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ABSTRACT

Via the method of multiple scales, it is shown that the time and space evolution of the envelope of wave
packets of weakly nonlinear, strongly dispersive equatorial waves is governed by the Nonlinear Schrédinger
equation. The diverse phenomena of this equation—envelope solitons, sideband instability, FPU recurrence
and more—is briefly reviewed. Which of the alternatives occurs is determined largely by the relative signs
of the coefficients of the dispersive and nonlinear terms in the Nonlinear Schrodinger equation which, for
a given latitudinal mode, are functions of a single nondimensional parameter, the zonal wavenumber k.
Gravity waves propagating toward the east form solitary waves and are subject to sideband instability only
for large k. The mixed Rossby~gravity wave has solitons only in a range of intermediate k.

For waves with group velocities toward the west, the physics is much more complicated because these
waves have an infinite number of second harmonic resonances and long wave/short wave resonances tucked
into a finite interval of intermediate wavenumber. These two species of resonance form the topic of the two
companion papers Boyd (1983a,b). One finds that for westward-propagating gravity waves, the resonances
are very weak, and solitary waves occur more or less continuously within an intermediate range of wave-
number. For Rossby waves one can also state that solitons are forbidden for both large and small , but the
resonances completely dominate the intermediate range of wavenumbers so that the situation is very confused
and complicated.

Together with earlier papers, this present work completes the description of the weakly nonlinear evolution
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of equatorial waves in a shallow water wave model.

1. Introduction

In two previous papers, the author has discussed
nonlinear effects on the non-dispersive equatorial
Kelvin wave (Boyd, 1980a) and on weakly dispersive
long Rossby waves (Boyd, 1980b). This third paper
and its two companions explore nonlinearity for
strongly dispersive equatorial waves including short
Rossby waves, the mixed Rossby—-gravity wave, and
all eastward and westward travelling gravity waves.
The most striking of these nonlinear effects is the
creation of solitary waves. Although this present work
is the third in the series, it is only the second (hence
“Part 2” in its title) to deal with solitary waves because
the Kelvin waves of Boyd (1980a), being nondisper-
sive, cannot form solitary waves.

As in these two earlier papers, the method of mul-
tiple scales is applied to the nonlinear shallow water
wave equations to create an analytic singular pertur-
bation theory with the wave amplitude as the expan-
sion parameter. Since one physical definition of
“strong dispersion” is that a single isolated crest will
break up into several crests and troughs on a time
scale of order unity, it follows that a balance between
nonlinearity and dispersion for such a single crest is
impossible within the framework of the theory except
for the long-—and weakly dispersive—Rossby waves
of Boyd (1980b). If one considers an initial packet
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whose Fourier transform is sharply peaked about
some central packet wavenumber k or equivalently,
a disturbance of the form

ux, y, )

= A(x, t) explikx — im(k)t]p.(y) + c.c., (1.1)
where c.c. is an abbreviation for “complex conju-
gate,” ¢,(y) describes the latitudinal modal structure
of the packet, and A(x, £) is a complex function called
the “envelope” which varies slowly with x on a length
scale L ~ O(e™!) where ¢ < 1, then solitary waves are
still possible, Because the range of wavenumbers in
the packet has a width of only O(¢), the characteristic
time scale for the spreading of the envelope is the
slow scale T =~ O(e™'). Weak nonlinearity-—the only
kind for which the perturbation theory is valid—can
balance the slow dispersive spreading of the envelope
to create a steadily moving nonlinear wave of per-
manent form: an “envelope” soliton. The reason for
the name is, although the envelope A(x, ¢) has but a
single peak (for a single soliton), u(x, y, f) has many
individual crests and troughs [O(¢™') in number] as
shown schematically in Fig. 1.

The latitudinal structure function ¢.()) and the
frequency w(k) are precisely those of linear equatorial
wave theory, but the envelope A(x, 7) is governed by
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the so-called Nonlinear Schridinger equation or NLS
for short, i.e.,

i, + V2w"A,, + v|A]P4 = 0, (1.2)

where w” is the second derivative of the dispersion
relation w(k) with respect to k and where »(k; n) is
the so-called Landau constant, independent of x but
varying with both the wavenumber k and the lati-
tudinal mode number #. The central goal of the per-
turbation theory is to derive (1.2) and calculate the
Landau constant. The next section will present an
overview of the theory and Section 3 the actual der-
ivation. Unfortunately, Eq. (1.2) is not the whole
story: resonances cause the Landau constant to have
a pole at certain values of k and », and in the neigh-
borhood of these resonances, one must abandon (1.2)
in favor of coupled pairs of equations. The resonances
are discussed in Section 4; a full treatment of the long
wave/short wave resonance equations and of the res-
onant dyad equations is given in the companion pa-
pers (Boyd, 1983a,b).

Section 5 discusses the variations of the Landau
constant with k and #. The graphs for Rossby waves
and for westward-travelling gravity waves are very
confusing because of all the resonances.

Section 6 explores the different solutions of the
Nonlinear S¢hrodinger equation: solitons, “breath-
ers,” FPU recurrence and polycnoidal waves.

The final section is a summary and prospectus,
while the three appendices discuss (A) numerical
methods for computing the Landau constant, (B) er-
ror theorems for approximate equatorial wave dis-
persion formulas, and (C) the derivation of the Non-
linear Schrodinger equation from the Korteweg-
deVries equation.

2. Strong versus weak dispersion: An overview of the
derivation of the Nonlinear Schrodinger Equa-
tion

The Korteweg-deVries equation of Boyd (1980b)
is (in canonical form)

A+ A4, + A = 0, 2.1

which is guadratically nonlinear whereas the NLS
equation (1.2) is cubically nonlinear. In this section,
we will briefly explore the reasons for this difference
and present an overview of the derivation of (1.2)
whose details are postponed until the next section.
Resonance lies at the heart of the whole pertur-
bation theory. Both the Korteweg-deVries and Non-
linear Schrodinger equations describe the resonant
interaction of a single wave mode with itself. These
two differ in form simply because the strength of the
dispersion has a decisive role in determining how this
resonant self-interaction takes place and at what order
in the perturbation theory. The resonant triad equa-
tions of Domaracki and Loesch (1977), Loesch and
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Deininger (1979) and Ripa (1983a,b) and the long
wave/short resonance equations and resonant dyad
equations of Boyd (1983a,b) describe pairs or triplets
of wave modes whose mutual interaction is stronger
than their self-interaction. In general, however, these
mutual resonances occur only for certain discrete
values of the wavenumbers and mode numbers. A
given mode, however, is always in resonance with
itself at appropriately high perturbation order. Con-
sequently, the NLS equation describes the nonlinear
dynamics of strongly dispersive waves everywhere in
parameter space (that the dispersion is strong) except
for certain deleted neighborhoods where one of these
mutual resonances is more important.

The Korteweg-deVries equation itself represents
one of these deleted neighborhoods. The dispersion
relation for linear Rossby waves is approximately

-1

o+ 1+ k2 (2.2)

where 7 is the latitudinal mode number. For long
Rossby waves for which

k =~ O(e'??), (2.3)
where
e<1, 2.4)
it follows that
c(k) — c(0) =~ O(e). 2.5)

In words, waves whose wavenumbers differ by O(1)
will have phase speeds which differ only by a small
amount. Eq. (2.5) can be taken as the mathematical
definition of “weak” dispersion. It implies that even
if a packet of long Rossby waves is not sharply peaked
in wavenumber space about some central packet
wavenumber k, the packet nonetheless will spread
very slowly, on a time scale T =~ O(¢™'), because its
constituent waves are all traveling at approximately
the same speed. If the amplitude of the packet is also
O(e), then one can balance the nonlinearity against
the dispersion to create the unimontane, singly-
humped solitons shown in Fig. la.

From a resonance viewpoint, Eq. (2.5) implies that
there is approximate resonance between all long
Rossby waves of the same meridional mode. Con-
sequently, the Korteweg-deVries equation is only
quadratically nonlinear: a long Rossby wave of wave-
number k is simultaneously in approximate reso-
nance [to O(e)] with both its second harmonic (wave-
number 2k) and the mean flow (k = 0).

