南沙海域表层水中²¹⁰Po/²¹⁰Pb 不平衡 及其海洋学意义^{*}

杨伟锋 黄奕普 ** 陈 敏 张 磊 李鸿宾 刘广山 邱雨生

(① 厦门大学海洋系, 厦门 361005; ② 近海海洋环境科学国家重点实验室, 厦门 361005)

摘要 对南沙海域表层水中溶解态(<0.45 um)和颗粒态(>0.45 um)²¹⁰Po和²¹⁰Pb进行了研究。结 果表明、南沙海域表层水中溶解态和颗粒态 210 Po 平均比活度分别为 0.61 Bg/m³(n = 24)和 0.43 Ba/m³(n = 23). 溶解态和颗粒态²¹⁰Pb 平均比活度分别为 1.66 Bq/m³(n = 24)和 0.23 Bq/m³(n = 23). 颗粒态 210 Pb比活度约占总 210 Pb比活度的12%。与开阔大洋相应值吻合:而颗粒态 210 Po占总 210 Po 的比例约 40%, 明显高于开阔大洋和富营养海域. 根据稳态不可逆模型得到总 ²¹⁰Po 和 ²¹⁰Pb 的停 留时间分别为 0.82 和 1.16 a. 清除过程中 ²¹⁰Po 和 ²¹⁰Pb 的平均分馏因子由清除速率常数法和固-液分配系数法计算分别为 5.42 和 6.69. 揭示了 210 Po 和 210 Pb 从溶解相清除至颗粒相的过程中发生 了明显的分馏,进一步的研究证明了南沙海域²¹⁰Po和²¹⁰Pb的分馏主要由微生物控制,与富营养 海域的分馏机制不同:在富营养海域、浮游植物颗粒和粪粒充当²¹⁰Po和²¹⁰Pb 清除和迁出过程的 主要载体、²¹⁰Po和²¹⁰Pb的分馏主要发生于浮游植物颗粒和粪粒对两核素的清除过程;在寡营养 南沙海域、由于浮游植物颗粒和粪粒的相对贫乏、使微生物对²¹⁰Po的清除作用相对突出、并在此 过程中使²¹⁰Po和²¹⁰Pb产生明显的分馏效应。这与寡营养的马尾藻海的研究结果极为相似。进一 步证实寡营养海域和富营养海域²¹⁰Po 生物地球化学行为和循环路径的差异。这表明²¹⁰Po 可能是 研究与微生物有关的海洋学过程、尤其是研究硫族元素(S, Se, Te 和 Po)生物地球化学循环的有用 示踪剂.

关键词 南沙海域 ²¹⁰Po ²¹⁰Pb 不平衡 清除 微生物

²¹⁰Po(T_{1/2}=138.4 d)是²¹⁰Pb(T_{1/2}=22.3 a)的蜕变子体,它们均属铀衰变系成员,常用于海洋中物质循环

的动力学研究^[1]. 通常根据 ²²⁶Ra-²¹⁰Pb-²¹⁰Po之间的不 平衡来研究不同时间尺度的海洋学过程. Rama等^[2]首

收稿日期: 2004-06-22; 接受日期: 2004-11-29

^{*}国家自然科学基金(批准号: 40576037, 90411016, 40376021)和南沙"十五"国家专项基金(2001DIA50041-4-303)资助项目

^{**} 联系人, E-mail: <u>yphuang@jingxian.xmu.edu.cn</u>

次发现海洋表层水体 ²¹⁰Pb过剩于其母体 ²²⁶Ra, 并得 出结论:表层水体²¹⁰Pb主要来源于气溶胶²¹⁰Pb的沉 降 但后来的研究发现表层海水中 ²¹⁰Pb含量远低于 大气输入的期望水平,因此,海洋工作者推测²¹⁰Pb沉 降到表层海水后会在 2 年内随颗粒物沉降迁出. Shannon等^[3]和Tsunogai等^[4]发现在生物地球化学循 环中,²¹⁰Po比²¹⁰Pb更为活跃. 尽管²¹⁰Po的半衰期小于 ²¹⁰Pb, ²¹⁰Po/²¹⁰Pb不平衡现象普遍存在, 如开阔大洋 表层海水的典型²¹⁰Po /²¹⁰Pb比值为 0.5^[5~7].²¹⁰Pb通常 易被无机颗粒所吸附^[8],而²¹⁰Po更容易被微生物吸 收,然后被微型动物摄食,进而被更高营养级海洋生 物所富集^[9~12],如浮游动物中²¹⁰Po/²¹⁰Pb比值通常为 12^[3,13,14]. ²¹⁰Po和 ²¹⁰Pb与颗粒物亲和力之间的差异导 致表层海水中两核素在清除和迁出过程中发生分馏, 但早期的多数研究都是利用表层水体中总的²¹⁰Po和 ²¹⁰Pb不平衡来进行示踪研究,近年来对于表层海水 溶解相和颗粒相中²¹⁰Po和²¹⁰Pb的不平衡研究逐渐增 多[12.15~17],但大多数研究都是富营养海域和中等营 养状况的海域,而且没有对²¹⁰Po和²¹⁰Pb从溶解相清 除至颗粒相以及颗粒物的沉降迁出过程中的分馏作 用进行研究. 迄今对寡营养海域²¹⁰Po和²¹⁰Pb的研究 甚少, 仅见Kim^[12]对寡营养的马尾藻海进行了研究, 而且得出了与富营养海域完全不同的结果. Kim^[12]认 为在寡营养海域微生物如蓝细菌对Po等硫族元素的 吸收(或摄取)导致 ²¹⁰Po相对于其母体 ²¹⁰Pb的严重亏 损,这一研究结果表明,对于微生物在硫族元素生物 地球化学循环中的作用的研究, ²¹⁰Po示踪研究将起着 独特而重要的作用.

南沙海域具有营养盐贫乏、初级生产力低等特征, 有着特殊的生态环境.但迄今国内外尚没有对南沙 表层水体的²¹⁰Po和²¹⁰Pb进行过全面、系统的研究,只 有Nozaki等^[8]测试过两个表层水样的总²¹⁰Po和总 ²¹⁰Pb,林瑞芬等^[18]报道过两个站位(水深100和135 m) 总²¹⁰Po的深度分布."十五"期间,我们开展了南沙海 域²¹⁰Po和²¹⁰Pb的研究,获得了多方面重要结果,本 文着重报道其表层水中的²¹⁰Po/²¹⁰Pb不平衡.

