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Abstract

We initiate the study of two-party cryptographic primitives with
unconditional security, assuming that the adversary’s quantum mem-
ory is of bounded size. We show that oblivious transfer and bit com-
mitment can be implemented in this model using protocols where hon-
est parties need no quantum memory, whereas an adversarial player
needs quantum memory of size at least n/2 in order to break the pro-
tocol, where n is the number of qubits transmitted. This is in sharp
contrast to the classical bounded-memory model, where we can only
tolerate adversaries with memory of size quadratic in honest players’
memory size. Our protocols are efficient, non-interactive and can be
implemented using today’s technology. On the technical side, a new
entropic uncertainty relation involving min-entropy is established.

1 Introduction

It is well known that non-trivial 2-party cryptographic primitives cannot
be securely implemented if only error-free communication is available and
there is no limitation assumed on the computing power and memory of
the players. Fundamental examples of such primitives are bit commitment
(BC) and oblivious transfer (OT). In BC, a committer C commits himself to
a choice of a bit b by exchanging information with a verifier V. We want that
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V does not learn b (we say the commitment is hiding), yet C can later chose
to reveal b in a convincing way, i.e., only the value fixed at commitment time
will be accepted by V (we say the commitment is binding). In (Rabin) OT,
a sender S sends a bit b to a receiver R by executing some protocol in such
a way that R receives b with probability 1

2 and nothing with probability 1
2 ,

yet S does not learn what was received.
Informally, BC is not possible with unconditional security since hiding

means that when 0 is committed, exactly the same information exchange
could have happened when committing to a 1. Hence, even if 0 was actually
committed to, C could always compute a complete view of the protocol
consistent with having committed to 1, and pretend that this was what he
had in mind originally. A similar type of argument shows that OT is also
impossible in this setting.

One might hope that allowing the protocol to make use of quantum com-
munication would make a difference. Here, information is stored in qubits,
i.e., in the state of two-level quantum mechanical systems, such as the polar-
ization state of a single photon. It is well known that quantum information
behaves in a way that is fundamentally different from classical information,
enabling, for instance, unconditionally secure key exchange between two
honest players. However, in the case of two mutually distrusting parties, we
are not so fortunate: even with quantum communication, unconditionally
secure BC and OT remain impossible [15, 17].

There are, however, several scenarios where these impossibility results
do not apply, namely:

• if the computing power of players is bounded,

• if the communication is noisy,

• if the adversary is under some physical limitation, e.g., the size of the
available memory is bounded.

The first scenario is the basis of many well known solutions based on
plausible but unproven complexity assumptions, such as hardness of factor-
ing or discrete logarithms. The second scenario has been used to construct
both BC and OT protocols in various models for the noise [5, 6, 9]. The
third scenario is our focus here. In this model, OT and BC can be done
using classical communication assuming, however, quite restrictive bounds
on the adversary’s memory size [2, 10], namely it can be at most quadratic
in the memory size of honest players. Such an assumption is on the edge of
being realistic, it would clearly be more satisfactory to have a larger sepa-
ration between the memory size of honest players and that of the adversary.
However, this was shown to be impossible [13].

In this paper, we study for the first time what happens if instead we
consider protocols where quantum communication is used and we place a
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bound on the adversary’s quantum memory size. There are two reasons why
this may be a good idea: first, if we do not bound the classical memory size,
we avoid the impossibility result of [13]. Second, the adversary’s goal typi-
cally is to obtain a certain piece of classical information, however, converting
quantum information to classical by measuring may irreversibly destroy in-
formation, and we may be able to arrange it such that the adversary cannot
afford to loose information this way, while honest players can.

It turns out that this is indeed possible: we present protocols for both
BC and OT in which n qubits are transmitted, where honest players need no
quantum memory, but where the adversary must store at least n/2 qubits
to break the protocol. We emphasize that no bounds are assumed on the
adversary’s computing power, nor on his classical memory. This is clearly
much more promising than the classical case, not only from a theoretical
point of view, but also in practice: while sending qubits and measuring
them immediately as they arrive is well within reach of current technology,
storing even a single qubit for more than fraction of a second is a formidable
technological challenge. Furthermore, we show that our protocols also work
in a non-ideal setting where we allow the quantum source to be imperfect
and the quantum communication to be noisy.

Our protocols are non-interactive, only one party sends information when
doing OT, commitment or opening. Furthermore, the commitment protocol
has the interesting property that the only message is sent to the commit-
ter, i.e., it is possible to commit while only receiving information. Such a
scheme clearly does not exist without a bound on the committer’s memory,
even under computational assumptions and using quantum communication:
a corrupt committer could always store (possibly quantumly) all the infor-
mation sent, until opening time, and only then follow the honest committer’s
algorithm to figure out what should be sent to convincingly open a 0 or a
1. Note that in the classical bounded-storage model, it is known how to do
time-stamping that is non-interactive in our sense: a player can time-stamp a
document while only receiving information [18]. However, no reasonable BC
or protocol that time-stamps a bit exist in this model. It is straightforward
to see that any such protocol can be broken by an adversary with classical
memory of size twice that of an honest player, while our protocol requires
no memory for the honest players and remains secure against any adversary
not able to store more than half the size of the quantum transmission.

We also note that it has been shown earlier that BC is possible using
quantum communication, assuming a different type of physical limitation,
namely a bound on the size of coherent measurement that can be imple-
mented [20]. This limitation is incomparable to ours: it does not limit the
total size of the memory, instead it limits the number of bits that can be
simultaneously operated on to produce a classical result. Our adversary
has a limit on the total memory size, but can measure all of it coherently.
The protocol from [20] is interactive, and requires a bound on the maximal
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measurement size that is sublinear in n.
On the technical side, we use the quantum privacy amplification result

by Renner and König [19] together with a proof technique by Shor and
Preskill [21] where we purify the actions of honest players. This makes no
difference from the adversary’s point of view, but makes proofs go through
more easily. We combine this with a new technical result that may be seen
as a new type of uncertainty relation involving min-entropy (Theorem 3.7
and Corollary 3.8).

2 Preliminaries

2.1 Notation and Quantum Stuff

For a set I = {i1, i2, . . . , i`} ⊆ {1, . . . , n} and a n-bit string x ∈ {0, 1}n, we
define x|I := xi1xi2 · · ·xi` . For x ∈ {0, 1}n, we write Bδn(x) for the set of all
n-bit strings at Hamming distance at most δn from x. Note that the number
of elements in Bδn(x) is the same for all x, we denote it by Bδn := |Bδn(x)|.
For x, y ∈ {0, 1}n, x·y ∈ {0, 1} denotes the (standard) in-product of x and y.
For a probability distribution Q over n-bit strings and a set L ⊆ {0, 1}n,
we abbreviate the (overall) probability of L with Q(L) :=

∑
x∈LQ(x). All

logarithms in this paper are to base two. We denote by h(p) the binary
entropy function h(p) : = −

(
p · log p + (1 − p) · log (1− p)

)
. We denote

by negl(n) any function of n smaller than any polynomial provided n is
sufficiently large.