For strongly dispersive waves, however,

c(k) — c(0) =~ O(1) (2.6)

almost everywhere in parameter space. The self-in-
teraction of a wave packet of the form of (1.1) will
give rise to forced waves which depend on x and ¢ as
either

A¥(x, D)e**x—®1 [second harmonic]  (2.7)
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FIG. 1. {a) A soliton of the Korteweg-deVries equation or the
long-wave component of a soliton of the long-wave/short-wave
resonance equations. (b) An envelope soliton of the Nonlinear
Schrodinger equation or the short-wave component of the long-
wave/short-wave resonance equations.

and its complex conjugate or as
|4(x, 1)? [long wave or “mean”]. (2.8)

If the packet were a simple plane wave, then (2.8)
would be the “mean,” i.e., the zonally-averaged flow,
but when A(x, ¢) varies with x, Eq. (2.8) is dynamically

Second Harmonic
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a long Rossby wave, so the other description is more
accurate. Because of (2.6), however, both (2.7) and
(2.8) [multiplied by the appropriate latitudinal modal
functions] are forced waves, travelling at speeds suf-
ficiently different from those of the free oscillations
of the same wavenumber and mode number so that
resonance generally does not occur. [When it does,
one has one of the mutual resonances discussed fur-
ther in Section 4 and in Boyd (1983a,b).]

In the absence of such resonances, however, these
forced waves are O(¢) in comparison to the funda-
mental wave packet (1.1)—and not very important.
At the next perturbation order, the nonlinear inter-
action between the forced components and the fun-
damental will give rise to terms proportional to

424 etxetn), (2.9)

which are resonant with the fundamental. Because
of the resonance, Eq. (2.9), although of higher order
than (2.7) and (2.8), can create O(1) changes in the
structure and evolution of the wave packet and dom-
inate its nonlinear dynamics.

The tree diagram (Fig. 2) summarizes the situation.
The dynamics of the lowest order solution are com-
pletely determined,, except for the factor A(x, ), by
linear equatorial wave theory. The forced wave com-
ponents (2.7) and (2.8) are only small corrections, but
ironically, the bulk of the labor in computing the
Landau constant is to calculate these forced com-
ponents because the value of »(k; n) is determined
solely by the interaction of these forced waves with
the fundamental.

3. Derivation of the Nonlinear Schrodinger equation:
Mathematical detail

The nonlinear shallow water wave equations are
given in nondimensional form by

A2e2ikx- 2iwt

/

Q%)

Fundomental Ag'tx~iwt \ [A]2A [NElaS]
4"
Long Wave A2

A¥e-ikxtiwt / %IMZA* NELS*

\ / &

pe2gRint2iwt )
——— —_———— —-—
Linear Wave Packet Solve Secularity Condition
o(€) 0(€?) 0(e?)

FIG. 2. “Tree” diagram schematically showing how higher harmonics are generated by
multiplication at successive orders. The third harmonic [O(¢®)] and the y-dependence of the
fundamental and its harmonics have been omitted.
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u + uu, +ou,— yv+ ¢, =0, 3.1)
v,tu,+ov,+yu+¢,=0, (3.2)
¢+ (o), + (pV), + U, + v, =0, (3.3)

where ¢ is the height. As in Boyd (1980a,b) and most
other recent papers on equatorial waves in the ocean,
the nondimensional scales are

L = E~'7q [length scale], (3.4)
T = EV42Q)™" [time scale], (3.5)
where
. 40%q?
E= i
o (3.6)

is often referred to as “Lamb’s parameter” with Q the
angular frequency of the earth’s rotation (27/86 400
s), a the radius of the earth, and H the “equivalent
depth.” For the first baroclinic mode, the equivalent
depth H is 40-60 cm so that L ~ 300 km and
T ~ 1.7 days.

To proceed further, we let € be the amplitude of
the wave packet where ¢ < 1 and apply the method
of multiple scales. We expand u as

[« r+1
Um~eX & 2 Al )0, WES +ce. (3.7
r=0 §=0
and similarly for v and ¢, where
E = eik.x—iw(k)t’ (38)

where k is the central wavenumber of the packet (i.e.,
the location of the peak of the Fourier transform of
the wavepacket) with w(k) the linear dispersion re-
lation and

T = éi, (3.9)

¢ = ex ~ ¢ (k1] (3.10)

are the “slow” time and space scales with c,(k) = dw/
dk the linear group velocity of the packet.

The scales in (3.9) and (3.10) are chosen so that
dispersive and nonlinear effects will be the same order
of magnitude, making envelope solitons possible. The
group velocity appears explicitly in (3.10) because this
is approximately the speed at which the envelope of
the wave packet travels. Since (3.7)-(3.10) have ap-
peared unchanged in innumerable previous deriva-
tions of the NLS equation-Johnson (1976) is a read-
able example—no further attempt to justify them will
be made beyond the statement that these equations
are the mathematical embodiment of the ideas
sketched in Section 2. The differences between one
NLS derivation and another lie solely in the linear
dispersion w(k) and in latitudinal structure functions
0.(»), so it i1s upon these matters that we shall mainly
concentrate.

The order-by-order perturbation equations are ob-
tained by substituting (3.7) (and the similar expan-
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sions for v and ¢) into (3.1)—(3.3) and using the chain
rules
d

. a 2
—=—iw—e, S+ —,

ot as¢ or @G.1D
3 . a
6x_1k+66§” (3.12)

The O(e) perturbation equations are identical with
those of ordinary linear theory for an equatorial wave
of zonal wavenumber k.

O(¢'E"):
—iwu® — ™ + ik¢® =0,  (3.13a)
C—iwd® +yu® + 490 =0,  (3.13b)
—iwg® + iku® + 9! = 0, (3.13¢)
with the solution
u® = Ao, Q7S 7)ELS; H,ii(¥)
+ S3H,_(M]e” " + cc., (3.14a)

! = 45,07\, DE[S H (W)]e "V + c.c., (3.14b)
¢°' = 40,07, TE[SiH,ii(¥)

— S3H,_\((0))e~ V" + cc., (3.14¢)
with
S, = Ya(w + k), (3.15a)
Sy = —(w? — k?), (3.15b)
S3 = n(w — k), (3.15¢)
where Q is the normalization factor
0= " dy e8P Hy07
) + SSPH, () + 285°H,_,(0)°].  (3.16)

and H,(y) is the nth (unnormalized) Hermite poly-
nomial. The normalization factor is proportional to
the latitudinally-averaged total energy (kinetic plus
potential), so this choice for (3.16) may be referred
to as an “energy normalization™ for the primary wave
packet. [See also the Appendix of Boyd (1982b).]
The dispersion relation w(k) is determined by

wi—wn+1+k)—k=0. (3.17)

For n = 1, this has three roots, physically correspond-
ing to a westward-traveling Rossby wave, an east-
ward-traveling gravity wave, and a westward-traveling
gravity wave. For n = 0, one of roots (w = ~k) leads
to a spurious solution of (3.13); the two other roots
give a westward traveling mixed Rossby—gravity wave
and an eastward traveling gravity wave. The Kelvin
wave for which w(k) = k is assigned n = —1, but
because it is non-dispersive, it is irrelevant to this
paper.



432

At O(¢?), we have three contributions to solve for,
proportional to E° (“long wave”), E' (“fundamen-
tal”) and E? (“second harmonic™), respectively. The
equations for the O(¢?) fundamental are easily solved
because their forcing terms are linear in the lowest
order fields.

O(EZL*I).

—iwu!! — po'' + ikg" = cuf' — 43", (3.18a)
—iwv!! + yu!t + ¢J‘,l = cgvr , (3.18b)
—iwg!" + iku' + vl = cpd — ud, (3.18¢)

with the solution
94 ds das
Wl = —j 853] IHn+1 +-d_k3H"_')
X e~ 4 ce., (3.19a)
8401 {dSs ) -
1t B4201 o &o2 a2y 4 e, .19b
v ag_ dk Hn e c.C., (3 )
. aA())‘ dSl dS3 )
1 _; %401 o @01 _ 223
¢ il a( dk Hn+l dk Hﬂ*“l

X e~ 4 cc., (3.19¢)

which can be generated from the linear lowest order
solution (3.14) by differentiating 4q,(¢, 7) with respect
to ¢, the S’s with respect to k, and multiplying
by —i.