1 样品的采集与分析

海水和颗粒物样品由中国科学院南海海洋研究

所"实验3"号科考船2002年5月南沙"十五"航次采集, 样品采集的相关资料见表 1. 样品均为表层水样,每 个站位采集 20 升海水,为了减少颗粒下沉、分解和 吸附在采样瓶的表面上,采样后立即过滤,用 0.45 μm 的增强型混合纤维素(CN-CA)膜分成颗粒相和溶 解相,滤膜冷冻保存带回实验室处理,取过滤后的海 水(~10 升)装入聚乙烯桶,用浓 HCl 酸化至 pH 约为 1,然后密封带回陆上实验室处理.测站的温度、盐 度、水深和 Chl.a 数据(752 型紫外分光光度计测量) 由中国科学院南海海洋研究所提供.

颗粒态和溶解态²¹⁰Po,²¹⁰Pb的富集、分离、纯化 和测量见Yang等^[19]. 简述如下: 滤液中加入 50 mg Fe³⁺载体、20 mg Pb²⁺载体和 1 dpm ²⁰⁹Po标准溶液, 搅 拌均匀, 平衡 24 h后, 用浓氨水调节pH约为 9.0, 形 成Fe(OH), 沉淀, 静置过夜, 弃去上层清液, 离心收 集沉淀,然后用盐酸溶解并加入定量的抗坏血酸和 柠檬酸钠, 调节pH为 1.5, 在 85℃下将 ²⁰⁹Po和 ²¹⁰Po 自沉积于银片上,用于α能谱测量;颗粒物经HF, HNO3 和HClO4 混合酸消化后按与溶解态相同的程序 分离、测定²¹⁰Po. 并对样品采集至第一次分离²¹⁰Po 期间²¹⁰Pb生长的²¹⁰Po 进行校正.²¹⁰Po自沉积后的溶 液放置约 1 年后, 进行 ²¹⁰Po的第二次自沉积, 测量 ²¹⁰Pb 生长的 ²¹⁰Po, 进而计算 ²¹⁰Pb比活度. 用原子吸 收光谱法测定稳定Pb回收率. 文中给出的结果均已 对衰变与生长时间、第一次²¹⁰Po自沉积后残留的 ²¹⁰Po和 ²⁰⁹Po、试剂空白、仪器本底、误差等进行了 校正, 计数统计误差为±1σ.

2 结果

2.1 溶解态 ²¹⁰Po 和 ²¹⁰Pb 的含量水平

表 2 给出了 24 个测站溶解态(D)、颗粒态(P)、 总(T)²¹⁰Po和 ²¹⁰Pb的比活度(T=D+P)及各相态 ²¹⁰Po/²¹⁰Pb的活度比值(Activity Ratio,缩写为A. R.). 溶解态 ²¹⁰Po(即D²¹⁰Po)的比活度介于 0.11~1.73 Bq/m³之间,平均值为 0.61 Bq/m³,约占总 ²¹⁰Po(T²¹⁰Po)的 60%,低于赤道太平洋^[20](0.78~1.8 Bq/m³)、印度洋中部和东部^[21](0.92~1.32 Bq/m³)和 Masqué 等^[17]在地中海西北部表层水体的结果(0.48~

			III D IF ALLA					
站号	纬度(N)	经度(E)	温度/℃	盐度	水深/m	Chl.a/mg • m^{-3}	采样日期	
NS1	11°59.711′	110°59.869′	29.650	33.630	2856	0.038	2002-05-09	-
NS2	11°59.504′	111°59.826′	29.608	33.470	4126		2002-05-10	
NS3	12°00.096′	112°59.863′	29.662	33.480	4314	0.034	2002-05-10	
NS4	11°59.473′	113°59.805′	29.751	33.673	4358		2002-05-10	
NS5	11°11.872′	113°59.812′	29.742	33.401	3748	0.036	2002-05-10	
NS6	10°18.000′	114°00.000′	29.633	33.538	1320		2002-05-11	
NS7	09°35.010′	113°57.754′	29.951	33.647	2282	0.031	2002-05-11	
NS13	09°59.665′	110°28.776′	29.948	33.381	2558	0.039	2002-05-12	
NS14	09°23.720′	111°23.586′	30.096	33.593	1758		2002-05-12	
NS15	08°55.668′	111°57.672′	29.949	33.454	1420	0.036	2002-05-13	
NS16	08°29.900′	111°23.934′	29.873	33.518	1458		2002-05-13	
NS19	08°23.849′	110°18.125'	29.975	33.599	342		2002-05-13	
NS23	08°30.000′	108°48.000′	29.851	33.567	116	0.047	2002-05-14	
NS37	05°25.325′	113°52.566′	30.764	33.038	1355	0.069	2002-05-19	
NS40	06°48.070′	115°12.113′	30.750	33.072	1410	0.047	2002-05-19	
NS41	06°53.930′	114°30.198′	30.796	31.963	2890		2002-05-19	
NS42	07°09.338′	114°02.640′	30.194	33.321	1735	0.047	2002-05-20	
NS43	07°48.024′	113°29.727'	30.266	33.620	1720		2002-05-20	
NS44	08°18.187′	114°05.737′	30.269	33.709	1488	0.048	2002-05-20	
NS49	12°00.068′	116°42.031′	30.062	33.652	2662		2002-05-23	
NS50	08°12.183′	116°23.822′	30.052	33.758	1745	0.049	2002-05-21	
NS58	12°00.233'	116°06.050′	30.052	33.661	3039		2002-05-23	
NS59	12°00.064′	115°30.145′	29.930	33.497	4368		2002-05-23	
NS60	12°00.086'	114°42.122′	29.840	33.547	4369	0.048	2002-05-23	

表1 南沙海域表层水采样站位及相关参数

1.92 Bq/m³). D²¹⁰Pb的比活度介于 0.87~2.51 Bq/m³之 间,平均值为 1.66 Bq/m³,略高于Masqué 等^[17]在地 中海西北部表层水体的结果(0.72 ~ 1.83 Bq/m³),约 占总 ²¹⁰Pb(T²¹⁰Pb)的 87%,明显高于D²¹⁰Po所占比例. 显然,南沙海域表层水中的 ²¹⁰Po和 ²¹⁰Pb均主要以溶 解态存在,表现为开阔大洋的特征. D²¹⁰Po/D²¹⁰Pb)_{A.R.} 介于 0.10~0.99 之间,平均为 0.37(表 2).

2.2 颗粒态 ²¹⁰Po 和 ²¹⁰Pb 的含量水平

颗粒态 ²¹⁰Po(即P²¹⁰Po)的比活度介于 0.19~0.75 Bq/m³之间,平均值为 0.43 Bq/m³(表 2),与华盛顿沿 岸^[22](0.18 ~ 0.85 Bq/m³)和挪威Framvaren峡湾^[23] (0.41 Bq/m³)P²¹⁰Po比活度一致,高于地中海西北部表 层水体P²¹⁰Po比活度^[17](0.11 ~ 0.39 Bq/m³).P²¹⁰Po约 占T²¹⁰Po的 40%,此结果明显高于富营养海域P²¹⁰Po 所占的比例(红海 30%^[24],孟加拉湾<15%^[25];西北地 中海 21%^[17]).P²¹⁰Pb比活度介于 0.16~0.39 Bq/m³之间, 平均为 0.23 Bq/m³(表 2),明显高于地中 海西北部 P²¹⁰Pb比活度^[17](0.025 ~ 0.064 Bq/m³). P²¹⁰Po/P²¹⁰Pb)_{A.R.}介于 0.86~2.99 之间, 平均为 1.90(表 2).