The pair {|0〉, |1〉} denotes the computational or rectilinear or “+” basis
for the 2-dimensional complex Hilbert space C2. The diagonal or “×” basis
is defined as {|0〉×, |1〉×} where |0〉× = 1√

2
(|0〉+|1〉) and |1〉× = 1√

2
(|0〉−|1〉).

Measuring a qubit in the + -basis (resp. ×-basis) means applying the mea-
surement described by projectors |0〉〈0| and |1〉〈1| (resp. projectors |0〉×〈0|×
and |1〉×〈1|×). When the context requires it, we write |0〉+ and |1〉+ instead
of |0〉 respectively |1〉; and for any x ∈ {0, 1}n and r ∈ {+,×}, we write
|x〉r =

⊗n
i=1 |xi〉r. If we want to choose the + or ×-basis according to the

bit b ∈ {0, 1}, we write {+,×}[b].

2.2 Quantum Probability Theory

As basis for the security definitions and proofs of our protocols, we are
using the formalism introduced in [19], which we briefly summarize here.
A random state ρ is a random variable, with distribution Pρ, whose range
is the set of density operators of a fixed Hilbert space. The view of an
observer (which is ignorant of the value of ρ) is given by the quantum
system described by the density operator [ρ] :=

∑
ρ Pρ(ρ)ρ. In general, for

any event E , we define [ρ|E ] :=
∑

ρ Pρ|E(ρ)ρ. If ρ is dependent on some
classical random variable X, with joint distribution PXρ, we also write ρx
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instead of [ρ|X = x]. Note that ρx is a density operator (for any fixed x)
whereas ρX is again a random state. The overall quantum system is then
given by [{X} ⊗ ρ] =

∑
x PX(x) {x} ⊗ ρx, where {x} := |x〉〈x| is the state

representation of x and {X} the corresponding random state. Obviously,
[{X}⊗ρ] = [{X}]⊗[ρ] if and only if ρX is independent ofX, where the latter
in particular implies that no information on X can be learned by observing
only ρ. Furthermore, if [{X} ⊗ ρ] and [{X}]⊗ [ρ] are ε-close in terms of
their trace distance δ(ρ, σ) = 1

2 tr(|ρ − σ|), then the real system [{X} ⊗ ρ]
“behaves” as the ideal system [{X}] ⊗ [ρ] except with probability ε [19] in
that for any evolution of the system no observer can distinguish the real from
the ideal one with advantage greater than ε/2 (or ε, depending on the exact
definition of advantage). By slight abuse of notation, we usually simply write
X instead of {X}. Henceforth, we use unif to denote a random variable
with range {0, 1}, uniformly distributed and independent of anything else.

When reviewing the privacy amplification theorem from [19], we briefly
address the generalization of the classical Rényi entropy Hα(X) of order α of
a random variable X to the Rényi entropy Sα(ρ) of order α of a density op-
erator ρ. Otherwise, though, we are only using the classical Rényi entropy of
order ∞, commonly known as the min-entropy H∞(X) = − log maxx PX(x).

2.3 Privacy Amplification

In this paper, we only use privacy amplification with one-bit output. A class
Hn of hashing functions from {0, 1}n to {0, 1} is called two-universal if for
any pair x, y ∈ {0, 1}n with x 6= y

∣∣{f ∈ Hn : f(x) = f(y)}
∣∣ ≤ |Hn|

2
.

Several two-universal classes of hashing functions are such that evaluating
and picking a function uniformly and at random in Hn can be done efficiently
[3, 22].

Theorem 2.1 ([19]). Let X be distributed over {0, 1}n, and let ρ be a
random state of q qubits1. Let F be the random variable corresponding
to the random choice (with uniform distribution and independent from X
and ρ) of a member of a two-universal class of hashing functions Hn. Then

δ([F (X)⊗ F ⊗ ρ], [unif]⊗ [F ⊗ ρ]) ≤ 1
2
2−

1
2
(S2([{X}⊗ρ])−S0([ρ])−1)

≤ 1
2
2−

1
2
(H∞(X)−q−1). (1)

1Remember that ρ can be correlated with X in an arbitrary way. In particular, we can
think of ρ as an attempt to store the n-bit string X in q qubits.
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The first inequality is the original theorem from [19], and (1) follows by
observing that S2([{X} ⊗ ρ]) ≥ H2(X) ≥ H∞(X). In this paper, we only
use this weaker version of the theorem.

Note that if the rightmost term of (1) is negligible, i.e. say smaller than
2−εn, then this situation is 2−εn-close to the ideal situation where F (X) is
perfectly uniform and independent of ρ and F . In particular, the situations
F (X) = 0 and F (X) = 1 are statistically indistinguishable given ρ and F
[14].

The following lemma is a direct consequence of Theorem 2.1. In Sec-
tion 4, this lemma will be useful for proving the binding condition of our com-
mitment scheme. Recall that for X ∈ {0, 1}n, Bδn(X) denotes the set of all
n-bit strings at Hamming distance at most δn from X and Bδn := |Bδn(X)|
is the number of such strings.

Lemma 2.2. Let X be distributed over {0, 1}n, let ρ be a random state of
q qubits and let X̂ be a guess for X given ρ. Then, for all δ < 1

2 it holds
that

Pr
[
X̂ ∈ Bδn(X)

]
≤ 2−

1
2
(H∞(X)−q−1)+log(Bδn).

In other words, given a quantum memory of q qubits arbitrarily correlated
with a classical random variable X, the probability to find X̂ at Hamming
distance at most δn from X where nh(δ) < 1

2(H∞(X)− q) is negligible.

Proof: Here is a strategy to try to bias F (X) when given X̂ and F ∈R Hn:
Sample X ′ ∈R Bδn(X̂) and output F (X ′). Note that, using psucc as a short
hand for the probability Pr

[
X̂ ∈ Bδn(X)

]
to be bounded,

Pr
[
F (X ′) = F (X)

]
=
psucc

Bδn
+
(

1− psucc

Bδn

)
1
2

=
1
2

+
psucc

2 ·Bδn
,

where the first equality follows from the fact that if X ′ 6= X then, as Hn

is two-universal, Pr [F (X) = F (X ′)] = 1
2 . Since the probability of correctly

guessing a binary F (X) given F and ρ is always upper bounded by 1
2 +

δ([F (X) ⊗ F ⊗ ρ], [unif] ⊗ [F ⊗ ρ]), in combination with Theorem 2.1 the
above results in

1
2

+
psucc

2 ·Bδn
≤ 1

2
+

1
2
2−

1
2
(H∞(X)−q−1)

and the claim follows immediately. �
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3 Rabin Oblivious Transfer

3.1 The Definition

A protocol for Rabin Oblivious Transfer (ROT) between sender Alice and
receiver Bob allows for Alice to send a bit b through an erasure channel
to Bob. Each transmission delivers b or an erasure with probability 1

2 .
Intuitively, a protocol for ROT is secure if

• sender Alice gets no information on whether b was received or not, no
matter what she does, and

• receiver Bob gets no information about b with probability at least 1
2 ,

no matter what he does.