Strictly speaking, Eq. (3.18) has no solution unless
a non-secularity or solvability condition is satisfied.
However, we shall not go into the details at this order
because the condition merely yields c, = dw/dk,
which we knew already from the general linear theory
of dispersive waves. Egs. (3.18)-(3.19) merely per-
turbatively correct for the fact that the lowest order
solution is not a sinusoidal wave of wavenumber k
but is rather a wave packet.

Unfortunately, the equations for the O(¢?) long
waves and second harmonics that are forced by the
nonlinear self-interaction of the wave packet are com-
plicated; most of the labor in calculating the coeffi-
cients of the NLS equation is to solve them. The
equations are

O(e2E®) [long wave]'

—cu'® =y + ¢ = Fy, (3.20a)
yu'® + ¢,0 = F, (3.20b)
—c9'% + X + u'0 = F;. (3.20¢)

Egs. (3.20a) and (3.20b) have been integrated with
respect to {, and 9% is the indefinite { integral of v®°,
The reason that v?°, rather than v'®, appears in (3.20a)
and (3.20c) with #'° and ¢'°, is that one can show
that for long waves, v =~ O(¢)u where the zonal length
scale is O(¢™"). Put another way, the solutions of (3.20)
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are forced ultra-long Rossby waves, and the smallness
of the north-south current in comparison to the zonal
velocity is one of the characteristics of such waves.
The forcing functions are

Fye= —u®u - v°‘u“ v"ul, (3.21a)
Fy = —u®%' — 0019, (3.21b)
Fye= —(u®¢™) — (0"¢™), — @™'¢"),.  (3.210)

An implicit convention is used above: an expression
like #®'u$' means that part of u°'u}' which is pro-
portional to (J4g1);, excluding those other terms in
u®'u?" which are second harmonics. Similarly, in
writing down the forcing terms for the second har-
monics below, we shall implicitly exclude the long-
wave terms included in F,—F; above.

The reader can easily verify by replacing u®, u'!,
etc., by the solutions given above that all terms in
(3.21a) and (3.21c) are proportional to ({4o, (), so that
the integration with respect to { is trivial. (Note that
u'', v'! and ¢! are proportional to the {-derivative
of A01 .)

The appearance of the O(¢?) quantities #!', v'' and
¢'! in equations which determine other O(¢®) quan-
tities (#'° and ¢'°) is at first surprising. However, the
long-wave quantities are independent of the “fast”
length scale so that u!° = eu}° + higher order ~ O(¢?),
even though #'° is itself of O(ez) Thus, all the terms
in (3.21a) and (3.21c) are O(€®) (before the {-integra-
tion) and O(€®) contributions from terms like v®'ul!
must be 1ncluded O(¢?) terms like v°'49! do not appear
because v°! is 90° out of phase with " 49! and ¢ as
mathematically expressed by the factor of i = V-1
in (3.14b). (This is discussed further in Appendix A.)
This “deferred determination of the long waves or
mean flow” is quite common in multiple-scale per-
turbation theories of hydrodynamic waves, whether
stable or unstable.

To solve (3.20), we use Galerkin’s method with the
Hermite functions as the basis set. If applied in a
brute force way, this would necessitate solving a (trun-
cated) infinite number of linear algebraic equations
in an infinite number of unknowns. By using two
techniques previously employed in Boyd (1980a,b),
however, this infinite set of equations can be split into
uncoupled triplets of equations, each of which can
be solved independently of the others.

The first procedure is to replace ' and ¢'° by the
“sum” and “difference” variables

§0=¢"+u'", (3.22a)

D' = ¢'0 ~ (3.22b)

Using L and R to denote the linear operators

7}
=—+y, (3.23a)

ay
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R= (—% ~, (3.23b)
(1-—¢)SY+R®=F, +F, (3.24a)
LLSY + ,RD'® = F,, (3.24b)
(=1 =)D + L™ = F; — F,.  (3.24¢c)

The second trick is to recognize that R and L, which
contain all the y derivatives in (3.24) are the “raising”
and “lowering” operators for the Hermite functions,
ie.,

R[H (y)e™/2)

= —H,.\(»)e /¥ [raising operator], (3.25a)
(l-¢c) -1 0
m+1) 0 ~A

0 2m (-1-¢)| | DY,

There is one such triplet for all integral m, m = 1.
Technically, there is also a doublet of equations for
m = 0, but one can show that, regardless of the sym-
metry of the primary wave packet, the forcing terms
for (3.24a, c¢) are symmetric about y = 0 while F is
always antisymmetric. This implies that (3.28) has a
non-zero solution only for odd m. Elementary linear
algebra gives

Sirt = (LAY =m[(F3)mr + (Flmer] + (¢ + 1)
X (F)m + Yol(F)m-1 = (F3)m-11},  (3.293)
DYy = (1/8){=2m(m + DI(F )1 + (Fa)msi]
+2m(l — )[Flm + (m+ 1)
X [(F -y = (F3)m-11},  (3.29D)
where

A=1+(2m+ l)c,. (3.30)

The term 7%, being of higher order in ¢, is irrelevant
to the calculation of the NLS equation coefficients,
so its solution is omitted.

As discussed in Appendix A, it is trivial to calculate
the Hermite expansion coefficients of F;, F, and F;
via Gauss-Hermite quadrature; the resulting series for
S'% and D" are easily evaluated for any value of y by
exploiting the three-term recurrence relationship that
can be used to calculate the Hermite functions; one
can obtain #'° and ¢'° from (3.22). If N is the number
of points in the quadrature scheme, then the opera-
tion count for calculating the Landau constant (in-
cluding the steps below) is linearly proportional to N;
the error decreases exponentially with N and N = 32
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LIH (y)e /]
= 2nH,_(y)e" /" [lowering operator]. (3.25b)
If we now expand
Fy = e 3 (F),H)), (3.26a)
m=0
§10 = g2 3 S0 (), (3.26b)

m=0

with similar expansions for the other forcings and
unknowns, then substituting (3.26) into (3.24) and
using (3.25) gives the single equation

S = [(F1)o + (Fa)ol/(1 — ), (3.27)

which gives the forced Kelvin wave plus the triplets
which in matrix form are
SIO
m+1 (Fl)m+l + (FB)mH
9 | = | (Fm (3.28)
(F3)m-1 = (F)m-1

is sufficient to give four or five decimal places. Con-
sequently, the Gauss-Hermite quadrature combined
with the techniques used with the sum/difference
variables and raising/lowering operators is an ex-
tremely accurate and efficient way of calculating the
Landau constant. .

Before turning to the second harmonics, however,
we must note that the solution for a particular long
wave is infinite whenever A = 0, i.e.,

-1
= om+ 1

The right-hand side of (3.31) is the phase (and group)
velocity of the ultra-long Rossby wave of meridional
mode number m. Physically, Eq. (3.31) is thus a con-
dition for resonance between the primary wave
packet and one of the free, ultra-long Rossby waves
which are the homogeneous solutions of (3.20). The
conditions on k and the packet mode number that
must be satisfied so that (3.31) is satisfied are dis-
cussed in the next section and also in Boyd (1983a).

The treatment of the second harmonics is very sim-
ilar in spirit and content to that of the long waves.
The perturbation equations are

(3.31)

—2ikc,u'? — p'* + 2ik¢'? = F;, (3.32a)
—2ike,v'? + yu'* + ¢}? = F,, (3.32b)
—2ikc,¢'? + vy + 2iku'? = F5,  (3.32¢)

where the forcings are
Fy = —iku®u® — o', (3.33a)
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(3.33b)
(3.33¢)

01,,0
S A

01 ;01
—(U ¢ )y-

Here the convention is used that expressions like
1°'18! denote that portion of v°'v)' which is propor-
tlonal to A%, as opposed to IAmI2 or A},? where the
asterisk denotes the complex conjugate. Defining

F, = —iku®™
F3 = —2iku°‘¢°'
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512 = ¢ 4y, (3.342)
D = ¢'2 -y, (3.34b)

substituting Hermite expansions for F,, F, and F;
and for §'2, v'? and D'? into (3.32) and exploiting the
properties of the “raising” and “lowering” operators,
one obtains

“sum” and “difference” variables as before o = [(F)o + (F: 3)01/ [2K(1 = ¢l (3.35)
plus, for n = 1, the uncoupled triplets
—2ik(c,, - 1) -1 0 Sm+l (Fl)m+l + (F3)m+l
(m+1) —2ikc, " o2 | = [(F)m , (3.36)
0 2m —2ik(c, + 1)| | Dri- F3)m-1 = (F)m- |

with the solution

812, = 1/[4kAD {8k, + 8k, — 2m]
X [(Fme1 + (E3)ms1] — 4kic, + 1)
X F)m + ll(F)m=1 = (F)mi} (3.372)

v = (AY{@m + 2)(¢y + DIEFDmet + (Fmai]
+ 4ik(c,? — D(EDm + (¢, — 1)
X [(Fm1 = (F)ma1]}, (3.37b)
D2y = (M/12kAD{—2mi(m + D(F\)ms1 + (F3)ms1]
+ dkm(c, — \)(F,) — i[4k?c,? — 4k’c,
—m = N(F)m-1 = (F)m-11},  (3.37¢)
where '

A = 4k’c,® — 4k’c, — 2mc, — ¢, — 1. (3.38)

 Again, resonance—in this case, resonance with a
second harmonic—occurs whenever A = 0. Recalling
that kc, = w(k; n), one finds that introducing.