2.3 总²¹⁰Po 和²¹⁰Pb 的含量水平

研究海域T²¹⁰Po比活度介于 0.42~2.09 Bq/m³, 平均值为 1.04 Bq/m³(表 2),约为Nozaki等^[8]冬季在南 海南部陆架两个测站得到的T²¹⁰Po比活度(0.5 Bq/m³) 的两倍,而与其在新加坡附近海域得到的T²¹⁰Po比活 度相当.T²¹⁰Pb比活度介于 1.16~2.79 Bq/m³,平均值 为 1.90 Bq/m³(表 2),高于Nozaki等^[8]得到的南海南部 陆架两个测站的T²¹⁰Pb 比度(0.67 Bq/m³),但低于邢 娜 ¹⁾在相同海域 4~5 月份得到的结果(介于 1.53~6.98 Bq/m³,平均为 2.42 Bq/m³).显然,T²¹⁰Pb比活度高于 T²¹⁰Po 比 活 度.研究海域T²¹⁰Po/T²¹⁰Pb)_{A.R.}介于 0.22~1.07 之间,平均为 0.56(表 2),与典型的开阔大 洋表层水T²¹⁰Po/T²¹⁰Pb)_{A.R.}0.5 一致^[5-7].

¹⁾ 邢 娜. 海水中 226 Ra, 228 Ra 及 210 Pb 的分布及其应用. 厦门大学硕士论文, 2002, 87~95

中国科学 D 辑 地球科学

表 2 南沙海域表层水中²¹⁰Po,²¹⁰Pb 的比活度及²¹⁰Po/²¹⁰Pb)_{A R}^{a)}

차무	D ²¹⁰ Po	P ²¹⁰ Po	T ²¹⁰ Po	D ²¹⁰ Pb	P ²¹⁰ Pb	T ²¹⁰ Pb	²¹⁰ Po/ ²¹⁰ Pb) _{A.R.}		
如与			Bq	m^{3}			D	Р	Т
NS1	1.73 ± 0.19	0.37 ± 0.04	2.10 ± 0.19	1.74 ± 0.15	0.22 ± 0.02	1.96 ± 0.15	0.99 ± 0.14	1.68 ± 0.25	1.07 ± 0.13
NS2	0.60 ± 0.06	0.46 ± 0.04	1.06 ± 0.08	2.21 ± 0.18	0.22 ± 0.02	2.43 ± 0.18	0.27 ± 0.04	2.09 ± 0.30	0.44 ± 0.04
NS3	0.56 ± 0.06	0.49 ± 0.05	1.06 ± 0.08	2.47 ± 0.20	0.32 ± 0.03	2.79 ± 0.20	0.23 ± 0.63	1.53 ± 0.21	0.38 ± 0.04
NS4	0.74 ± 0.08	0.27 ± 0.03	1.01 ± 0.08	1.71 ± 0.15	0.21 ± 0.02	1.92 ± 0.15	0.43 ± 0.06	1.28 ± 0.21	0.53 ± 0.06
NS5	0.38 ± 0.04	_	_	1.60 ± 0.14	_	-	0.24 ± 0.03	_	-
NS6	0.53 ± 0.06	0.33 ± 0.07	0.86 ± 0.09	1.34 ± 0.10	0.31 ± 0.06	1.65 ± 0.12	0.40 ± 0.05	1.06 ± 0.29	0.52 ± 0.07
NS7	0.67 ± 0.07	0.42 ± 0.04	1.09 ± 0.08	1.43 ± 0.12	0.17 ± 0.02	1.60 ± 0.12	0.47 ± 0.06	2.47 ± 0.32	0.68 ± 0.07
NS13	0.64 ± 0.07	0.44 ± 0.05	1.08 ± 0.08	1.62 ± 0.16	0.16 ± 0.02	1.78 ± 0.16	0.40 ± 0.06	2.75 ± 0.38	0.60 ± 0.07
NS14	0.26 ± 0.03	0.33 ± 0.04	0.60 ± 0.05	2.51 ± 0.20	0.20 ± 0.02	2.71 ± 0.20	0.11 ± 0.02	1.65 ± 0.27	0.22 ± 0.02
NS15	0.87 ± 0.08	0.50 ± 0.05	1.38 ± 0.10	1.72 ± 0.14	0.19 ± 0.02	1.91 ± 0.14	0.51 ± 0.06	2.63 ± 0.37	0.72 ± 0.08
NS16	0.51 ± 0.05	0.37 ± 0.04	0.88 ± 0.07	2.06 ± 0.17	0.25 ± 0.03	2.32 ± 0.17	0.25 ± 0.03	1.48 ± 0.23	0.38 ± 0.04
NS19	0.59 ± 0.06	0.55 ± 0.06	1.14 ± 0.08	1.62 ± 0.15	0.20 ± 0.02	1.82 ± 0.15	0.36 ± 0.05	2.75 ± 0.37	0.63 ± 0.07
NS23	0.77 ± 0.08	0.31 ± 0.04	1.08 ± 0.09	1.37 ± 0.12	0.21 ± 0.02	1.58 ± 0.12	0.56 ± 0.07	1.47 ± 0.23	0.68 ± 0.08
NS37	0.11 ± 0.03	0.31 ± 0.02	0.42 ± 0.04	0.87 ± 0.09	0.29 ± 0.03	1.16 ± 0.10	0.12 ± 0.04	1.07 ± 0.14	0.36 ± 0.04
NS40	0.67 ± 0.07	0.69 ± 0.06	1.36 ± 0.09	1.41 ± 0.13	0.23 ± 0.03	1.64 ± 0.13	0.48 ± 0.06	2.99 ± 0.42	0.83 ± 0.09
NS41	0.39 ± 0.04	0.37 ± 0.04	0.75 ± 0.06	1.08 ± 0.11	0.39 ± 0.04	1.47 ± 0.11	0.36 ± 0.05	0.94 ± 0.16	0.51 ± 0.06
NS42	0.49 ± 0.05	0.62 ± 0.07	1.12 ± 0.09	1.31 ± 0.14	0.27 ± 0.04	1.58 ± 0.14	0.38 ± 0.05	2.30 ± 0.39	0.71 ± 0.08
NS43	0.48 ± 0.05	0.19 ± 0.02	0.67 ± 0.06	1.42 ± 0.12	0.22 ± 0.02	1.63 ± 0.12	0.34 ± 0.05	0.86 ± 0.13	0.41 ± 0.04
NS44	0.42 ± 0.06	0.30 ± 0.03	0.71 ± 0.06	1.43 ± 0.11	0.27 ± 0.02	1.69 ± 0.11	0.29 ± 0.04	1.11 ± 0.15	0.42 ± 0.04
NS49	0.97 ± 0.10	0.38 ± 0.05	1.36 ± 0.11	1.69 ± 0.13	0.16 ± 0.02	1.85 ± 0.13	0.57 ± 0.07	2.37 ± 0.41	0.73 ± 0.08
NS50	0.45 ± 0.05	0.44 ± 0.04	0.89 ± 0.07	1.39 ± 0.12	0.17 ± 0.02	1.57 ± 0.12	0.32 ± 0.04	2.59 ± 0.41	0.57 ± 0.06
NS58	1.17 ± 0.12	0.31 ± 0.04	1.48 ± 0.13	1.84 ± 0.14	0.20 ± 0.02	2.05 ± 0.14	0.63 ± 0.08	1.55 ± 0.23	0.72 ± 0.08
NS59	0.36 ± 0.04	0.61 ± 0.10	0.96 ± 0.10	1.77 ± 0.15	0.24 ± 0.04	2.02 ± 0.16	0.20 ± 0.03	2.54 ± 0.54	0.48 ± 0.06
NS60	0.23 ± 0.03	0.75 ± 0.09	0.98 ± 0.09	2.27 ± 0.22	0.29 ± 0.03	2.55 ± 0.22	0.10 ± 0.02	2.59 ± 0.41	0.38 ± 0.05

