
Mechanical Lagrangian systems

with external forces

Valer Nimineţ

Abstract. We consider mechanical Lagrangian systems with external
forces that depend also on velocity. The geometrical model is given by
a special semispray S. We show that when the system is dissipative the
energy of the system decreases on the integral curves of S. We give also
sufficient condition that the system be stable using a Lyapunov function
constructed with the energy of the system.
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1 Mechanical Lagrangian systems

A mechanical system has the total energy as sum of kinetic energy and potential

energy. The kinetic energy
1
2
mv2 has in the rectangular coordinates (x1, ..., xn) the

expression
1
2
m[(ẋ1)2 + (ẋ2)2 + ... + (ẋn)2]

where ẋi =
dxi

dt
.

If we pass to other coordinates called in the analytic mechanics generalized coordi-

nates (qi), the form of the kinetic energy becomes
1
2
mgij(q)q̇iq̇j , a positively defined

quadratic form with the coefficients gij(q).
If the configuration space of the system is a differentiable manifold M , the kinetic

energy appears as a Riemannian metric on M . And the potential energy is a function
V on the manifold M .

These facts justify:

Definition 1.1. A Lagrangian mechanical system is a triplet (M, g, V ), with g a
Riemannian metric on M and V a real function on M .

Let τ : TM → M be the tangent bundle over M .
The function L : TM → R,

L(Vq) =
1
2
g(Vq, Vq)− (V ◦ τ)(Vq)
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is called the Lagrangian of the system (M, g, V ). We identify V ◦ τ with V .
A differential curve γ : I → M , t → γ(t), with I an open interval in R, is called

trajectory of the Lagrangian system (M, g, V ) if the function γ(t) is a solution of
Euler - Lagrange equation:

1.1
d

dt

(
∂L(γ̇(t))

∂γ̇

)
− ∂L

∂γ
= 0.

Written in the coordinates (xi, yi) on TM with the equation of the curve t → xi(t),
this equation becomes:

1.1′
d

dt

(
∂L(xi, ẋi)

∂ẋi

)
− ∂L

∂xi
= 0, ẋi =

dxi

dt
.

Inserting L as above and computing we obtain:

gij ẍ
j +

1
2

(
∂gij

∂xk
+

∂gik

∂xj
− ∂gjk

∂xi

)
ẋj ẋk = − ∂V

∂xi
.

Multiplying by (ghi) one yields:

1.2 ẍh + Γh
jk(x)ẋj ẋk = −ghi ∂V

∂xi

where Γh
jk are Christoffel coefficients derived from (gij).

If we denote by ∇ the Levi-Civita connection of the manifold (M, g) the equations
(1.2) can be written in the form

1.3 ∇γ̇ γ̇ = F ◦ γ, F = −gradV.

The situation described above is the simplest and for this reason, the triplet
(M, g, V ) is also called simple mechanical system. The vector F is also called ex-
ternal force.

If F = 0, the equation of the trajectory is ∇γ̇ γ̇ = 0 and coincides with the
equations of the geodesics of g.

On the other hand, ∇γ̇ γ̇ is the acceleration vector and (1.3) represents Newton’s
equation m−→a = −→

F , (with m = 1).
Frequently, the external force has also a non-gradient component that is F =

gradV + R and the equation (1.3) has the form:

1.4 ∇γ̇ γ̇ = −(gradV ) ◦ γ + R ◦ γ

We notice that when describing the dynamic of the simple mechanical system
given by the Euler - Lagrange equations, the most important role is of the Lagrangian
function L(x, y). Thus is natural the following change of Definition 1.1:

Definition 1.2. It is called a Lagrangian system a triplet (M,L, F ), where L is
a Lagrangian and F is a vector field.

For L a regular Lagrangian, we will use the metric gij(x, y) =
1
2

∂2L

∂yi∂yj
and its

inverse (gjk) in order to pass from F to a covector field and conversely.
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2 Stability and dissipation for Lagrangian mecha-
nical systems with external forces

We continue the study of the Lagrangian mechanical systems with problems concern-
ing dissipation and stability.