: W = 2w(k; n) (3.39).

and |
! K=2k (3.40)

gives
A=W = W([2m+ 1]+ K*) — K1/2k, (3.41)

which is merely the dispersion relation for equatorial
waves. In words, Eq. (3.41) states that second har-
monic resonance occurs whenever one of the forced
second harmonics, which for all » have twice the fre-
quency and wavenumber of the fundamental, is also
a free oscillation of the linear shallow water wave
equations. The conditions for this to occur and its
implications are discussed in the next section and in
Boyd (1983b).

Now that the solution is fully determined to O(e?),
the worst is over. The coeflicients of the Nonlinear
Schrodinger equation are determined at O(eE), but

as is usual in the method of multiple scales, it is not
necessary to explicitly solve this set; the solvability
condition is sufficient. The equations are

O(eE"):

—iwi® — yo?! + ik¢?' = F,,  (3.42a)
—iwo? + 2 + 93 = F,,  (3.42b)
—iwg?' + iki? + 0¥ = F;,  (3.420)
where
Fy = [ + cul' — ¢'] — iku'ou
— ik — o0 — 2 — 'y, (3.43a)
F= [0 + '] — ik — ikt
— 2iku®'v'? — %'v)2 — 020!, (3.43b)
Fy = [—¢2 + cpl! — ul'] — ikl ¢'°
— iku'¢® — ikl ¢'? — iku'?¢°!
= (1”9, — (1”'¢'%), — (v"%¢"),. (3.43c)

The solvability or non-secularity condition is that
the column vector of forcing functions should be or-
thogonal to the homogeneous solution of (3.42),
which is simply the lowest order solution (#°', v°!
¢°"). Mathematically, the vector inner product which
must vanish is

fm dy(i® +F, + UOI*I;'Z +¢%+F;) =0, (3.44)

where the asterisk denotes the complex conjugate.
After performing the integrations in y via Gauss-
Hermite quadrature using Hermite function series
to evaluate #°', v°!, ¢°! and the terms in F,, 5, and
F3, one obtams

i(Aor), + V2w (Aor)e + vldoil*dor = 0,  (3.45)
where w" = d?w/dk? and »(k) is the “Landau con-
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stant.”” The linear terms in (3.45) come directly from
the linear terms in the square brackets in (3.43).

Domaracki and Loesch (1977) give an explicit for-
mula for triad resonance coefficients which is ex-
tremely complicated (129 additive terms!). Here we
must go to third order rather than second order and
must explicitly solve the second-order equations in
the form of infinite series, so an expression similar
to theirs for our »(k) from first principles would be
many times more difficult. It follows that we must
be content with computing the “Landau constant”
numerically although polynomial curve-fitting to the
numerical results for each mode is always possible.

Because of the resonances, unfortunately, Eq.
(3.45) is not a valid model everywhere in parameter
space even when ¢ < 1, so these resonances form the
topic of the next section. In later portions of the pa-
per, we shall present graphs of w”(k) and »(k) for var-
ious modes and discuss the properties of solutions of
the Nonlinear Schrodinger equation.

4. Resonances and poles of the Landau constant

When either a long-wave mode or a second-har-
monic mode is resonant with the fundamental, that
mode becomes infinite in amplitude and the Landau
constant »(k) has a simple pole at that value of k for
which the resonance occurs. Mathematically, such
infinities destroy the rationale for the perturbation
theory, which requires that all the waves forced by
the self-interaction of the fundamental should remain
small in comparison to the fundamental. Physically,
such infinities imply that the NLS equation is no lon-
ger an adequate model because the mutual interac-
tion of the two resonant waves, which may permit
the long wave or second harmonic to feed on the
energy of the fundamental and grow until it is the
same order of magnitude as the fundamental, is now
more important than the self-interaction of a single
mode with itself which the NLS equation describes.
To cope with this, it is necessary to replace the one-
equation NLS model with a coupled set of two equa-
tions in the neighborhood of these resonant values
of k. :

For Rossby waves, however, a third type of reso-
nance is possible as k — 0. In this limit, Rossby waves
are non-dispersive. This implies that for small &, both
the long-wave and second-harmonic Rossby waves
of mode number m = n, where n is that of the fun-
damental, will have approximately the same phase
and group velocities as the fundamental. However,
the forced second harmonic and long waves are al-
ways symmetric with respect to the equator (m is
always an odd integer), so this simultaneous long-
wave-and-second-harmonic resonance can only oc-
cur for symmetric, ultra-long Rossby waves. Again,
it is necessary to replace the NLS equation by some-
thing else. In the limit k — 0, however, it is no longer
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necessary to make a distinction between the “fast”
length scale 1/k and the “slow” length scale of
Ag (¢, 7) or even between the long wave, the funda-
mental and the second harmonic. Instead, all the
zonal dependence of the resonant wave components
(which all have the same mode number for this type
of resonance, remember) can be lumped into a single
slowly-varying amplitude function, and the proper
replacement equation is the Korteweg-deVries equa-
tion of Boyd (1980b).

Thus, a discussion of wave packets involves not
merely the Nonlinear Schrodinger equation but rather
a total of four equations or sets of equations, the other
three being

A+ Apee + AA =0
[Korteweg-deVries equation], (4.1)
iA, + VoA + v AB =0 }
B, = u(|A|2);
[long wave/short wave

. ] , (4.2)
resonance equations

where A(¢, 7) is the envelope of the short wave packet
and B({, 7) is the amplitude of the long Rossby wave
with v, and u as constants and w"(k) = d*w/dk? and

4, = IAH}
H, + (cH — c)H, = — 142

[ resonant dyad equations
second-harmonic resonance

:l , (4.3)

where H is the envelope of the second harmonic wave
packet, I the interaction coefficient, a constant, and
c¥ the group velocity of the second harmonic. All
three equation sets are written in a frame of reference
moving with the linear group velocity of the funda-
mental and each is discussed in detail in Boyd
(1980b), Boyd (1983a) and Boyd (1983b), respectively
(see also Ripa (1983a,b).

Since the calculations of the coefficients in (4.1)-
(4.3) involve exactly the same sort of operations on
exactly the same nonlinear forcing terms, it is hardly
surprising that there exists simple relationships be-
tween the coefficients of (4.1)-(4.3) and the poles of
the Landau constant of the NLS equation, to wit

a? [symmetric Rossby]
k) ~ — [ , 4.4
wle) = 6bk . waves, k<1 “44)
—vu .
(k) ~ Wik = ko) [long wave resonance], 4.5)
12
k) ~
M) = 20Tk ) — gl Wk = Ko
[second harmonic resonance], (4.6)

where k. 1s the resonant value of k. Egs. (4.5) and
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(4.6) follow from careful comparison of the NLS
equation derivation given in Section 3 with the cor-
responding derivations of (4.2) and (4.3) in Boyd
(1983a,b). Since one can estimate the residues of the
poles simply by calculating »(k) near the resonances,
Egs. (4.5) and (4.6) are listed only for completeness
and their derivation will be omitted. Eq. (4.4), how-
ever, can be directly obtained from the corresponding
Korteweg-deVries equation. Since this illustrates the
steps of Section 3 while bypassing the Hermite func-
tion tricks that make Section 3 so lengthy, the proof
of (4.4) is given in Appendix C.