a) 表中 D, P 和 T 分别表示溶解态、颗粒态和总的比活度或活度比值(T=D+P)

3 讨论

3.1 表层水体的 ²¹⁰Po/²¹⁰Pb 及 ²¹⁰Pb/²²⁶Ra 不平衡

研究海域²²⁶Ra的比活度介于 0.82~1.98 Bq/m³之 间,平均为 1.1 Bq/m^{3[26,27]}.本研究得到的 ²¹⁰Pb平均 比活度高于 ²²⁶Ra的比活度,体现了开阔大洋表层水体 ²¹⁰Pb过剩于母体 ²²⁶Ra的特征.开阔大洋表层水体 ²¹⁰Pb主要来源于携带 ²¹⁰Pb的气溶胶的干、湿沉降(主 要为湿沉降),表层水体 ²²⁶Ra现场衰变产生的 ²¹⁰Pb(通过 ²²²Rn及其短寿命子体衰变)贡献小.南沙 海域的年降雨量属世界的高值区和东南亚的雨峰 区^[28],且该海域的平均降雨量没有明显的季节差异, 南 部海区的降雨量更高,其年平均降雨量为 2813.50 mm,因此,南沙海域表层水体呈现 ²¹⁰Pb明 显过剩于 ²²⁶Ra的特征是不难理解的.

表层水体的²¹⁰Po主要由其母体²¹⁰Pb的衰变产生, 大气沉降过程带来的²¹⁰Po很少(大气沉降²¹⁰Po/ ²¹⁰Pb)_{A.R.}约为 0.1), 一般都被忽略^[8,13]. 而表层水体
²¹⁰Po和 ²¹⁰Pb的迁出主要通过其自身的衰变和清除、
沉降过程. 一般地, ²¹⁰Po对颗粒有机物的亲和力比
²¹⁰Pb更强^[5,7,29], 微生物也会吸收 ²¹⁰Po^[12], 然后被浮游动物摄食, 进而向高营养级传递, 故随营养级的上升 ²¹⁰Po/²¹⁰Pb比值愈来愈大^[30], 而 ²¹⁰Pb则是被颗粒物和生物体表面所吸附. 因此, P²¹⁰Po/P²¹⁰Pb)_{A.R.}大于1(平均为 1.90), D²¹⁰Po/D²¹⁰Pb)_{A.R.}小于1, 体现了开阔大洋和深海区的特征.

3.2 表层水体各相态 ²¹⁰Po 和 ²¹⁰Pb 的停留时间

停留时间是了解和量度²¹⁰Po与²¹⁰Pb在各相态及 各贮库中地球化学行为的重要指标.根据质量平衡 关系,可以建立如下表层水体中各相态²¹⁰Po和²¹⁰Pb 随时间变化的关系方程:

 $\partial A_{\rm DPb} / \partial t = \lambda_{\rm Pb} \left(E + A_{\rm Ra} - A_{\rm DPb} \right) - k_{\rm DPb} A_{\rm DPb}, \quad (1)$

$$\partial A_{\rm DPo}/\partial t = \lambda_{\rm Po} \left(A_{\rm DPb} - A_{\rm DPo} \right) - k_{\rm DPo} A_{\rm DPo}, \qquad (2)$$

$$\partial A_{\rm PPb}/\partial t = k_{\rm DPb}A_{\rm DPb} - \lambda_{\rm Pb}A_{\rm PPb} - k_{\rm PPb}A_{\rm PPb},$$
 (3)

 $\partial A_{PPo}/\partial t = k_{DPo}A_{DPo} + \lambda_{Po}A_{PPo} - \lambda_{Po}A_{PPo} - k_{PPo}A_{PPo}, (4)$ $\partial A_{TPb}/\partial t = \lambda_{Pb} (E + A_{Ra} - A_{TPb}) - k_{TPb}A_{TPb}, (5)$ $\partial A_{TPo}/\partial t = \lambda_{Po} (A_{TPb} - A_{TPo}) - k_{TPo}A_{TPo}. (6)$ 上述(1)和(2)式为溶解态 ²¹⁰Pb 和 ²¹⁰Po 的质量平 衡方程,式中 λ_{Pb} 和 λ_{Po} 分别为 ²¹⁰Pb 和 ²¹⁰Po 的衰变常 数(分别为 0.031 和 1.83 a⁻¹), A_{Ra}, A_{DPb} 和 A_{DPo} 分别代 表 ²²⁶Ra, D²¹⁰Pb 和 D²¹⁰Po 的比活度(Bq/m³), k_{DPb} 和 k_{DPo} 分别为 D²¹⁰Pb 和 D²¹⁰Po 清除(scavenging)至颗粒 相的一级速率常数(a⁻¹). *E* 为大气沉降对表面混合层 贡献的有效 ²¹⁰Pb 浓度(Bq/m³),由于大气沉降对混合 层 ²¹⁰Pb 的贡献受 ²¹⁰Pb 的沉降通量 *I*(dpm • cm⁻² • a⁻¹) 和混合层厚度 *h*(m)的影响,因此,

 $E = I/(10^{-4} \cdot 60 \cdot h \cdot \lambda_{Pb}),$ (7) 上式中 10⁻⁴ 表示厚度为 1 m、表面积 1 cm² 的上层海 水体积为 10⁻⁴ m³, 60 为放射性活度单位 Bq 和 dpm 之 间的换算因子.