In this paper, we are considering quantum protocols for ROT. This means
that while in- and outputs of the honest senders are classical, described
by random variables, the protocol may contain quantum computation and
quantum communication, and the view of a dishonest player is quantum,
and is thus described by a random state.

Any such (two-party) protocol is specified by a family {(Sn,Rn)}n>0 of
pairs of interactive quantum circuits (i.e. interacting through a quantum
channel). Each pair is indexed by a security parameter n > 0, where Sn

and Rn denote the circuits for sender Alice and receiver Bob, respectively.
In order to simplify the notation, we often omit the index n, leaving the
dependency on it implicit.

For the formal definition of the security requirements of a ROT protocol,
let us fix the following notation. Let B denote the binary random variable
describing S’s input bit b, and let A and B′ denote the binary random vari-
ables describing R’s two output bits, where the meaning is that A indicates
whether the bit was received or not. Furthermore, for a dishonest sender S̃
(respecively R̃) let ρS̃ (ρR̃) denote the random state describing S̃’s (R̃’s) view
of the protocol. Note that for a fixed candidate protocol for ROT, and for a
fixed input distribution PB, depending on whether we consider two honest
S and R, a dishonest S̃ and an honest R, or an honest S and a dishonest
R̃, the corresponding joint distribution PBAB′ , PρS̃AB′ respectively PBρR̃

is
uniquely determined.

Definition 3.1. A two-party (quantum) protocol (S,R) is a (statistically)
secure ROT if the following holds.

Correctness: For honest S and R

Pr [B = B′|A = 1] ≥ 1− negl(n) .

Privacy: For any S̃

δ([A⊗ ρS̃], [unif]⊗ [ρS̃]) ≤ negl(n) .
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Obliviousness: For any R̃ there exists an event E with P [E ] ≥ 1
2 −negl(n)

such that
δ([B ⊗ ρR̃|E ], [B]⊗ [ρR̃|E ]) ≤ negl(n) .

If any of the above trace distances equals 0, then the corresponding property
is said to hold perfectly. If one of the properties only holds with respect
to a restricted class S of S̃’s respectively R of R̃’s, then this property is said
to hold and the protocol is said to be secure against S respectively R.

Privacy requires that the joint quantum state is essentially the same
as when A is uniformly distributed and independent of the senders’s view,
and obliviousness requires that there exists some event which occurs with
probability at least 1

2 (the event that the receiver does not receive the bit)
and under which the joint quantum state is essentially the same as when B
is distributed (according to PB) independently of the receiver’s view.

3.2 The Protocol

We introduce a quantum protocol for ROT that will be shown perfectly
private (against any sender) and statistically oblivious against any quantum
memory-bounded receiver.

The protocol is very simple (see Figure 1): S picks x ∈R {0, 1}n and sends
to R n qubits in state either |x〉+ or |x〉× each chosen with probability 1

2 . R
then measures all received qubits either in the rectilinear or in the diagonal
basis. With probability 1

2 , R picked the right basis and gets x, while any
R̃ that is forced to measure part of the state (due to a memory bound)
can only have full information on x in case the +-basis was used or in case
the ×-basis was used (but not in both cases). Privacy amplification using
any two-universal class of hashing functions Hn allows to obtain a proper
ROT. (In order to avoid aborting, we specify that if a dishonest S̃ refuses
to participate, or sends data in incorrect format, then R samples its output
bits a and b′ both at random in {0, 1}.)

As we shall see in Section 3.5, the security of the qot protocol against
receivers with bounded-size quantum memory holds as long as the bound
applies before Step 4 is reached. An equivalent protocol is obtained by
purifying the sender’s actions. Although qot is easy to implement, the
purified or EPR-based version depicted in Figure 2 is easier to prove secure.
A similar approach was taken in the Shor-Preskill proof of security for the
BB84 quantum key distribution scheme [21].

Notice that while qot requires no quantum memory for honest players,
quantum memory for S seems to be required in epr-qot. The following
Lemma shows the strict equivalence between qot and epr-qot.
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qot(b):

1. S picks x ∈R {0, 1}n, and r ∈R {+,×}.

2. S sends |ψ〉 := |x〉r in basis r to R.

3. R picks r′ ∈R {+,×} and measures all qubits of |ψ〉 in basis r′.
Let x′ ∈ {0, 1}n be the result.

4. S announces r, f ∈R Hn, and s := b⊕ f(x).

5. R outputs a := 1 and b′ := s⊕ f(x′) if r′ = r and else a := 0 and
b′ := 0.

Figure 1. Protocol for Rabin QOT

epr-qot(b):

1. S prepares n EPR pairs each in state |Ω〉 = 1√
2
(|00〉+ |11〉).

2. S sends one half of each pair to R and keeps the other halves.

3. R picks r′ ∈R {+,×} and measures all received qubits in basis r′.
Let x′ ∈ {0, 1}n be the result.

4. S picks r ∈R {+,×}, and measures all kept qubits in basis r.
Let x ∈ {0, 1}n be the outcome. S announces r, f ∈R Hn, and
s := b⊕ f(x).

5. R outputs a := 1 and b′ := s⊕ f(x′) if r′ = r and else a := 0 and
b′ := 0.

Figure 2. Protocol for EPR-based Rabin QOT

Lemma 3.2. qot is secure if and only if epr-qot is secure.

The proof follows easily after observing that S’s choices of r and f , together
with the measurements all commute with R’s actions. Therefore, they can
be performed right after Step 1 with no change for R’s view. Modifying
epr-qot that way results in qot.

Lemma 3.3. epr-qot is perfectly private.

Proof: It is straightforward to verify that no information about whether R
has received the bit is leaked to any sender S̃, since R does not send anything,
i.e. epr-qot is non-interactive! �
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3.3 Modeling Dishonest Receivers

We model dishonest receivers in epr-qot under the assumption that the
maximum size of their quantum storage is bounded. These adversaries are
only required to have bounded quantum storage when they reach Step 4 in
epr-qot. Before that, the adversary can store and carry out quantum com-
putations involving any number of qubits. Apart from the restriction on the
size of the quantum memory available to the adversary, no other assumption
is made. In particular, the adversary is not assumed to be computationally
bounded and the size of its classical memory is not restricted.

Definition 3.4. The set Rγ denotes all possible quantum dishonest re-
ceivers {R̃n}n>0 in qot or epr-qot where for each n > 0, R̃n has quantum
memory of size at most γn when Step 4 is reached.