For reference, Table 1 gives the coefficients of the
Korteweg~-deVries (and modified Korteweg—de Vries)
equations for the first 20 Rossby waves. This is a
much larger number of modes than in Boyd (1980b),
and for conformity with this latter work, the coefh-
cients are given in terms of the “energy” normaliza-
tion explained in Section 3. The interaction coefh-
cients and resonant values of k for the other two types
of resonances are given in Boyd (1983a,b).

These resonances have a multiple significance.
First, they chop up parameter space into “forbidden
zones™ where the NLS equation is useless which are
surrounded by regions where it is an accurate model.
Second, the resonances separate regions in which
v(k) is of opposite sign as is obvious from (4.5) and
(4.6). This is crucial because dispersion may cither
oppose linear dispersion, creating modulational or
sideband instability which leads ultimately to enve-
lope solitons, or augment dispersion to create “‘su-
perlinear dispersion” where all wave packets break
up quickly and neither sideband instability nor soli-
tary waves is possible—all depending on the sign of
v(k). Thus, the resonances also separate regions of
" instability and -solitons from regions of “superlinear
dispersion” and sideband stability. Third, the reso-
nant sets have both instabilities and solitary waves of
their own, notably the paired envelope soliton/uni-
montane soliton of the Long Wave/Short Wave Res-
onance Equations. The overall effect is to make the
nonlinear theory of dispersive equatorial waves rather
complicated.

Fortunately, there are some limits on the chaos.
Formulas for resonances are derived and fully dis-
cussed in Boyd (1983a,b); here, it will suffice 1o give
only a broad outline of what is shown there,

First, there are no resonances of any kind for east-
ward travelling gravity waves. Thus, the graphs of
v(k) that will be presented in the next section are very
smooth for these modes. The mixed Rossby~gravity
wave has but a single second harmonic resonance at
k = (1/2)V1/3, so its Landau constant, too, has simple
behavior.

Alas, for the other westward travelling waves, the
situation is confusing. The second harmonic reso-
nances are finite in number—one for each gravity
wave and [(z — 1)/2] for each Rossby mode where
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TABLE 1. Coefficients of the Korteweg~deVries (odd mode num-
ber) or modified Korteweg-de Vries equation {even mode number)
for the lowest 20 Rossby modes. The nonlinear coefficients given
here differ from the more limited results given in Boyd (1980b)
because the modes are “energy-normalized” here as explained in
Section 3. To facilitate comparisons with the unnormalized results,
S5, the normalized multiplier of the north=south current v, as de-
fined by Eq. (3.15b), is also tabulated. The Korteweg—deVries
equation is u, + auu, + bu,,, = 0 while the modified Korteweg-
deVries equation is u, + aw’u, + bu. = 0. The nondimensional
length and time scales are those defined by (3.4) and (3.5). The
notation “E—n"" denotes scientific notation, i.e., multiplication by
107",

n S, a Nonlinear b Dispersion

1 0.289 —0.444 —0.0988

3 0.0406 -0.118 —0.0200

5 0.00364 —-0.0607 —0.00820

7 0.000241 -0.0387 —-0.00442

9 0.126E—-4 —0.0275 —0.00276
11 0.547E—6 -0.0209 —0.00189
13 0.202E-7 —0.0166 -0.00137
15 0.651E-9 —-0.0136 —0.00104
17 0.186E-10 -0.0115 —-0.000816
19 0.476E—-12 -0.00982 —0.000657

(Modified KDV equation below)

2 0.116 0.144 —-0.0384

4 0.0127 0.0925 -0.0122 -

6 0.000968 0.0698 —0.00588

8 0.566E—4 0.0486 —0.00345
10 0.269FE-5 0.0543 —0.00226
12 0.107E-6 0.0488 -0.00160
14 0.369E—-8 0.0442 —0.00119
16 0.112E-9 0.0384 -0.000917
18 0.301E-11 0.0352 —0.000730
20 0.734E-13 0.0367 ~0.000595

n is the mode number and the brackets denote the
“integral part of’—but the long-wave resonances are
infinite in number although the resonant values of
k are confined within a finite interval of moderate
wavenumber. It can be shown, however, that the in-
teraction coefficients for resonance with a long Rossby
wave of mode number m decrease exponentially fast
with m. Thus, if one graphs »(k) with a finite grid
spacing in k, only a handful of resonances will be
detectable on the plot even with rather fine spacing
although more will appear as the graphical resolution
is increased. In spite of this compensating decrease
of the residues of the poles associated with high mode
resonances and the restriction of the resonances to
a modest, fixed interval of wavenumber, the plots of
v(k) for all modes with westward group velocities are
quite complicated.

5. The Landau constant

Fig. 3 shows the dispersion coefficient Y2w” and the
Landau constant » as a function of k for the n = 1
westerly (that is, propagating toward the east) gravity
wave. Since the eastward-travelling gravity waves
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FI1G. 3. The Landau constant »(k) (solid curve) and dispersion
coeflicient [(1/2)w"(k)] (dotted curve) are plotted versus wavenum-
ber for the n = 1 gravity wave propagating toward the east
(w>0).

have no resonances (including # = 0), all these modes
have graphs qualitatively like Fig. 3. For small k, there
is “superlinear” dispersion because the dispersion
coeflicient and Landau constant have opposite signs.
Envelope solitons with central packet wavenumbers
that are small are not possible, but plane waves with
such wavenumbers are stable against sideband insta-
bility. For large k, the dispersion coefficient and Lan-
dau constant have the same sign, so eastward-trav-
elling gravity wave envelope solitons can be excited,
and sideband instability will disrupt plane waves. The
Landau constant increases without bound for large
k [roughly as O(k*) from empirical curve-fitting], but
the dispersion coeflicient is asymptotic to zero from
above. This implies that very short gravity waves will
be much more strongly affected by nonlinearity than
dispersion unless their amplitude is extremely small.
The borderline between non-soliton/soliton regions
is given by k = 0.065 (n = 0), 0.942 (n = 1), 1.53
(n = 2), 2.05 (n = 3), and so on for the higher modes.

The graphs of the Landau constant and dispersion
coeflicient for the n = 0 mixed Rossby—gravity wave
shown in Fig. 4 are nearly as simple as those for the
eastward-travelling gravity waves. Although the mixed
Rossby-gravity propagates toward the west, its group
velocity is always toward the east so that long-wave/
short-wave resonance with long Rossby waves, whose
group velocity must always be in the opposite direc-
tion, is impossible. The mixed Rossby—gravity wave
has only a single resonance, a second harmonic res-
onance at k = 0.288, but the Landau constant goes
through a nonsingular change of sign at k = 0.624
so that parameter space is chopped up into three re-
gions with solitons and sideband instability only in
the intermediate region 0.288 < k < 0.624. For large
k, the Landau constant is again positive and in-
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creasing without bound (but with a linear slope):
v(k) = —0.57 + 0.81k for k > 1 and the dispersion
coeflicient is again asymptotic to zero, but the mixed
Rossby-gravity dispersion coefficient is negative in
contrast to that for eastward-travelling gravity waves.
A more striking difference is that except in the neigh-
borhood of the resonance, the magnitude of the Lan-
dau constant is very small for k < 1; for k = 1,
v = 0.07, which is an order of magnitude smaller than
for the n = 0 gravity wave at this same value of k.