方程(3)和(4)为P²¹⁰Pb和P²¹⁰Po的质量平衡方程, A_{PPb}和A_{PPo}分别代表P²¹⁰Pb和P²¹⁰Po的比活度(Bq/m³), k_{PPb}和k_{PPo}分别为P²¹⁰Pb和P²¹⁰Po迁出(removal)或沉降 的一级速率常数(a⁻¹).方程(5)和(6)是总²¹⁰Po和²¹⁰Pb 的质量平衡方程,A_{TPb}和A_{TPo}分别代表T²¹⁰Pb和T²¹⁰Po 的比活度(Bq/m³).研究期间,南沙处于季风转型期, 表层海流流速很小,且在南沙海域中部形成补偿性 中部逆流^[31],平流和扩散的影响很小.因此,上述方 程忽略了扩散和平流过程的影响.稳态条件下得到 各相态²¹⁰Pb和²¹⁰Po的停留时间:

$$\tau_{\rm DPb} = 1/k_{\rm DPb} = A_{\rm DPb}/\lambda_{\rm Pb}/(E + A_{\rm Ra} - A_{\rm DPb}), \qquad (8)$$

$$\tau_{\rm DPo} = 1/k_{\rm Dpo} = A_{\rm DPo}/\lambda_{\rm Po}/(A_{\rm DPb} - A_{\rm DPo}), \qquad (9)$$

$$\tau_{\rm PPb} = 1/k_{\rm PPb} = A_{\rm PPb}/(k_{\rm DPb} \cdot A_{\rm DPb} - \lambda_{\rm Pb} \cdot A_{\rm PPb}), \quad (10)$$

$$\tau_{\rm PPo} = 1/k_{\rm PPo} = A_{\rm PPo}/[k_{\rm DPo} \cdot A_{\rm DPo} + \lambda_{\rm Po} \cdot (A_{\rm PPb} - A_{\rm PPo})], (11)$$

$$\tau_{\text{TPb}} = 1/k_{\text{TPb}} = A_{\text{TPb}}/\lambda_{\text{Pb}}/(E + A_{\text{Ra}} - A_{\text{TPb}}), \quad (12)$$

 0.4 dpm • cm⁻² • a⁻¹ 的大气输入通量,与Nozaki 等^[8]计 算南海 ²¹⁰Pb停留时间采用的数值相同. 按(8)~(13)式 计算得出的*τ*值列于表 3 中.

南沙海域表层水体D²¹⁰Pb的停留时间介于 0.52~1.55 a之间,平均值为 1.01a(表 3),计算值落入 文献报道的范围内(0.5~2.5 a)^[5.6.8,17,34~36]. D²¹⁰Po的停 留时间介于 0.06~0.95 a,平均为 0.34 a,位于一些报 道值的下限(0.3~1.6 a)^[5.6,17,21,35]. D²¹⁰Pb的停留时间明 显高于D²¹⁰Po的停留时间,佐证了D²¹⁰Pb比D²¹⁰Pb更 迅速地被清除至颗粒相.

P²¹⁰Pb平均停留时间为 0.14a(~50 d)(表 3)明显高 于 Masqué 等^[17]在西北地中海沿岸得到的结果 (0.039±0.003 a),反映了沿岸海域²¹⁰Pb的迁出较开阔 大洋迅速,这与沿岸颗粒物含量高于开阔大洋相吻 合.P²¹⁰Po的平均停留时间为 0.34 a (表 3),明显大于 P²¹⁰Pb停留时间,这与溶解态恰好相反,揭示了²¹⁰Po 可能被微生物吸收^[12],然后被浮游动物摄食,进而向 高的营养级传递,所以停留较长时间,并非象²¹⁰Pb主 要随浮游植物颗粒物直接沉降迁出表层.事实上,一 些研究已表明²¹⁰Po会被海洋生物体所富集^[9,10,37].

3.3 寡营养海域微生物在 ²¹⁰Po 和 ²¹⁰Pb 生物地球 化学循环中的作用

在富营养海域,初级生产力高,产生的浮游植物颗粒就多(高Chl.a),浮游植物颗粒对²¹⁰Po和²¹⁰Pb的 清除和迁出起着重要作用.Nozaki等^[20]证实北太平洋 ²¹⁰Po的迁出速率常数与叶绿素含量呈良好的正相关 关系.翌年,Nozaki 等^[8]对北半球若干海域进行研究 后也发现²¹⁰Po的迁出速率常数与Chl.a之间都存在良 好的正相关关系.但在寡营养海域,由于浮游植物颗 粒相对贫乏(低Chl.a),致使微生物颗粒对²¹⁰Po的清 除作用相对突出.Kim^[12]对寡营养的马尾藻海研究表 明:细菌对²¹⁰Po的清除导致了P²¹⁰Po占T²¹⁰Po的 15~75%,远高于高生产力海域的相应值(如孟加拉湾, <15%^[25]).本研究中寡营养南沙海域P²¹⁰Po占T²¹⁰Po 的份额高达40%,这也许意味着微生物在寡营养海 域的²¹⁰Po及其他硫族元素生物地球化学循环中起着 重要作用.

站号	$ au_{ m DPb}$	$ au_{\mathrm{PPb}}$	$ au_{\mathrm{TPb}}$	τ_{DPo}	$ au_{ m PPo}$	$ au_{\mathrm{TPo}}$	fa	fn	~
241 7	a						<i>J</i> 8	JR	α
NS1	1.06	0.13	1.20						1.69
NS2	1.35	0.14	1.50	0.20	0.18	0.42	6.65	0.74	7.70
NS3	1.52	0.20	1.73	0.16	0.15	0.33	9.49	1.29	6.75
NS4	1.04	0.13	1.17	0.42	0.16	0.61	2.49	0.79	2.97
NS5	0.97			0.17			5.69		
NS6	0.81	0.19	1.00	0.36	0.23	0.59	2.26	0.82	2.69
NS7	0.86	0.10	0.97	0.48	0.45	1.17	1.79	0.23	5.27
NS13	0.98	0.10	1.08	0.36	0.34	0.84	2.75	0.28	6.96
NS14	1.55	0.12	1.68	0.06	0.09	0.16	24.5	1.45	15.93
NS15	1.04	0.12	1.16	0.56	0.51	1.42	1.87	0.23	5.20
NS16	1.26	0.15	1.42	0.18	0.14	0.33	7.00	1.09	5.98
NS19	0.98	0.12	1.11	0.31	0.44	0.92	3.14	0.28	7.55
NS23	0.83	0.13	0.96	0.70	0.34	1.18	1.18	0.38	2.63
NS37	0.52	0.17	0.70	0.08	0.23	0.31	6.57	0.76	8.45
NS40	0.85	0.14	0.99	0.49	1.35	2.65	1.72	0.10	6.31
NS41	0.65	0.24	0.89	0.31	0.28	0.57	2.10	0.83	2.63
NS42	0.79	0.16	0.96	0.33	0.72	1.33	2.42	0.23	6.14
NS43	0.86	0.13	0.99	0.28	0.11	0.38	3.07	1.25	2.55
NS44	0.86	0.16	1.03	0.23	0.17	0.40	3.80	0.98	3.78
NS49	1.03	0.10	1.13	0.74	0.42	1.52	1.39	0.23	4.14
NS50	0.84	0.10	0.95	0.26	0.36	0.72	3.21	0.29	7.99
NS58	1.12	0.12	1.25	0.95	0.30	1.42	1.17	0.40	2.44
NS59	1.08	0.15	1.23	0.14	0.32	0.49	7.71	0.46	12.50
NS60	1.39	0.18	1.57	0.06	0.26	0.34	22.6	0.69	25.52
平均值	1.01	0.14	1.16	0.34	0.34	0.82	5.42	0.63	6.69