In general, the adversary R̃ is allowed to perform any quantum computation
compressing the n qubits received from S into a quantum register M of size
at most γn when Step 4 is reached. More precisely, the compression function
is implemented by some unitary transform C acting upon the quantum state
received and an ancilla of arbitrary size. The compression is performed by
a measurement that we assume in the computational basis without loss
of generality. Before starting Step 4, the adversary first applies a unitary
transform C:

2−n/2
∑

x∈{0,1}n

|x〉 ⊗ C|x〉|0〉 7→ 2−n/2
∑

x∈{0,1}n

|x〉 ⊗
∑

y

αx,y|ϕx,y〉M |y〉Y ,

where for all x,
∑

y |αx,y|2 = 1. Then, a measurement in the computational
basis is applied to register Y providing classical outcome y. The result is a
quantum state in register M of size γn qubits. Ignoring the value of y to
ease the notation, the re-normalized state of the system is now in its most
general form when Step 4 is reached:

|ψ〉 =
∑

x∈{0,1}n

αx|x〉 ⊗ |ϕx〉M ,

where
∑

x |αx|2 = 1.

3.4 Uncertainty Relation

We first prove a general uncertainty result and derive from that a corollary
that plays the crucial role in the security proof of epr-qot. The uncertainty
result concerns the situation where the sender holds an arbitrary quantum
register of n qubits. He may measure them in either the +- or the ×-basis.
We are interested in the distribution of both these measurement results, and
we want to claim that they cannot both be “very far from uniform”. One
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way to express this is to say that a distribution is very non-uniform if one
can identify a subset of outcomes that has much higher probability than for
a uniform choice. Intuitively, the theorem below says that such sets cannot
be found for both of the sender’s measurements.

Theorem 3.5. Let the density matrix ρA describe the state of a n-qubit
register A. Let Q+(·) and Q×(·) be the respective distributions of the out-
come when register A is measured in the +-basis respectively the ×-basis.
Then, for any two sets L+ ⊂ {0, 1}n and L× ⊂ {0, 1}n it holds that

Q+(L+) +Q×(L×) ≤
(
1 +

√
2−n|L+||L×|

)2
.

Proof: We can purify register A by adding a register B, such that the
state of the composite system is pure. It can then be written as |ψ〉AB =∑

x∈{0,1}n αx|x〉A|ϕx〉B for some complex amplitudes αx and normalised
state vectors |ϕx〉.

Clearly, Q+(x) = |αx|2. To give a more explicit form of the distribution
Q×, we apply the Hadamard transformation to register A:

(H⊗n ⊗ 1
B)|ψ〉 =

∑
z∈{0,1}n

|z〉 ⊗
∑

x∈{0,1}n

2−
n
2 (−1)x·zαx|ϕx〉

and obtain

Q×(z) =

∣∣∣∣∣ ∑
x∈{0,1}n

2−
n
2 (−1)x·zαx|ϕx〉

∣∣∣∣∣
2

.

Let L+ denote the complement of L+ and p its probability Q+(L+). We
can now split the sum in Q×(z) in the following way:

Q×(z) =

∣∣∣∣∣ ∑
x∈{0,1}n

2−
n
2 (−1)x·zαx|ϕx〉

∣∣∣∣∣
2

=

∣∣∣∣∣√p ∑
x∈L

+

2−
n
2 (−1)x·z αx√

p
|ϕx〉+

∑
x∈L+

2−
n
2 (−1)x·zαx|ϕx〉

∣∣∣∣∣
2

=

∣∣∣∣∣√p · ζz|υz〉+
∑

x∈L+

2−
n
2 (−1)x·zαx|ϕx〉

∣∣∣∣∣
2

where |υz〉 is defined as follows: For the normalised state |υ〉 :=
∑

x∈L
+

αx√
p |x〉|ϕx〉,

ζz|υz〉 is the z-component of the state H⊗n|υ〉 =
∑

z ζz|z〉⊗|υz〉. It therefore
holds that

∑
z |ζz|2 = 1.

To upperbound the amplitudes provided by the sum over L+, we notice
that the amplitude is maximized when all unit vectors |ϕx〉 point in the
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same direction and when (−1)x·zαx = |αx|. More formally,∣∣∣∣∣ ∑
x∈L+

2−
n
2 (−1)x·zαx|ϕx〉

∣∣∣∣∣ ≤ 2−
n
2

∑
x∈L+

|αx|

≤ 2−
n
2

√∣∣L+
∣∣√∑

x∈L+

|αx|2 (2)

≤ 2−
n
2

√∣∣L+
∣∣,

where (2) is obtained from the Cauchy-Schwarz inequality. Using `+ and `×

as shorthands for
∣∣L+

∣∣ respectively
∣∣L×∣∣, we conclude that

Q×(L×) =
∑

z∈L×

Q×(z)

≤
∑

z∈L×

(
|√p · ζz|υz〉|+ 2−

n
2

√
`+
)2

≤ p
∑

z∈L×

|ζz|2 + 2 · 2−
n
2

√
`+
∑

z∈L×

|ζz|+ `× · 2−n`+

≤ p+ 2 · 2−
n
2

√
`+
√
`×
∑

z∈L×

|ζz|2 + 2−n`+`× (3)

≤ p+ 2
√

2−n`+`× + 2−n`+`×

= 1−Q+(L+) + 2
√

2−n`+`× + 2−n`+`×. (4)

Inequality (3) follows again from Cauchy-Schwarz while in (4), we use the
definition of p. The claim of the proposition follows after re-arranging the
terms. �

This theorem yields a meaningful bound as long as |L+| · |L×| < (
√

2−
1)2 · 2n, e.g. if L+ and L× both contain less than 2n/2 elements. If for
r ∈ {+,×}, Lr contains only the n-bit string with the maximal probability
of Qr, we obtain as a corollary a slightly weaker version of a known relation
(see (9) in [16]).

Corollary 3.6. Let q+∞ and q×∞ be the maximal probabilities of the distri-
butions Q+ and Q× from above. It then holds that q+∞ · q×∞ ≤ 1

4(1 + c)4

where c = 2−n/2.

Theorem 3.5 can be generalised to more than two mutually unbiased
bases. We call different sets B0,B1, . . . ,BN of bases of the complex Hilbert
space C2n

mutually unbiased, if for all i 6= j ∈ {0, . . . , N}, it holds that

∀|ϕ〉 ∈ Bi ∀|ψ〉 ∈ Bj : |〈ϕ|ψ〉|2 = 2−n.
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Theorem 3.7. Let the density matrix ρA describe the state of a n-qubit
register A and let B0,B1, . . . ,BN be mutually unbiased bases of register
A. Let Q0(·), Q1(·), . . . , QN (·) be the distributions of the outcome when
register A is measured in bases B0,B1, . . . ,BN , respectively. Then, for any
sets L0, L1, . . . , LN ⊂ {0, 1}n, it holds that

N∑
i=0

Qi(Li) ≤ 1−
(
N + 1

2

)
+
∑

0≤j<k≤N

(
1 +

√
2−n|Lj ||Lk|

)2

.

Proof: Like in the proof of Theorem 3.5, we can purify register A by
adding a register B. The composite state can then be written as |ψ〉AB =∑

x∈{0,1}n αx|x〉A|ϕx〉B for some complex amplitudes αx and normalised
state vectors |ϕx〉.