The behavior of gravity waves propagating toward
the west is unfortunately considerably more compli-
cated, at least in theory. The dispersion coefficient,
shown in Fig. 5 for the n = | mode (dotted line), is
one-signed and negative for all » and is asymptotic
to zero from below, just as for the mixed Rossby-
gravity wave, which is of course the # = 0 mode trav-
elling in the same direction. The Landau constant,
however, is very complicated because the gravity
waves have an infinite number of long-wave reso-
nances in addition to a single second-harmonic res-
onance. The general form of the Landau constant is
therefore

Rsu
k = ksu

w(k) = + E k—Jk, +gk), (5.1)

where Rgyy and kgy are the residue and location of the
pole due to the second harmonic resonance, R; and
k; are the corresponding residue and pole for the jth
long-wave resonance, and g(k) is a function analytic
everywhere on the real axis. [We shall leave g(k) oth-
erwise unspecified since it can only be computed nu-
merically.] Using the tables of Boyd (1983a,b), one
finds that for the » = 1 mode, for example,

T T i T T T T
015 SOLITONS NO SOLITONS 1
+ SUPERLINEAR
0.10 SIDEBAND DISPERSION -
INSTABILITY
0.05 4
NO SOLITONS
000 I'SUPERLINEAR
—0.05 | DISPERSION i
-0. 10} [ R— [ -
-0.05 .
! 1 1 1 1 1 1 1 1
00 Of 02 03 04 05 06 07 08 09 10

k

FIG. 4. Landau constant »(k) (solid curve) and dispersion coef-
ficient [(1/2)w"] (dotted curve) are plotted versus wavenumber for
the n = 0 mixed Rossby—gravity wave. The dashed curves mark
the boundaries between regions where solitons are possible and
where they are not. For larger k (off the graph), v(k) is approxi-
mately linear while the dispersion coefficient is asymptotic to zero
from below.
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FiG. 5. Gravity wave n =1 propagating toward the west

(w < 0): Landau constant »(k) (solid) and dispersion coefficient
(dashed). For clarity, the dispersion coefficient was multiplied by
10. The Landau constant increases very rapidly for large k while
" the dispersion coefficient is asymptotic to zero from below.

o = 0146 {0.0168 , 0.00154
Tk —0577" - 0834 k- 0.524
0.0000586 }
e oa T ek, 52

where the braces enclose the infinite sum of long-
wave resonances. The most striking features of (5.2)
are (i) the residues of the long-wave resonances de-
crease very rapidly with j and (ii) the residue of the
second harmonic pole is more than eight times larger
than that of the gravest long wave resonance and
nearly 100 times the size of the second long-wave
resonance. This implies that in a practical sense, the
situation for the n = 1 and higher gravity modes is
not much different from that for the » = 0 mixed
Rossby-gravity wave: the behavior of the Landau
constant is dominated by the single pole associated
with'second-harmonic resonance. This is borne out
by Fig. 5, which graphs the Landau constant for
n =1 (solid curve). Despite the rather fine graphing
scale (0.02 in k), only the first long-wave resonance
(at &' = 0.834) is visible on the figure and the width
of the region in k, where it is important, is very nar-
row: the first long-wave pole in (5.2) is greater than
the second harmonic pole in (5.2) only when
|k — 0.834| < 0.03. In theory, the higher long-wave
_resonances would show themselves (in very narrow
regions of wavenumber) if the graphing interval
would be made very, very fine. In a practical sense,
however, these resonances would be almost unob-
servable even in an idealized inviscid fluid. In the

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 13

real, dissipative ocean, these higher long-wave reso-
nances would be invisible.

In a practical sense, therefore, the parameter space
for the n = 1 gravity may be divided into three regions
with solitons and sideband instability occurring only
in the middle region 0.577 < k < 0.834. The only
difference from the » = 0 mixed Rossby-gravity wave
is that the upper limit of the soliton region is now
given by the location of the strongest long-wave res-
onance instead of being a non-singular change of sign
in v(k). Behavior for higher order gravity waves is
similar: only the second-harmonic resonance and
perhaps the lowest long-wave resonance are impor-
tant and there are no solitons for large k. The Landau
constant increases very rapidly with k for k> 1
(roughly as O(k*) or O(k%)) just as for gravity waves
travelling in the opposite direction.

Rossby waves also have an infinite number of long-
wave resonarices, but unfortunately the residues are
much larger than for the westward-travelling gravity
waves, presumably because the resonances are be-

“tween waves of the same type (short Rossby with long

Rossby) instead of different types (packets of short
gravity waves with long Rossby waves). The Landau
constants for the Rossby modes are of the form

_ Ry 5 RM
Vn(k) - k + E k_ kISH
‘@ ,
+ I — ¢ a4k), (5.3
20—k gdk), (5.3)

where [#/2] denotes the smallest integer greater than
or equal to half the mode number n and is the number
of second-harmonic resonances, and where the infi-
nite sum gives the poles and residues of the long-wave
resonances with g,(k) a function analytic on the real
k axis. By explicit computation

R < 0.061, foralln,l (5.4)

so the second harmonic resonances for Rossby waves
generate only poles with rather small residues. At least
some of the poles for the lowest long-wave resonances
are larger than the bound in (5.4) for all the modes
examined. There is also an additional pole (for odd
n only) at k = 0, associated with the regime described
by the Korteweg-deVries (KDV) equation, which
usually has a large residue, ‘too. (This residue Rxpy
can be calculated by combining (4.4) with the KDV
coeflicients in Table 1). _
For the lowest, n = 1 Rossby wave one finds

® -0.333 N { -0.077 0.057

14 = -

! k (k —0.949) (k — 1.155)
0.0236 0.00676

T (k- 1266) (k—1338) } + gi(k). (5.5)

There are no second harmonic resonances for this
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FIG. 6. Rossby wave n = 1: Landau constant »(k) and dispersion
coefficient (the dispersion coefficient is magnified by a factor of
10). The Landau constant changes sign for large k and increases
linearly. The dispersion coefficient also changes sign for large k and
is asymptotic to zero.

mode; instead, the KDV pole at the origin is domi-
nant. The long-wave poles in the braces have residues
that decrease with j, but not nearly as fast as in the
corresponding infinite series of poles for the gravity
waves. The result is that all five of the poles shown
explicitly in (5.4) produce clearly visible spikes in Fig.
6. Parameter space for the Rossby wave is therefore
chopped up into many narrow regions in which so-
litons are possible, alternating with regions where so-
litons are impossible, and plane waves are stable—a
confusing situation.

Nonetheless, a few general statements are possible.
First, the long-wave resonances, though infinite in
number, are invariably confined within a finite in-
terval in k—ke[0.949, 1.732] for n = 1, for example.
Second, just as for the westward travelling gravity
waves, only a handful of poles have residues large
enough to be of practical significance, roughly five
poles for n = 1. Third, the Landau constant asymp-
totes to a linear slope for k > 1 for Rossby waves:
v(k) =~ —2.27 + 1.44k for n = 1. Fourth, the disper-
sion coeflicients are positive for small k£ but negative
and small (asymptotic to 0 from below as k — )
for larger k. There is only a single change of sign for
w” which occurs at k = 2.94 (off the graph in Fig. 6)
for n = 1 and larger k for larger n. For all Rossby
waves (and indeed all waves travelling toward the
west), solitons and sideband instability are impossible
for large k. Fifth, envelope solitons are also impossible
for Rossby wave packets of small k, whether the mode
number is even or odd.
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6. Solutions of the Nonlinear Schrodinger equation
a. Introduction and reduction to canonical form

The oceans are bounded by the continents, but the
Nonlinear Schrédinger equation has been previously
studied only for (i) an unbounded domain with a
localized initial condition or (ii) periodic boundary
conditions. However, the NLS equation is not an
appropriate model for equatorial waves reflecting off
the continents because it describes the evolution of
only a single mode whereas the classic thesis of Moore
(1968) showed that equatorial waves reflect as a sum,
usually an infinite sum, of different modes. Upon
reflection, for example, a Kelvin wave becomes a se-
ries of Rossby modes plus coastal Kelvin waves, while
a Rossby wave reflects part of its energy as a Kelvin
wave plus gravity waves plus very short Rossby waves.
In consequence, one has no recourse but to apply the
NLS equation away from the continental boundaries
and ignore the wave reflections that occur there.

A useful preliminary step, before discussing the
spatially localized and spatially periodic solutions, is
to reduce the NLS equation from the general form

i(Aoy), + V2w (Ao + vldoiP 4oy =0 (6.1)
to the canonical form
A, + Ay + 2|4]P4 = 0, 6.2)
via the change of variables
T =t sgn[w"], (6.3)
&= x(Iw"l/2)!2, (6.4)
Ay = Av'2, 6.5)

Note that the plus sign occurs in (6.2) if w” and »
have the same sign while the minus sign is necessary
in (6.2) if w” and » have opposite signs. Short of using
imaginary coordinates, it is impossible to convert
these two cases, represented by the different signs in
(6.2) into one another; as explained below, this is
because the two cases are physically different as
shown in Fig. 7.