表 3 南沙海域表层水中各相态²¹⁰Pb 和²¹⁰Po 停留时间及清除、迁出过程的分馏因子

3.3.1 清除速率常数计算 ²¹⁰Po 和 ²¹⁰Pb 的分馏因 子

根据方程(8)~(11)中的k_{DPb}, k_{DPo}, k_{PPo} 和k_{PPb}可以 计算**D**²¹⁰Po和**D**²¹⁰Pb清除到颗粒相过程中的分馏因子 f_s和沉降迁出过程的分馏因子f_R^[8]:

> $f_{\rm S} = k_{\rm DPo} / k_{\rm DPb}, \qquad (14)$ $f_{\rm R} = k_{\rm PPo} / k_{\rm PPb}. \qquad (15)$

结果表明 $f_{\rm s}$ 介于 1.17~24.5 之间,平均为 5.42(表 3). 显然在 D^{210} Po 和 D^{210} Pb 清除至颗粒相的过程中,母、 子体发生了明显的分馏.

3.3.2 固液分配系数计算 ²¹⁰Po 和 ²¹⁰Pb 的分馏因 子

²¹⁰Po和²¹⁰Pb在颗粒相和溶解相之间的分配可用 条件分配系数 *K*_d计算,如下:

 $K_d = (PA) / (DA \cdot SPM),$ (16)上式中PA和DA分别代表颗粒态和溶解态核素A的放

射性比活度(Bq/m³), SPM为颗粒物浓度(g/m³). 那么, 在固-液分配过程中, ²¹⁰Po和 ²¹⁰Pb的分馏因子可由下 式计算^[38]:

$$\alpha = K_{d, Po}/K_{d, Pb}, \qquad (17)$$

根据(17)式获得的α值列于表 3 中.

由以上两种方法计算得到的清除过程的分馏因 子较为一致,相关性良好(*R* = 0.87),说明本文的结果 是可靠的.

那么, 寡营养南沙海域²¹⁰Po 和²¹⁰Pb 的分馏是类 似于富营养海域, 由浮游植物控制抑或类似于寡营 养的马尾藻海, 受微生物的支配? 在 *f*_s 和α 对 Chl.a 作图(图 1)后发现, 浮游植物并不是 *f*_s 的主要调控因 素, 而且所研究的海水样品均为大洋水, 也没有见到 研究海区内有上升流的报道, 因此, 必然有其它颗粒 物在²¹⁰Po 和²¹⁰Pb 清除过程中使²¹⁰Po 和²¹⁰Pb 发生了 明显的分馏. 在收集到的颗粒物中除浮游植物外, 可 能还有无机颗粒物、浮游动物和微生物, 已有的研究 表明:(1) 所研究海域属深海海域,陆源无机颗粒物 很少,且陆源颗粒物对²¹⁰Pb较²¹⁰Po有更强的亲和力 ^[8];(2) 沈鹤琴等^[39]夏季对南沙海域的调查结果表明 低Chl.a含量对应着较高的异养细菌(属微生物)含量 (表层水异养细菌平均含菌量介于 9~57 CFU/mL之 间),我们采样的时间正是夏季,因此,收集到的颗粒 物中有较高含量的微生物;(3) 根据以往对南沙海域 的研究^[39-43],微生物在颗粒物中占有较大份额;(4) 在寡营养的马尾藻海,细菌(微生物)吸收²¹⁰Po而后被 浮游动物摄食,进而向高营养级传递^[12],故浮游动物 通过摄食微生物对²¹⁰Po和²¹⁰Pb进行不同程度的富集. 因此,寡营养的南沙海域²¹⁰Po和²¹⁰Pb之间的分馏极 可能由微生物引起.

3.3.3 微生物在²¹⁰Po 生物地球化学循环中的作用

根据传统观念, 寡营养海域颗粒物含量低, 那么 P²¹⁰Po占T²¹⁰Po的比例应该小于富营养海域. 但本研 究在低初级生产力、 低颗粒含量的寡营养海域得到 的P²¹⁰Po占总T²¹⁰Po的份额(平均约为 40%)却明显高 于高生产力、高颗粒含量的富营养海域(红海 30%^[24]; 孟加拉湾<15%^[25]; 西北地中海 21%^[17]), 而P²¹⁰Pb在 T²¹⁰Pb所占比例(约 12%)却与富营养海域一致, 进一 步反映了寡营养海域微生物对 ²¹⁰Po和 ²¹⁰Pb的分馏作 用. Lalli等^[44]曾指出: 在寡营养海区, 细菌是微生物 的主体. 因此, 通过研究细菌在²¹⁰Po生物地球化学循 环过程中的作用, 有助于了解微生物对 ²¹⁰Po 及其他 硫族元素(S, Se和Te)生物地球化学循环过程的影响. Harada 等^[45]对佛罗里达地下水研究发现²¹⁰Po从溶解 态转移至颗粒态(>0.2 µm)与硫细菌(sulfur bacteria)活 动密切相关,而²¹⁰Pb并没有相应的变化. Cherrier & Burnett^[46]的实验室实验结果表明细菌能有效地从水 中吸收D²⁰⁸Po, 将其转化成颗粒态, 并且会将 ²⁰⁸Po作 为S的替代物而吸收,上述结果证实微生物在某些环 境中会对²¹⁰Po及其他硫族元素(S, Se和Te)的生物地 球化学循环起到重要作用. Kim^[12]对寡营养的马尾藻 海进行研究发现,在 2000 m以浅,²¹⁰Po相对于母体 ²¹⁰Pb的异常亏损缘自细菌对 ²¹⁰Po的吸收, 然后被浮 游动物摄食,进而向高的营养级传递,而不是因为颗 粒物对 ²¹⁰Po的沉降迁出,并且由于细菌对 ²¹⁰Po的富 集导致了P²¹⁰Po占T²¹⁰Po的 15%~75%, 远高于高生产 力海域的相应值(如孟加拉湾、小于 15%[25])、与本研 究结果极为相似,进一步佐证了南沙海域²¹⁰Po和 ²¹⁰Pb的分馏极可能由微生物引起,此外,Kim^[12]还发 现蓝细菌(cvanobacteria)对马尾藻海上层水体²¹⁰Po的 迁出起着重要作用.