We prove the statement by induction over N : For N = 1, by applying an
appropriate unitary transform to the whole system, we can assume without
loss of generality that B0 is the standard +-basis.

Let us denote by T the matrix of the basis change from B0 to B1. As
the inner product between states |φ〉 ∈ B0 and |φ′〉 ∈ B1 is always |〈φ|φ′〉| =
2−n/2, it follows that all entries of T are complex numbers of the form
2−n/2 · eiλ for real λ ∈ R.

It is easy to verify that the same proof as for Theorem 3.5 applies after
replacing the Hadamard transform H⊗n on the sender’s part by T and using
the above observation about the entries of T .

For the induction step from N to N + 1, we define p := Q0(L0), |υ〉 :=∑
x∈L

0

αx√
p |x〉|ϕx〉, and let ζj

z |υj
z〉 be the z-component of the state |υ〉 trans-

formed into basis Bj . As in the proof of Theorem 3.5, using `i as a short
hand for

∣∣Li
∣∣, it follows:

N∑
i=1

Qi(Li) =
N∑

i=1

∑
z∈Li

Qi(z)

≤
N∑

i=1

∑
z∈Li

(√
p
∣∣ζi

z

∣∣υi
z

〉∣∣+ 2−n/2
√
`0

)2

≤ p ·
N∑

i=1

∑
z∈Li

|ζi
z|2 +

N∑
i=1

(
2 ·
√

2−n`0`i + 2−n`0`i

)

≤ p ·
N∑

i=1

P i(Li) +
N∑

i=1

(
1−

√
2−n`0`i

)2
−N

where the distributions P i are obtained by measuring register A of the nor-
malised state |υ〉 in the mutually unbiased bases B1,B2, . . . ,BN . We apply
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the induction hypothesis to the sum of P i(Li):

N∑
i=1

Qi(Li) ≤ p ·
N∑

i=1

P i(Li) +
N∑

i=1

(
1 +

√
2−n`0`i

)2
−N

≤
[
1−Q0(L0)

] [ ∑
1≤j<k≤N

(
1 +

√
2−n`j`k

)2
+ 1−

(
N

2

)]

+
N∑

i=1

(
1−

√
2−n`0`i

)2
−N

≤ −Q0(L0) + 1−
(
N + 1

2

)
+

∑
0≤j<k≤N

(
1 +

√
2−n`j`k

)2

where the last inequality follows by observing that the term in the right
bracket is at least 1 and rearranging the terms. This completes the induction
step and the proof of the proposition. �

Analogous to Corollary 3.6, we derive an uncertainty relation about the
sum of the min-entropies of up to 2

n
4 distributions.

Corollary 3.8. For an ε > 0, let 0 < N < 2( 1
4
−ε)n. For i = 0, . . . , N , let

H i
∞ be the min-entropies of the distributions Qi from the theorem above.

Then,
N∑

i=0

H i
∞ ≥ (N + 1)

(
log(N + 1)− negl(n)

)
.

Proof: For i = 0, . . . , N , we denote by qi
∞ the maximal probability of Qi

and let Li be the set containing only the n-bit string x with this maximal
probability qi

∞. Theorem 3.7 together with the assumption about N assures∑N
i=0 q

i
∞ ≤ 1 + negl(n). By the inequality of the geometric and arithmetic

mean follows:

N∑
i=0

H i
∞ = − log

N∏
i=0

qi
∞ ≥ − log

(
1 + negl(n)
N + 1

)N+1

= (N + 1)
(
log(N + 1)− negl(n)

)
.

�

3.5 Security Against Dishonest Receivers

In this section, we show that epr-qot is secure against any dishonest re-
ceiver having access to a quantum storage device of size strictly smaller than
half the number of qubits received at Step 2.

14



In our setting, we use Theorem 3.5 to lowerbound the overall probability
of strings with small probabilities in the following sense. For 0 ≤ γ+ κ ≤ 1,
define

S+ :=
{
x ∈ {0, 1}n : Q+(x) ≤ 2−(γ+κ)n

}
and

S× :=
{
z ∈ {0, 1}n : Q×(z) ≤ 2−(γ+κ)n

}
to be the sets of strings with small probabilities and denote by L+ := S

+

and L× := S
× their complements. (Here’s the mnemonic: S for the strings

with Small probabilities, L for Large.) Note that for all x ∈ L+, we have
that Q+(x) > 2−(γ+κ)n and therefore |L+| < 2(γ+κ)n. Analogously, we have
|L×| < 2(γ+κ)n. For the ease of notation, we abbreviate the probabilities that
strings with small probabilities occur as follows: q+ := Q+(S+) and q× :=
Q×(S×). The next corollary now immediately follows from Theorem 3.5.

Corollary 3.9. Let γ + κ < 1
2 . For the probability distributions Q+, Q×

and the sets S+, S× defined above, we have

q+ + q× := Q+(S+) +Q×(S×) ≥ 1− negl(n).

Theorem 3.10. For all γ < 1
2 , qot is secure against Rγ .

Proof: After Lemmata 3.2 and 3.3, it remains to show that epr-qot is
oblivious against Rγ . Since γ < 1

2 , we can find κ > 0 with γ + κ < 1
2 . Con-

sider a dishonest receiver in epr-qot R̃ with quantum memory of size γn.
Using the notation from Section 3.1, we show that there exists an event E

such that P [E ] ≥ 1
2−negl(n) as well as δ([B⊗ρR̃|E ], [B]⊗ [ρR̃|E ]) ≤ negl(n),

as required by the obliviousness condition of Definition 3.1. Let X denote
the random variable describing the outcome x of S’s measurement (in basis
r) in Step 4 of epr-qot. We implicitely understand the distribution of X to
be conditioned on the classical outcome y of the measurement R̃ performs,
as described in Section 3.3. We define E to be the event X ∈ Sr. Note that E
is independent of B and thus [B|E ] = [B]. Furthermore, due to the uniform
choice of r, and using Corollary 3.9, P [E ] = 1

2(q+ + q×) ≥ 1
2 − negl(n).

In order to show the second condition, we have to show that whenever E
occurs, the dishonest receiver cannot distinguish the situation where B = 0
is sent from the one where B = 1 is sent. As the bit B is masked by the
output of the hash function F (X) in Step 4 of epr-qot (where the random
variable F represents the random choice for f), this is equivalent to distin-
guish between F (X) = 0 and F (X) = 1. This situation is exactly suited for
applying Theorem 2.1, which says that F (X) = 0 is indistinguishable from
F (X) = 1 whenever the right-hand side of (1) is negligible.
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In the case r = +, we have

H∞(X|X ∈ S+) = − log
(

max
x∈S+

Q+(x)
q+

)
≥ − log

(
2−(γ+κ)n

q+

)
= γn+ κn+ log(q+). (5)

If q+ ≥ 2−
κ
2
n then H∞(X|X ∈ S+) ≥ γn + κ

2n and indeed the right-
hand side of (1) decreases exponentially when conditioning on X ∈ S+. The
corresponding holds for the case r = ×.