Please bear in mind that in this section, x and ¢ are
defined by (6.3) and (6.4) and are not the nondi-
mensional space and time scales given in Section 3.

b. The linear solution

The starting point for a discussion of the nonlinear
solutions of (6.2) is the solution of its linearized form

4+ A = 0. (6.6)

Defining A(k) to be the Fourier transform of the initial
conditions, i.e.,

Ak = 21—” f A(x, O)e-<dx, 6.7)
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the exact solution of (6.6) is given by the Fourier
integral

Ax, 1) = fw A(kye™*dx, (6.8)

which for large values of the time is given by the
asymptotic, steepest descent approximation

A, 1) ~ AG/[20)Vr/t explix?/(4F) — in/4].  (6.9)

Two features of (6.9), both general to dispersive
waves, are that the envelope A[x(2f)"'}(x/f)'/? is in-
creasing in width linearly with time while its mag-
nitude is decreasing as the inverse square root of time.
In the limit ¢ — oo, the wavetrain has dispersed com-
pletely so that there is no detectable wave disturbance
at all.

¢. Localized initial conditions and solitons

Zakharov and Shabat (1972) showed that when the
initial conditions were such that the pulse was local-
ized in some finite region of space, decaying expo-
nentially for large positive and negative x, the Non-
linear Schrodinger equation could be formally solved
through a sequence of linear steps via the so-called
“inverse scattering method.”” This procedure is a gen-
eralization of the Fourier transform applied to the
linearized equation in the previous subsection, but
the details are complicated so that only the qualitative
conclusions will be described here.

When the signs of the dispersive (second spatial
derivative) and nonlinear terms in the NLS equation
are opposite—the minus sign in (6.2)—the asymp-
totic solution is simply a wavetrain qualitatively sim-
ilar to the linear solution given by (6.9). The slight
nonlinear modifications to (6.9) have been calculated
by Segur and Ablowitz (1976), Segur (1976) and
Manakov (1974), but the most striking difference is
that the nonlinearity also acts to widen the wave
packet, giving “defocusing” or “superlinear” disper-
sion in the sense that wavetrain spreads out more
rapidly than in a linearized theory.

When the dispersive and nonlinear terms in the
NLS equation are of the same sign—the positive sign
in (6.2)—then the asymptotic solution to the NLS
equation consists of a wavetrain again qualitatively
similar to (6.9) plus a finite number (possibly zero)
of envelope solitary waves. The isolated single solitons
are of the form

A(x, 1) = ae'™ sechax, (6.10)

which. form a one-parameter family with a, the am-
plitude of the soliton, as the parameter. Please bear
in mind that (6.10) is merely the envelope of the so-
liton; to obtain the actual variation of the currents
and surface height of the water with x and ¢, one must
multiply A(x, ) as given by (6.10) by the factor
explikx — iw(k)t] to obtain a shape qualitatively like
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FIG. 7. A comparison of the integration of the Nonlinear Schro-
dinger equation for the same initial condition (solid curve) but
three different values of the Landau constant. Dashed curve:
v = 0 (linear), ¢ = 2.0; dot-dashed curve: » = —2 (“superlinear”
dispersion or “defocusing”), ¢t = 2.0; dotted curve: » = 2 (soliton
forming, “focusing™), ¢ = 0.84.

that shown by the solid line in Fig. 1b. Eq. (6.10) by
itself merely describes the shape of the dotted line in
this same figure. One can generalize (6.10) by using
the general Galilean invariance theorem which states
that if A(x, ¢) is a solution of the NLS equation—any
solution, not necessarily a soliton—then A(x, ?)
= exp[i(V/2)x — i(V?/4){]JA(x — Vi, t) is also a solution
of the Nonlinear Schriodinger equation for any con-
stant V. For the special case of the single stationary
soliton [(6.10)], this gives the two-parameter family
of travelling single solitons

A(x, 1) = a exp[i(V/2)x — i(V?/4)t + ia?]
X sechla(x — V¥)]. (6.11)

One can of course generalize (6.10) still further by
adding constant phase factors to the spatial depen-
dence. :

In physical terms, the parameter ¥ in (6.11) cor-
responds to making a slight alteration in the central
wavenumber of the packet and then computing the
resulting changes in the phase speed and group ve-
locity via the perturbative approximations inherent
in the derivation of the NLS equation rather than
from the original dispersion relation w(k). In consid-
ering a single soliton by itself, Eq. (6.11) is rather
pointless because its physical content is the same as
that of the one-parameter family given in Eq. (6.10).
However, an initial disturbance of sufficiently large
amplitude may evolve into two or more solitons with
different speeds. When these have become sufficiently
separated, each can be described by a member of the
two-parameter family [(6.11)] with different values
for V and a.

Analytic formulas for the multi-solitons when they
are still interacting with one another were derived by
Zakharov and Shabat (1972), but are too complicated
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Fi1G. 8. The absolute value of the envelope for a typical
“breather”” double soliton or “bion” of the Nonlinear Schrodinger
equation. The bion is periodic in time and pulsates between the
two extreme shapes shown.

to write down here. It is perfectly possible, however,
for two or more solitons to have precisely the same
speed, forming a bound state known as a “‘breather”
soliton. Although this equality of soliton velocities is
impossible for many other types of solitary waves
such as those of the KDV equation in Boyd (1980b),
for the Nonlinear Schrodinger equation a sufficient
condition is that A(x, ¢ = 0) is real.! Fig. 8 shows the
time development of a double breather or “bion” as
numerically calculated by the author. The bion is
periodic in time and pulsates between a single broad
peak and a taller, narrower peak flanked by two
smaller, broader crests. Satsuma and Yajima (1974)
give a similar graph for a triple breather as well and
write down the analytic expression for a bion which
will be omitted here.

Unlike the Korteweg—deVries equation where the
wavetrain and the solitons always rapidly separate in
space—the former drifts to the left while the solitons
travel steadily to the right—the Nonlinear Schrodin-
ger equation wavetrain may remain centered on the
soliton. However, for either equation, the wavetrain
decays algebraically with time. Kaup (1977) shows
graphically (his Fig. 3) that the principle of “soliton
dominance” discussed in Boyd (1980b) also holds for
the NLS equation: a smooth initial condition of large
enough amplitude to give one or more solitons will
place most of the energy into the solitons, leaving
very little for the decaying wavetrain. Satsuma and
Yajima (1974) are able to make this notion qualita-
tive for the special case of a hyperbolic secant initial
condition: if N is the number of solitons, then the
maximum fraction of energy which goes into the
wavetrain is bounded by

0.25/(N + %)Y <Y, forall V.

! Note that A(x, ¢) is usually complex since the physical variables
are obtained by taking the real part of the complex solution.
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Consequently, the decaying wavetrain will not mask
the solitons very much unless the initial condition
has a lot of small-scale structure.

The soliton amplitudes and speeds can be obtained
from the initial condition by solving a non-self-ad-
joint eigenvalue problem similar to the one-dimen-
sional Schriédinger equation of quantum mechanics
with the initial condition playing the role of the po-
tential energy. The number of solitons is equal to the
number of bound states of the potential/initial con-
dition and the eigenvalues, which may be complex
because the potential problem is not self-adjoint, give
both the amplitude and speed of each soliton. Ob-
taining the soliton phases and information about the
wavetrain is considerably more difficult and requires
performing additional steps in the inverse scattering
algorithm. Kaup (1977) presents graphs of the needed
eigenvalues for several real initial conditions and
shows that the WKB approximation is very accurate.

The most important conclusion from the eigen-
value problem is the discovery that there is a mini-
mum amplitude necessary to create a soliton. Spe-
cifically, Ablowitz et al. (1974) show that no solitons
will form if

f A, 0)ldx < 0.904. (6.12)

—ao

This is in marked contrast to the Korteweg-deVries
equation where at least one soliton will form no mat-
ter how small the initial disturbance, so long as it is
of the right sign. The same authors and also Satsuma
and Yajima (1974) present a number of theorems
about the solutions and eigenvalues of the NLS equa-
tion and the associated Zakharov-Shabat potential
problem, but in general the situation is much more
confused than for the Korteweg—deVries equation.
What is clear, however, from specific cases and nu-
merical integrations is that it seems to be as easy to
generate solitons for the Nonlinear Schrédinger equa-
tion as for the KDV equation, provided that the initial
condition is energetic enough to violate (6.12).

d. Sideband instability

The Nonlinear Schrodinger equation (6.1) has the
exact, nonlinear solution

iva?
AO - aewa ‘r,

where a is a constant, which physically is a plane
wave since one must .always multiply A(x, ¢) by
exp[ikx — iw(k)t] to obtain the complete x and ¢ de-
pendence of the waves. When the NLS equation is
applied to water waves, the amplitude-dependent cor-
rection to the phase speed which is evident in (6.13)
is merely that found by Stokes in 1847.