Let
∑

= (M, L(x, y), F (x, y)) be a Lagrangian system with M a differentiable
manifold, L a regular Lagrangian and F (x, y) = (Fi(x, y)) external forces seen as a
d−covector field on TM .

We will postulate that the evolution equations of the system
∑

are the following:

2.1
d

dt

(
∂L

∂yi

)
− ∂L

∂xi
= Fi(x, y); yi =

dxi

dt
.

Expanding the derivative with respect to ..., replacing the derivatives
∂2L

∂yi∂yj
with

2gij and multiplying with (gjk) the equation (2.1) becomes:

2.2
d2xi

dt2
+ 2Gi(x, ẋ) =

1
2
F i(x, ẋ),

where

2.2′ gi(x, y) =
1
4
gij

(
∂2L

∂yj∂xk
yk − ∂L

∂xi

)
, y = ẋ =

dxi

dt
.

With the notation yi =
dxi

dt
, equations (2.2) are equivalent with the system of

equations:

2.3

dxi

dt
= yi

dyi

dt
= −2

(
Gi − 1

4
F i

) .

The solutions of this system can be seen as integrable curves of the vector field S∗

on TM given by

2.4 S∗ = yi ∂

∂xi
− 2G∗i(x, y)

∂

∂yi
, G∗i = Gi − 1

4
F i.

This is a semispray.For the theory of semisprays we refer to [1].
The semispray associated to Lagrangian L is

2.4′ S = yi ∂

∂xi
− 2Gi(x, y)

∂

∂yi
.

Definition 2.1. The mechanical system
∑

is dissipative if the force F is dissipa-
tive i.e. Fj(x, y)yj ≤ 0 and

∑
is strictly dissipative if the force F is strictly dissipative

i.e. Fj(x, y)yj ≤ −αyjy
j, with α > 0 and yj = gij(x, y)yi.



Mechanical Lagrangian systems 135

The conditions of dissipation and of strictly dissipation can be also formulated as
follows: if the matrix (gij(x, y)) is positively defined, it defines a Riemannian metric g
in the vertical bundle over TM . The force field (F i) can be seen as a section in vertical

bundle by the definition F = F i(x, y)
∂

∂yi
. The Liouville field C = yi ∂

∂yi
appears as

a section in vertical bundle and we have g(C, C) = gijy
iyj = yiy

j := ‖y‖2. Also, we
have Fj(x, y)yj = g(F,C) and so, the dissipation condition one writes g(F, C) ≤ 0
and the strictly dissipation condition becomes g(F,C) ≤ −α‖y‖2.

Theorem 2.1. If the Lagrangian system
∑

is dissipative then its energy E(x, y) =

yi ∂L

∂yi
− L decreases on the solutions curves of the equations (2.3). If the system

∑

is strictly dissipative and the solutions curves have not singularities, then the energy
E is strictly decreasing on solutions curves of the equations (2.3).

Proof. Let γ : t → (x(t), y(t)), y = ẋ a curve on TM solution of the system (2.3).
Along this curve, we have

dE

dt
= ẍ

∂L

∂ẋi
+ ẋ

d

dt

(
∂L

∂ẋi

)
− ẍ

∂L

∂ẋi
− ẋi ∂L

∂xi
−

−ẍ
∂L

∂ẋi
= ẋi

(
d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi

)
=

= ẋiFi(x, ẋ) ≤ 0.

So, E is decreasing on γ.

If
∑

is strictly dissipative, then
dE

dt
= ẋiFi(x, ẋ) ≤ −α‖ẋ‖2 < 0 so E is strictly

decreasing on γ.2
We will define the equilibrium point of the system

∑
as zeros of the semispray

S∗.
From (2.4) it results that the equilibrium points of the system

∑
are (xi

0, 0) or
Ox0 ∈ Tx0M , where (xi

0) must be a solution of the equations

G∗i(xi
0, 0) = 0 ⇔ Gi(xi

0, 0)− 1
4
F i(xi

0, 0) = 0.

For a Lagrange manifold (M, L), the tangent manifold TM is a Riemannian manifold

assuming that gij(x, y) =
∂2L

∂yi∂yj
is positively defined.