Finally, if q+ < 2−
κ
2
n (or similarly q× < 2−

κ
2
n) then instead of as above

we define E as the empty event if r = + and as the event X ∈ S× if
r = ×. It follows that P [E ] = 1

2 · q
× ≥ 1

2 − negl(n) as well as H∞(X|E) =
H∞(X|X ∈ S×) ≥ γn+ κn+ log(q×) ≥ γn+ κ

2n (for n large enough), both
by Corollary 3.9 and the bound on q+. �

3.6 Weakening The Assumptions

Observe that qot requires error-free quantum communication, in that a
transmitted bit b, that is encoded by the sender and measured by the re-
ceiver using the same basis, is always received as b. And it requires a perfect
quantum source which on request produces one qubit in the right state, e.g.
one photon with the right polarization. Indeed, in case of noisy quantum
communication, an honest receiver in qot is likely to receive an incorrect
bit, and the obliviousness of qot is vulnerable to imperfect sources that
once in while transmit more than one qubit in the same state: a malicious
receiver R̃ can easily determine the basis r ∈ {+,×} and measure all the
following qubits in the right basis. However, current technology only al-
lows to approximate the behavior of single-photon sources and of noise-free
quantum communication. It would be preferable to find a variant of qot
that allows to weaken the technological requirements put upon the honest
participants.

In this section, we present such a protocol based on BB84 states [1],
bb84-qot (see Figure 3). The security proof follows essentially by adapting
the security analysis of qot in a rather straightforward way, as will be
discussed later.

Let us consider a quantum channel with an error probability φ < 1
2 , i.e.,

φ denotes the probability that a transmitted bit b, that is encoded by the
sender and measured by the receiver using the same basis, is received as
1− b. In order not to have the security rely on any level of noise, we assume
the error probability to be zero when considering a dishonest receiver. Also,
let us consider a quantum source which produces two or more qubits (in the
same state), rather than just one, with probability η < 1 − φ. We call this
the (φ, η)-weak quantum model.
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In order to deal with noisy quantum communication, we need to do
error-correction without giving the adversary too much information. For
this, we use secure sketches, as introduced in [11]. A (`,m, φ)-secure sketch2

is a randomized function S : {0, 1}` → {0, 1}∗ such that (1) for any w ∈
{0, 1}` and for w′ received from w by flipping each bit (independently) with
probability φ, the string w can be recovered from w′ and S(w) except with
negligible probability (in `), and (2) for all random variables W over {0, 1}`,
the “average min-entropy” of W given S(W ) is at least H∞(W ) −m. We
would like to point out that the notion of average min-entropy used in [11]
and here differs slightly from the standard notion H∞(W |S(W )), but it
implies that for any ∆ > 0, the probability that S(W ) takes on a value y
such that H∞(W |S(W ) = y) ≥ H∞(W )−m−∆ is at least 1− 2−∆ (which
is sufficient for our purpose).

Consider the protocol bb84-qot in the (φ, η)-weak quantum model shown
in Figure 3. For simplicity, we assume n to be even. The protocol uses a
(n

2 , α
n
2 , φ)-secure sketch S. We will argue later that α can be chosen arbi-

trarily close to (but greater than) h(φ). Like before, the memory bound in
bb84-qot applies before Step 4.

bb84-qot(b):

1. S picks x ∈R {0, 1}n and a random index set I+ ⊂R {1, . . . , n} of
size n

2 and sets I× := {1, . . . , n} \ I+.

2. For i = 1, 2, . . . , n: If i ∈ I+, S sends |xi〉+ to R. If otherwise
i ∈ I×, S sends |xi〉×.

3. R picks r′ ∈R {+,×} and measures all qubits in basis r′. Let
x′ ∈ {0, 1}n be the result.

4. S picks r ∈R {+,×} and announces r, Ir, y := S(x|Ir), f ∈R Hn/2,
and s := b⊕ f(x|Ir).

5. R can recover x|Ir from x′|Ir and y, and outputs a : = 1 and
b′ := s⊕ f(x|Ir) if r′ = r and else a := 0 and b′ := 0.

Figure 3. Protocol for the BB84 version of Rabin QOT

By the properties of a secure sketch, it is obvious that R receives the
correct bit b if r′ = r, except with negligible probability. Also, since there
is no communication from R to S, bb84-qot is clearly private. Similar as
for protocol qot, in order to argue about obliviousness we compare bb84-
qot with a purified version shown in Figure 4. bb84-epr-qot runs in the
(φ, 0)-weak quantum model, and the imperfectness of the quantum source

2Note that our definition of a secure sketch differs slightly from the one given in [11].
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assumed in bb84-qot is simulated by S in bb84-epr-qot so that there is
no difference from R’s point of view. We would like to point out that the
way S chooses the set Ir is more complicated than necessary; this is for
proof-technical reasons, as will be clear later.

bb84-epr-qot(b):

1. S prepares n EPR pairs each in state |Ω〉 = 1√
2
(|00〉+ |11〉). Ad-

ditionally, S samples θ ∈ {+,×}n such that θi = + for exactly n
2

indices i, and S initializes I ′+ := ∅ and I ′× := ∅.

2. For every i ∈ {1, . . . , n}, S does the following. With probability
1−η S sends one half of the i-th pair to R and keeps the other half.
While with probability η S replaces I ′θi

by I ′θi
∪{i} and sends two

or more qubits in the same state |xi〉θi
to R where xi ∈R {0, 1}.

3. R picks r′ ∈R {+,×} and measures all received qubits in basis r′.
Let x′ ∈ {0, 1}n be the result.

4. S picks a random index set J ⊂R {1, . . . , n} \ (I ′+ ∪ I ′×) of size
(1 − η − ε)n/2 (where ε > 0 is sufficiently small). Then, S picks
r ∈R {+,×}, chooses a random index set Ir ⊂ {1, . . . , n} of size n

2
subject to J ∪ I ′r ⊆ Ir (respectively aborts if that is not possible)
and for each i ∈ Ir\I ′r measures the corresponding qubit in basis r.
Let xi be the corresponding outcome, and let x|Ir be the collection
of all xi’s with i ∈ Ir. S announces r, Ir, y = S(x|Ir), f ∈R Hn/2,
and s = b⊕ f(x|Ir).

5. R can recover x|Ir from x′|Ir and y, and outputs a : = 1 and
b′ := s⊕ f(x|Ir), if r′ = r and else a := 0 and b′ := 0.

Figure 4. Protocol for EPR-based Rabin QOT, BB84 version

The security equivalence between bb84-qot (in the (φ, η)-weak quantum
model) and bb84-epr-qot (in the (φ, 0)-weak quantum model) is omitted
here as it follows essentially along the same lines as in Section 3.2. The main
difference here is that additionally one has to argue that the distribution of
the “imperfectly generated qubits” (within the sets I+ and I×) is the same
as in bb84-qot. As a matter of fact, it is not perfectly the same, but it is
obviously the same conditioned on the event that the number of “imperfectly
generated qubits” with basis + and the number of those with basis × are
both at most (η+ε)n/2 (in which case S does not abort in bb84-epr-qot).
This event, though, happens with overwhelming probability by Bernstein’s
law of large numbers. This is good enough.
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Theorem 3.11. In the (φ, η)-weak quantum model, bb84-qot is secure

against Rγ for any γ < 1−η
4 − h(φ)

2 (if parameter α is appropriately chosen).

