surprising since under the condition
•
D (un) for {Xn}n≥1

we have the asymptotic independence of the maxima of the vector margins and
Nandagopalan (1994) proves that in this case the bivariate extremal index is a
convex linear combination of the marginal extremal indexes as in (4.7).

We finish this section by exhibiting a nonstationary sequence that verifies

condition
•
D (un).

Example 4.1. Let
{
Z

(1)
n

}
n≥1

and
{
Z

(2)
n

}
n≥1

be independent sequences
of random variables. For 0<λ≤1 constant, consider the autoregressive sequences
of maxima defined as

Xn = λmax
(
Xn−1, Z

(1)
n

)

and
Yn = λmax

(
Yn−1, Z

(2)
n

)

where X0 = Y0 is independent of
{
Z

(1)
n

}
n≥1

.

For each n ≥ 1 it follows that

Xn = max

(
max

1≤j≤n
λjZ

(1)
n−j+1, λnX0

)

and

Yn = max

(
max

1≤j≤n
λjZ

(2)
n−j+1, λnY0

)
.

So, for each J ⊂ [0,+∞[ such that m(J) = rn = [ n
kn

], we have

P
(
M (1)

n (J)≤un, M (2)
n (J)≤un

)
=

= P

(
⋂

s∈J

s⋂

j=1

Z
(1)
s−j+1 ≤

un

λj

)
P

(
X0 ≤

un

λn

)
P

(
⋂

s∈J

s⋂

j=1

Z
(2)
s−j+1 ≤

un

λj

)

and

P
(
M (1)

n (J)≤un

)
P
(
M (2)

n (J) ≤ un

)
=

= P

(
⋂

s∈J

s⋂

j=1

Z
(1)
s−j+1 ≤

un

λj

)
P 2

(
X0 ≤

un

λn

)
P

(
⋂

s∈J

s⋂

j=1

Z
(2)
s−j+1 ≤

un

λj

)

and consequently,
∣∣∣∣P
(
M (1)

n (J)≤un, M (2)
n (J)≤un

)
− P

(
M (1)

n (J)≤un

)
P
(
M (2)

n (J)≤un

)∣∣∣∣ ≤

≤

∣∣∣∣P
(

X0≤
un

λn

)
− P 2

(
X0≤

un

λn

)∣∣∣∣ −−−→
n→∞

0 .
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