The Riemannian metric on TM is

gL = gijdxi ⊗ dxj + gijδy
i ⊗ δyj

with
δyi = dyi + N i

jdxi

where (N i
j) are the coefficients of the nonlinear connection defined by the semispray:

N i
j =

∂Gi

∂yj
.

If the manifold (TM, G) is complete as a metric space one can be given theorems
of stability for the equilibrium points of a vector field on TM , similar to those from
Rn.
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In [2] one introduces the notion of Lyapunov functions for X in a zero x0 as a real
function V on M with the properties:

1) V (x0) = 0, V (x) > 0, ∀x 6= x0

2) LxV (x) ≤ 0 ⇔ X(V (x)) ≤ 0, ∀x ∈ M
and one proves

Proposition 2.1.([2])If there exists a Lyapunov function for X in x0, then x0 is
a stable point.

We will apply this proposition for the manifold TM and the vector field S∗. We
get

Theorem 2.2. Let
∑

= (M,L, F ) be a dissipative Lagrangian system with
(TM, gL) a complete Riemannian manifold. Let (xi

0, 0) be an equilibrium point of∑
, that is a zero of the vector field S∗. We suppose that (xi

0, 0) is a point of absolute
minimum for the energy E of the system

∑
. Then (xi

0, 0) is a stable equilibrium
point.

Proof. We consider the function Ẽ(x, y) = E(x, y)− E(x0, 0).
We notice that E(x0, 0) = −L(x0, 0) so that Ẽ(x, y) = E(x, y) + L(x, 0).
We have
i) Ẽ(x0, 0) = 0, Ẽ(x, y) > 0 because E(x0, 0) is the absolute minimum value for

E.
ii) LS∗(Ẽ) = LS∗(E) = yi ∂E

∂xi
− 2G∗

∂E

∂yi
= yi ∂E

∂xi
− 2Gi ∂E

∂yi
+

1
2
F i ∂E

∂yi
.

But
∂E

∂yi
=

∂L

∂yi
+ yj ∂2L

∂yj∂yi
− ∂L

∂yi
= 2gijy

j .

Using this, we obtain:

LS∗(Ẽ) = yi

(
∂2L

∂xi∂yj
yj − ∂L

∂xi

)
− 4gijy

jGj + F igijy
j .

The first two terms from the right side of this equality cancel each other and we
get:

LS∗(Ẽ) = F igijy
j = F jgijy

i = Fiy
i ≤ 0

from the dissipation condition on
∑

.
So, Ẽ is a Lyapunov function for S∗ in (x0, 0).
By the Proposition 2.1, (x0, 0) is a stable equilibrium point.2

Theorem 2.3. Let
∑

= (M,L, F ) be a dissipative Lagrangian system with
(TM, gL) a complete Riemannian manifold, L ≥ 0 and L(x, y) a homogeneous func-
tion of degree m ≥ 2 in the variables y. Let (xi

0, 0) a point on TM , with F i(xi
0, 0) = 0.

Then, (xi
0, 0) is a stable equilibrium point of S∗.

Proof. Directly we observe that the functions Gi(x, y) are homogeneous of degree
2 in y variables. It results that Gi(xi

0, 0) = 0 and from the hypothesis F i(xi
0, 0) = 0,

we infer that (xi
0, 0) is an equilibrium point for S∗. From Euler’s theorem we have

yi ∂L

∂yi
= mL, and the energy E = mL− L = (m− 1)L. So it results:

i) E(xi
0, 0) = 0, E ≥ 0.

ii) LS∗(E) = yi ∂E

∂yi
− 2Gi ∂E

∂yi
+

1
2
F i ∂E

∂yi
= Fiy

i ≤ 0.
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The equalities are obtained in the same way as in the proof of Theorem 2.1 and
the inequality takes place because of the hypothesis that

∑
is a dissipative system.

Thus, E is Lyapunov function for S∗ and the equilibrium point (xi
0, 0). By the

Proposition 2.1, (xi
0, 0) is a stable equilibrium point.2
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