Proof Sketch: It remains to show that bb84-epr-qot is oblivious against
Bγ (in the (φ, 0)-weak quantum model). The reasoning goes exactly along
the lines of the proof of Theorem 3.10, except that we restrict our attention
to those i’s which are in J . Write n′ = |J | = (1 − η − ε)n/2, and let γ′ be
such that γn = γ′n′, i.e., γ′ = 2γ/(1− η− ε). It then follows as in the proof
of Theorem 3.10 that

H∞
(
X|J

∣∣X|J ∈ S+
)
≥ γ′n′ + κn′ + log(q+)
= γn+ κ(1− η − ε)n/2 + log(q+).

Property (2) of a secure sketch then implies that, except with negligible
probability, y is such that

H∞
(
X|Ir

∣∣X|J ∈ S+, S(X|Ir) = y
)

≥ γn+ κ(1− η − ε)n/2 + log(q+)− αn/2− εn.

Similar as in the proof of Theorem 3.10, one can consider the cases q+ ≥ 2−εn

and q+ < 2−εn, and in both cases argue that the min-entropy in question is
larger than γn + εn (which then completes the proof by referring to Theo-
rem 2.1) if κ(1− η − ε) > α+ 4ε, where ε > 0 may be arbitrarily small and
κ has to satisfy κ < 1

2 − γ′ = 1
2 − 2γ/(1− η − ε). This can be achieved (by

choosing ε appropriately) if α < κ(1 − η) < (1 − η)/2 − 2γ, which can be
achieved (by choosing κ appropriately) if

γ <
1− η

4
− α

2
.

By the assumed restriction on γ, this inequality can be satisfied if α is chosen
arbitrarily close to h(φ). But this follows in a straightforward way from a
result in [11], where it is shown that every (efficiently decodable) error cor-
recting code induces an (efficient) secure sketch (with related parameters),
combined with the fact that for every α > h(φ) there exists an efficiently
decodable code of large enough length `, with rate R = 1−α and which (ex-
cept with negligible probability) corrects errors introduced with probability
φ (see [4] and the reference therein). �

4 Quantum Commitment Scheme

In this section, we present a BC scheme from a committer C with bounded
quantum memory to an unbounded receiver V. The scheme is peculiar since
in order to commit to a bit, the committer does not send anything. During
the committing stage information only goes from V to C. The security
analysis of the scheme uses similar techniques as the analysis of epr-qot.
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4.1 The Protocol

The objective of this section is to present a bounded quantum-memory BC
scheme comm (see Figure 5). Intuitively, a commitment to a bit b is made
by measuring random BB84-states in basis {+,×}[b].

comm(b):

1. V picks x ∈R {0, 1}n and r ∈R {+,×}n.

2. V sends xi in the corresponding bases |x1〉r1
, |x2〉r2

, . . . , |xn〉rn
to

C.

3. C commits to the bit b by measuring all qubits in basis {+,×}[b].
Let x′ ∈ {0, 1}n be the result.

4. To open the commitment, C sends b and x′ to V.

5. V verifies that xi = x′i for those i where ri = {+,×}[b]. V accepts
if and only if this is the case.

Figure 5. Protocol for quantum commitment

As for the OT-protocol of Section 3.2, we present an equivalent EPR-
version of the protocol that is easier to analyze (see Figure 6).

epr-comm(b):

1. V prepares n EPR pairs each in state |Ω〉 = 1√
2
(|00〉+ |11〉).

2. V sends one half of each pair to C and keeps the other halves.

3. C commits to the bit b by measuring all received qubits in basis
{+,×}[b]. Let x′ ∈ {0, 1}n be the result.

4. To open the commitment, C sends b and x′ to V.

5. V measures all his qubits in basis {+,×}[b] and obtains x ∈
{0, 1}n. He chooses a random subset I ⊆ {1, . . . , n}. V veri-
fies that xi = x′i for all i ∈ I and accepts if and only if this is the
case.

Figure 6. Protocol for EPR-based quantum commitment

Lemma 4.1. comm is secure if and only if epr-comm is secure.

Proof: The proof uses similar reasoning as the one for Lemma 3.2. First,
it clearly makes no difference, if we change Step 5 to the following:
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5’. V chooses the subset I, measures all qubits with index in I in basis
{+,×}[b] and all qubits not in I in basis {+,×}[1−b]. V verifies that
xi = x′i for all i ∈ I and accepts if and only if this is the case.

Finally, we can observe that the view of C does not change if V would have
done his choice of I and his measurement already in Step 1. Doing the
measurements at this point means that the qubits to be sent to C collapse
to a state that is distributed identically to the state prepared in the original
scheme. The EPR-version is therefore equivalent to the original commitment
scheme from C’s point of view. �

It is clear that epr-comm is hiding, i.e., that the commit phase reveals
no information on the committed bit, since no information is transmitted to
V at all. Hence we have

Lemma 4.2. epr-comm is perfectly hiding.

4.2 Modeling Dishonest Committers

A dishonest committer C̃ with bounded memory of at most γn qubits in
epr-comm can be modeled very similarly to the dishonest OT-receiver R̃
from Section 3.3: C̃ consists first of a circuit acting on all n qubits received,
then of a measurement of all but at most γn qubits, and finally of a circuit
that takes the following input: a bit b that C̃ will attempt to open, the γn
qubits in memory, and some ancilla in a fixed state. The output is a string
x′ ∈ {0, 1}n to be sent to V at the opening stage.

Definition 4.3. We define Cγ to be the class of all committers {C̃n}n>0 in
epr-comm that, at the start of the opening phase (i.e. at Step 4), have a
quantum memory of size at most γn qubits.

We adopt the binding condition for quantum BC from [12]:

Definition 4.4. A (quantum) BC scheme is (statistically) binding against
C if for all {C̃n}n>0 ∈ C, the probability pb(n) that C̃n opens b ∈ {0, 1} with
success satisfies

p0(n) + p1(n) ≤ 1 + negl(n).

In the next section, we show that epr-comm is binding against Cγ for any
γ < 1

2 .
Note that the binding condition given here in Definition 4.4 is weaker

than the classical one, where one would require that a bit b exists such that
pb(n) is negligible. But it is the best that can be achieved for a general quan-
tum adversary who can always commit to 0 and 1 in superposition. However,
an adversary with bounded quantum storage cannot necessarily maintain a
commitment in superposition since the memory compression may force a col-
lapse. Indeed, in upcoming work, we show that commitment schemes exist
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satisfying the stronger binding condition in the bounded quantum-storage
model [8]. While the weaker condition is sufficient for many applications,
the stronger one seems to be necessary in some cases (see the conclusion).