综上所述,本研究和 Kim 的研究结果可能揭示 了海洋环境中²¹⁰Po 和²¹⁰Pb 发生分馏的两种机制:(1) 在富营养海区,丰富的浮游植物颗粒物在²¹⁰Po 和²¹⁰Pb 的清除和迁出过程中起主导作用,因此,²¹⁰Po 和²¹⁰Pb 的分馏也主要由浮游植物引起;(2)在生物生产 力低的寡营养海域,由于浮游植物颗粒相对贫乏,致 使微生物对²¹⁰Po 的清除和迁出作用相对凸显出来, 微生物成为²¹⁰Po 的清除和迁出的主要载体,并且导 致²¹⁰Po 和²¹⁰Pb 发生明显的分馏效应.

鉴于²¹⁰Po的固-液分配及²¹⁰Po-²¹⁰Pb不平衡与微 生物的密切关系,²¹⁰Po可能成为硫族元素(S, Se, Te 和 Po)生物地球化学循环研究的有用示踪剂.

4 结论

通过对寡营养南沙海区各相态²¹⁰Po和²¹⁰Pb的含量水平、停留时间及微生物在 Po 等硫族元素生物地 球化学循环过程中作用的研究,得以下结论:

(1) 南沙海域表层水中 D²¹⁰Po 和 D²¹⁰Pb 的放射
 性比活度分别介于 0.11~1.73 和 0.87~2.51 Bq/m³之间.
 P²¹⁰Po 和 P²¹⁰Pb 的比活度分别介于 0.19~0.75 和

0.16~0.39 Bq/m³之间.

(2) D²¹⁰Po 和 P²¹⁰Po 的平均停留时间均为 0.34 a, D²¹⁰Pb 和 P²¹⁰Pb 的平均停留时间分别为 1.01 和 0.14 a.

(3) 在固-液分配过程中,²¹⁰Po和²¹⁰Pb的分馏因 子,由清除速率常数和固液分配系数两种方法计算 的结果,分别为5.42和6.69,雄辩地说明南沙海域这 对母、子体在清除过程中发生了明显的分馏,它们有 着不同的生物地球化学循环路径.

(4)²¹⁰Po 和²¹⁰Pb 的分馏机制随海域而异:在富 营养海域,浮游植物颗粒充当²¹⁰Po 和²¹⁰Pb 清除和迁 出的主要载体;但在寡营养海域,由于浮游植物颗粒 相对贫乏,微生物凸显为²¹⁰Po 清除和迁出的主要载 体,并使²¹⁰Po 和²¹⁰Pb 在此过程中发生明显的分馏. 这为应用²¹⁰Po 研究与微生物有关的海洋学过程,特 别是 S 族元素(S, Se, Te 和 Po)的生物地球化学循环奠 定了重要的基础.

致谢 美国阿拉斯加大学国际北极研究中心郭劳动 博士为本项研究提供了重要的条件保证,并对本文 提出许多中肯的修改意见,中国科学院南海海洋研 究所黄良民教授研究组的蔡创华研究员提供了叶绿 素数据,样品的采集得到中国科学院南海海洋研究 所、中国科学院海洋研究所和同济大学等单位出海人 员及"实验 3 号"船长、全体船员的有力支持和帮助, 作者谨此一并表示衷心的感谢.

参考文献

- Nozaki Y. The systematic of U/Th decay series nuclides in ocean water. Reviews in Aquatic Science, 1991, 4: 75~105
- 2 Rama, Koide M, Goldberg E D. Lead-210 in natural waters. Science, 1961, 134: 98~99
- 3 Shannon L V, Cherry R D, Orren M J. Polonium-210 and lead-210 in the marine environment. Geochimica et Cosmochimica Acta, 1970, 34: 701~711
- 4 Tsunogai S, Nozaki Y. Lead-210 and polonium-210 in surface water of the Pacific. Geochemical Journal, 1971, 5: 165~173
- 5 Bacon M P, Spencer D W, Brewer P G. Pb-210/Ra-226 and Po-210/Pb-210 disequilibria in seawater and suspended particulate matter. Earth and Planetary Science Letters, 1976, 32: 277~296
- 6 Nozaki Y, Thomson J, Turekian K K. The distribution of Pb-210 and Po-210 in the surface waters of the Pacific Ocean. Earth and Planetary Science Letters, 1976, 32: 304~312
- 7 Cochran J K. The oceanic chemistry of the uranium and thorium-series nuclides. In: Ivanovich M, Harmon R S, eds. Uranium-series disequilibrium—applications to earth, marine, and

environmental sciences. Second Edition. Oxford: Clarendon Press, 1992, 334~395

- 8 Nozaki Y, Dobashi F, Kato Y, et al. Distribution of Ra isotopes and the ²¹⁰Pb and ²¹⁰Po balance in surface seawaters of the mid Northern Hemisphere. Deep-Sea Research I, 1998, 45:1263~1284[DOI]
- 9 Heyraud M, Fowler S W, Beasley T M, et al. Polonium-210 in euphausiids: a detailed study. Marine Biology, 1976, 34: 127~136
- 10 Fowler S W, Knauer G A. Role of large particles in the transport of elements and compounds through the oceanic water column. Progress in Oceanography, 1986, 16: 147~194[DOI]
- 11 Cherry R D, Heyraud M. Polonium-210 in selected categories of marine organisms: interpretation on the basis of an unstructured marine food web model. In: Guary J C, Guegueniat P, Pentreath R J, eds. Radionuclides: a Tool for Oceanography. Amsterdam: Elsevier Applied Science, 1992. 362~372
- 12 Kim G. Large deficiency of polonium in the oligotrophic ocean's interior. Earth and Planetary Science Letters, 2001, 192: 15~21[DOI]
- 13 Turekian K K, Kharkar D P, Thomson J. The fates of Pb-210 and Po-210 in the ocean surface. Journal De Recherches Atmosphériques, 1974, 639~646
- 14 Kharkar D P, Thomson J, Turekian K K, et al. Uranium and thorium decays series nuclides in plankton from the Caribbean. Limnology and Oceanography, 1976, 21: 294~299
- 15 Hong G-H, Park S-K, Baskaran M, et al. Lead-210 and polonium-210 in the winter well-mixed turbid waters in the mouth of the Yellow Sea. Continental Shelf Research, 1999, 19: 1049~1064[DOI]
- 16 Baskaran M, Santschi P H. Particulate and dissolved ²¹⁰Pb activities in the shelf and slope regions of the Gulf of Mexico waters. Continental Shelf Research, 2002, 22: 1493~1510[DOI]
- 17 Masqué P, Sanchez-Cabeza J A, Bruach J M, et al. Balance and residence times of ²¹⁰Pb and ²¹⁰Po in surface waters of the northwestern Mediterranean Sea. Continental Shelf Research, 2002, 22: 2127~2146[DOI]
- 18 林瑞芬,卫克勤,张之庚,等.海水中某些放射性核素的测定. 南沙群岛及其邻近海区综合调查研究报告(一),下卷.北京: 科学出版社,1989.416~420
- 19 杨伟锋,陈敏,黄奕普,等.九龙江河口区不同粒级²¹⁰Po的输
 -迁出速率及其意义.科学通报,2003,48(17):1872[摘要][PDF]
- 20 Nozaki Y, Zhang J, Takeda A. ²¹⁰Pb and ²¹⁰Po in the equatorial Pacific and the Bering Sea: the effects of biological productivity and boundary scavenging. Deep-Sea Research II, 1997, 44(9-10): 2203~2220[DOI]
- 21 Cochran J K, Bacon M P, Krishnaswami S, et al. ²¹⁰Po and ²¹⁰Pb distribution in the central and eastern Indian Ocean. Earth and Planetary Science Letters, 1983, 65: 433~452[DOI]
- 22 Shell W R. Concentrations, physico-chemical states and mean residence times of ²¹⁰Po and ²¹⁰Pb in marine and estuarine waters.