4.3 Security Proof Of The Commitment Scheme

Note that the first three steps of epr-qot and epr-comm (i.e. before the
memory bound applies) are exactly the same! This allows us to reuse Corol-
lary 3.9 and the analysis of Section 3.5 to prove the binding property of
epr-comm.

Theorem 4.5. For any γ < 1
2 , comm is perfectly hiding and statistically

binding against Cγ .

The proof is given below. It boils down to showing that essentially p0(n) ≤
1− q+ and p1(n) ≤ 1− q×. The binding property then follows immediately
from Corollary 3.9. The intuition behind p0(n) ≤ 1 − q+ := 1 −Q+(S+) is
that a committer has only a fair chance in opening to 0 if x measured in
+-basis has a large probability, i.e., x 6∈ S+. The following proof makes this
intuition precise by choosing the ε and δ’s correctly.

Proof: It remains to show that epr-comm is binding against Cγ . Let κ > 0
be such that γ + κ < 1

2 . For the parameters κ and γ considered here, define
Q+, S+ and q+ as well as Q×, S× and q× as in Section 3.5. Furthermore, let
0 < δ < 1

2 be such that h(δ) < κ/2, where h is the binary entropy function,
and choose ε > 0 small enough such that h(δ) < (κ− ε)/2. This guarantees
that Bδn ≤ 2(κ−ε)n/2 for all (sufficiently large) n. For every n we distinguish
between the following two cases. If q+ ≥ 2−εn/2 then

H∞(X|X ∈ S+) ≥ γn+ κn+ log(q+) ≥ γn+
(
κ− ε

2

)
n

where the first inequality is argued as in (5). Applying Lemma 2.2, it follows
that any guess X̂ for X satisfies

Pr
[
X̂ ∈ Bδn(X) |X ∈ S+

]
≤ 2−

1
2
(H∞(X|X∈S+)−γn−1)+log(Bδn) ≤ 2−

ε
4
n+ 1

2 .

However, if X̂ 6∈ Bδn(X) then sampling a random subset of the positions
will detect an error except with probability not bigger than 2−δn. Hence,

p0(n) = (1− q+) · p0|X 6∈S+ + q+ · p0|X∈S+

≤ 1− q+ + q+ ·
(
2−δn(1− 2−

ε
4
n+ 1

2 ) + 2−
ε
4
n+ 1

2
)
.

If on the other hand q+ < 2−εn/2 then trivially

p0(n) ≤ 1 = 1− q+ + q+ < 1− q+ + 2−εn/2.
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In any case we have p0(n) ≤ 1− q+ + negl(n).
Analogously, we derive p1(n) ≤ 1− q× + negl(n) and conclude that

p0(n) + p1(n) ≤ 2− q+ − q× + negl(n) ≤ 1 + negl(n), (6)

where (6) is obtained from Corollary 3.9. �

4.4 Weakening The Assumptions

As argued earlier, assuming that a party can produce single qubits (with
probability 1) is not reasonable given current technology. Also the assump-
tion that there is no noise on the quantum channel is impractical. It can be
shown that a straightforward modification of comm remains secure in the
(φ, η)-weak quantum model as introduced in Section 3.6, with φ < 1

2 and
η < 1− φ.

Let comm’ be the modification of comm where in Step 5 V accepts if
and only if xi = x′i for all but about a φ-fraction of the i where ri = {+,×}[b].
More precisely, for all but a (φ+ε)-fraction, where ε > 0 is sufficiently small.

Theorem 4.6. In the (φ, η)-weak quantum model, comm’ is perfectly hid-
ing and it is binding against Cγ for any γ satisfying γ < 1

2(1− η)− 2h(φ).

Proof Sketch: Using Bernstein’s law of large numbers, one can argue that
for honest C and V, the opening of a commitment is accepted except with
negligible probability. The hiding property holds using the same reasoning
as in Lemma 4.2. And the binding property can be argued essentially along
the lines of Theorem 4.5, with the following modifications. Let J denote the
set of indices i where V succeeds in sending a single qubit. We restrict the
analysis to those i’s which are in J . By Bernstein’s law of large numbers, the
cardinality of J is about (1−η)n (meaning within (1−η±ε)n), except with
negligible probability. Thus, restricting to these i’s has the same effect as
replacing γ by γ/(1−η) (neglecting the ±ε to simplify notation). Assuming
that C̃ knows every xi for i 6∈ J , for all xi’s with i ∈ J he has to be able to
guess all but about a φ/(1 − η)-fraction correctly, in order to be successful
in the opening. However, C̃ succeeds with only negligible probability if

φ/(1− η) < δ .

Additionally, δ must be such that

h(δ) <
κ

2
with

γ

1− η
+ κ <

1
2
.

Both restrictions on δ hold (respectively can be achieved by choosing κ
appropriately) if

2h
(

φ

1− η

)
+

γ

1− η
<

1
2
.
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Using the fact that h(νp) ≤ νh(p) for any ν ≥ 1 and 0 ≤ p ≤ 1
2 such that

νp ≤ 1, this is clearly satisfied if 2h(φ) + γ < 1
2(1 − η). This proves the

claim. �

5 Conclusion And Further Research

We have shown how to construct ROT and BC securely in the bounded
quantum-storage model. Our protocols require no quantum memory for
honest players and remain secure provided the adversary has only access to
quantum memory of size bounded by a large fraction of all qubits transmit-
ted. Such a gap between the amount of storage required for honest players
and adversaries is not achievable by classical means. All our protocols are
non-interactive and can be implemented using current technology.

In this paper, we only considered ROT of one bit per invocation. Our
technique can easily be extended to deal with string ROT, essentially by
using a class of two-universal functions with range {0, 1}`n rather than {0, 1},
for some ` with γ + ` < 1

2 (respectively < 1−η
4 − h(φ)

2 for bb84-qot).
Although other flavors of OTs can be constructed from ROT using stan-

dard reductions, a more direct approach would give a better ratio storage-
bound/communication-complexity. Recent extensions of this work have
shown that a 1-2 OT protocol built along the lines of bb84-qot is secure
against adversaries with bounded quantum memory [8]. Interestingly, the
techniques used are quite different from the ones of this paper (which ap-
pear to fail in case of 1-2 OT), and they additionally allow to analyse and
prove secure the BC comm with respect to the stronger security definition,
as discussed in section 4.2.

comm can easily be transformed into a string commitment scheme simply
by committing bitwise, at the cost of a corresponding blow-up of the com-
munication complexity. In order to prove this string commitment secure,
though, it is necessary that comm is secure with respect to the stronger
security definition.

How to construct and in particular prove secure a more efficient string
commitment scheme is still an open problem. Furthermore, it is still un-
solved how to construct and prove secure a 1-m OT protocol, more efficient
than via the general reduction.
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[4] C. Crépeau. Efficient Cryptographic Protocols Based on Noisy Chan-
nels. In Advances in Cryptology — EUROCRYPT 1997, pages 306–317,
1997.
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