Geochimica et Cosmochimica Acta, 1977, 41: 1019~1031

- 23 Swarzenski P W, McKee B A, Scrensen K, et al. ²¹⁰Pb and ²¹⁰Po, manganese and iron cycling across the O₂/H₂S interface of a permanently anoxic fjord: Framvaren, Norway. Marine Chemistry, 1999, 67: 199~217[DOI]
- 24 Chung Y, Finkel R C, Kim K. ²²⁶Ra, ²¹⁰Pb and ²¹⁰Po in the Red Sea. Earth and Planetary Science Letters, 1982, 58: 213~224[DOI]
- 25 Sarin M M, Rengarajan R, Somayajulu B L K. Natural radionuclide in the Arabian Sea and Bay of Bengal: distribution and evaluation of particle scavenging processes. In: Proc Indian Acad Sci (Earth Planet Sci), 1994, 103: 211~235
- 26 黄奕普,陈性保,姜德盛,等. 1994 航次南沙海域²²⁶Ra的分布 与变化.南沙群岛海域的同位素海洋化学.北京:海洋出版社, 1996.79~88
- 27 谢永臻,黄奕普,邱雨生,等.南沙海域表层水中²²⁶Ra的分布. 南沙群岛海域的同位素海洋化学.北京:海洋出版社,1996. 63~69
- 28 赵焕庭编. 南沙群岛自然地理. 北京: 科学出版社, 1996. 1~2, 42~46, 152~155, 193~201
- 29 Tanaka N, Takeda Y, Tsunogai S. Biological effect of removal of Th-234, Po-210 and Pb-210 from surface water in Funka Bay, Japan. Geochimica et Cosmochimica Acta, 1983, 47: 1783~1790[DOI]
- 30 Heyraud M, Cherry R D. Correlation of Po-210 and Pb-210 enrichments in the sea-surface microlayer with neuston biomass. Continental Shelf Research, 1983, 1: 283~293[DOI]
- 31 Shaw P-T, Chao S Y. Surface circulation in the South China Sea. Deep-Sea Research I, 1994, 41(11/12): 1663~1683[DOI]
- 32 Feitchter J, Brost R A, Heimann M. Three-dimensional modeling of the concentration and deposition of ²¹⁰Pb aerosols. Journal of Geophysical Research, 1991, 96: 22447~22460
- 33 Turekian K K, Nozaki Y, Benninger L K. Geochemistry of atmosphere radon and radon products. Annual Reviews of Earth and Planetary Sciences, 1977, 5: 227~255
- 34 Nozaki Y, Tsunogai S. ²²⁶Ra, ²¹⁰Pb and ²¹⁰Po disequilibria in the Western North Pacific. Earth and Planetary Science Letters, 1976, 32: 313~321

- 35 Spencer D W, Bacon M P, Brewer P G. The distribution of Pb-210 and Po-210 in the North Sea. Thalassia Jugoslavica, 1980, 16: 125~154
- 36 Nozaki Y, Tsubota H, Kasemsupaya V, et al. Residence times of surface water and particle-reactive ²¹⁰Pb and ²¹⁰Po in the East China and Yellow Seas. Geochimica et Cosmochimica Acta, 1991, 55: 1265~1272[DO1]
- 37 Cherry R D, Heyraud M. Polonium-210 and lead-210 in Antarctic marine biota and sea water. Marine Biology, 1987, 96: 441~449[DOI]
- 38 Chase Z, Anderson R F, Fleisher M Q, et al. The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean. Earth and Planetary Science Letters, 2002, 204: 25~229
- 39 沈鹤琴,蔡创华,周毅频,等.南沙群岛海区异养细菌的生态 分布.南沙群岛及其邻近海区海洋生物研究论文集(二).北京: 海洋出版社,1991.1~17
- 40 沈鹤琴,周毅频,蔡创华,等.南沙群岛海区异养弧菌的生态 分布.南沙群岛及其邻近海区海洋生物研究论文集(二).北京: 海洋出版社,1991.18~33
- 41 蔡创华,沉鹤琴,周毅频,等.冬季南沙群岛及其邻近海区异 养细菌分布特征.南沙群岛及其邻近海区海洋生物分类区系与 生物地理研究 I.北京:海洋出版社,1994.1~11
- 42 周毅频, 沈鹤琴, 蔡创华. 冬季南沙群岛及其邻近海区弧菌初步调查. 南沙群岛及其邻近海区海洋生物分类区系与生物地理研究 I. 北京:海洋出版社, 1994. 12~26
- 43 沈鹤琴,蔡创华,周毅频.南沙群岛西部海区冬季弧菌多样性 初步研究.南沙群岛及其邻近海区海洋生物多样性研究 II. 北 京:海洋出版社,1996.1~10
- 44 Lalli C M, Parsons T R. Biological Oceanography: An Introduction, New York: Pergamon, 1994. 301
- 45 Harada K, Burnett W C, Larock P A. Polonium in Florida groundwater and its possible relationship to the sulfur cycle and bacteria. Geochimica et Cosmochimica Acta, 1989, 53: 143~150[DOI]
- 46 Cherrier J, Burnett W C. Uptake of polonium and sulfur by bacteria. Geomicrobiology Journal, 1995, 13: 103~115