Though exact for the NLS equation, the plane
waves described by (6.13) may be unstable in various
parameter ranges. When the conditions for triad res-
onance are approximately satisfied—exact resonance
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is not necessary if the wave is of sufficiently large
amplitude—then the plane wave may be unstable
through triad resonance with growth rates that are
linearly proportional to a. Even if the conditions for
triad resonance are not satisfied—as is always implicit
when the NLS equation is used as a model—there
is an escape clause. The “sidebands” of the central
packet wavenumber, that is to say, waves with wave-
numbers only slightly larger or slightly smaller than
k, are necessarily in approximate resonance with
wavenumber k if the dispersion relation w(k) is
smooth. Simply because the sidebands differ only
slightly in wavenumber, they must have approxi-
mately equal phase and group velocities, and this
permits an instability involving only a single merid-
ional mode and a narrow spectrum of wavenumbers.
However, as noted in Section 3, the self-interaction
of plane wave of wavenumber k leads only to forced
oscillations of wavenumbers 0 and 2k. These in turn
interact with the fundamental (or in this case, with
the, sidebands) to give resonant forcing for the fun-
damental at third order. Thus, sideband instability,
like the NLS equation itself, involves the self-inter-
action of a single meridional mode at O(a®) where a,
as in (6.13), is the wave amplitude. This is why the
NLS equation can describe sideband or *““modula-
tional” instability, as it is sometimes alternatively
named, but the consequence of this O(a*) dependence
on the wave amplitude is that the growth rate is O(a%)
versus the O(a) growth rates of the resonant triad
instability. Thus, when the latter occurs it is usually
able to mask sideband instability quite effectively.

Often, however, triad instability does not occur,
and sideband instability was in fact first discovered
by J. Feir in laboratory experiments with water waves.
The theoretical explanation was provided in an ac-
companying paper (Benjamin and Feir, 1967), and
the instability is sometimes referred to as the Ben-
jamin-~Feir instability for this reason. Although his-
torically, Benjamin and Feir did not employ the Non-
linear Schrédinger equation for the simple reason it
had not yet been applied to water waves, it is much
casier to derive the characteristics of the instability
from the NLS equation directly than to employ their
original procedure.

The linearized stability analysis takes the plane
wave Ay as given by (6.13) and subjects it to small
perturbations 4. which depend on x as exp(xiux).
One can then derive two coupled constant coeflicient
ordinary differential equations in time to describe
these sidebands A.. One finds the following:

o Instability is possible if and only if the Landau
constant » and the dispersive coefficient w” have the
same sign—which is also the necessary condition for
solitary waves.

o The wavelength of maximum instability is

Bmax = aV2u/w". (6.14)
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FiG. 9. An example of sideband instability. The L.andau constant
is » = 2. The initial condition is the plane wave |4} = 1 plus the
small Gaussian-shaped perturbation 0.01 exp(—2#x?/25). The pe-
riodic bouridary condition is u(x + 20.0) = u(x). Solid curve,
t = 0; dotted curve, ¢t = 2.0; dashed curve, t = 4.0.

¢ The maximum growth rate, with 4. growing as
Y

e 1s

Amax = va@°. (6.15)

e All sidebands which satisfy the inequality

lu| < 2aVv/w” (6.16)
are unstable with growth rates given by
1 4va® 172
A=—-w" 2( - l) . 17
2 wiu W”/.L2 (6 1 )

Fig. 9 shows the early time development of a typical
case of sideband instability. Initially, the curve (note
that only [4] is plotted) is completely flat; the Gauss-
ian perturbation is too small to be seen on the scale
of the graph. At later times, a peak develops flanked
by two shallow troughs. Instead of widening and ul-
timately dispersing, as in linear theory, these features
are “focused” or “pinched in” and exaggerated by the
nonlinearity, leading to the ultimate development of
three large peaks at the final time step shown. This
process of peaks developing from an initially fea-
tureless envelope is strongly reminiscent of the de-
velopment of multiple solitons from a localized initial
condition with but a single maximum, and indeed,
the same mechanism is responsible for both as evi-
denced by the fact that soliton formation and side-
band instability both occur when—but only when—
the Landau constant and dispersion coeflicient have
the same sign, the so-called “focusing” case.

This suggests that sideband instability does not
make the waves dissolve into ever-finer-scale turbu-
lence, cascading forever, but rather that the instability
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is checked when the peaks develop a sufficiently nar-
row scale so that dispersion is stronger than nonlin-
earity. Indeed, Hasimoto and Ono (1972), among
others, have speculated that the final end product of
sideband instability would be the formation of soli-
tons.

Later work, however, has shown that this is only
a half-truth. The sharp narrow peaks shown in the
last curve in Fig. 9 do have many of the characteristics
of solitons, and if the graph were used to supply the
initial condition for an integration of the NLS equa-
tion on an unbounded domain, these peaks would

simply separate and go their separate ways as solitary -

waves. On a periodic domain, however, the solitons
cannot separate. Even when the peaks have become
narrow, there is still a weak interaction between the
solitons on one periodicity interval and those on ad-
jacent periodicity intervals. The result, as reviewed
by Yuen and Lake (1980), is that the solitons recom-
bine to approximately reproduce the initial plane
wave, and this process repeats indefinitely, the so-
called Fermi-Pasta-Ulam or FPU recurrence. Yuen
and Ferguson (1978) have shown that whether this
recurrence pattern is simple and periodic in time or
very complicated and only quasi-periodic is depen-
dent upon the perturbation that triggers the instabil-
ity. If the perturbation is sinusoidal, then the recur-
rence will be simple if only the original perturbation
is unstable according to the Benjamin-Feir theory
summarized above. If harmonics of the perturbation,
as well as the perturbation itself, are all unstable ac-
cording to (6.16), then the recurrence will be complex
and display several temporal periods. Infeld (1981),
in a note only two pages long, has analytically solved
the full nonlinear triad of equations for 4, and A.
(neglecting higher harmonics) to explicitly display
simple FPU recurrence as an elliptic sine function of
time.

e. Polycnoidal waves and theta functions

Like the Korteweg-deVries equation, the NLS
equation has exact, periodic solutions which can be
expressed in terms of elliptic functions and are known
therefore as “cnoidal waves.” Hasimoto and Ono
(1972) give the cnoidal waves as

A(x, 1) = a dnla(v/w")x; m]e'™, (6.18)

where a is a constant, dn(x; m) is the usual elliptic
function, and where the elliptic modulus m is given
by

m =2 — 2a/(va®). (6.19)

In physical terms, Eqs. (6.18) and (6.19) describe a
spatially periodic modulation of the envelope which
propagates at the linear group velocity. In the limit
m — 1, the dn function passes over into a hyperbolic
secant and (6.18) reduces to the stationary envelope
soliton described above. In the opposite limit m —
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0, dn = 1 and (6.18) reduces to the nonlinear plane
wave (6.13).

An analogue of the inverse scattering method for
periodic boundary conditions was developed around
1974 by independent groups of workers in the United
States, principally P. Lax and H. P. McKean, and in
the Soviet Union where S. P. Novikov made the orig-
inal breakthrough. As reviewed by Dubrovin et al.
(1976), most of the work to date has concentrated on
the Korteweg-deVries equation, but the “Hill’s spec-
trum” method has been extended to the sine-Gordon
equation, the Toda lattice, the modified Korteweg—
deVries equation, and the Nonlinear Schrodinger
equation among others. For each of these equations,
there exist generalizations of the cnoidal waves which
can be expressed in terms of either N-dimensional
hyper-elliptic functions or, more compactly, in terms
of N-dimensional Riemann theta-functions. These
waves, dubbed N-polycnoidal waves in Boyd (1982),
are dense on the set of the spatially periodic solutions
of the evolution equation (Korteweg-deVries, Non-
linear Schradinger, etc.) in the sense that the solution
for an arbitrary periodic initial condition can be ap-
proximated to an arbitrary degree of accuracy for an
arbitrary finite time interval by an N-polycnoidal
wave of sufficiently high N. McKean and Trubowitz
(1978) prove this by developing the theory of theta
functions of “infinite genus” which are the limit of
the N-polycnoidal waves as N — oo.

The 1-polycnoidal wave is merely the ordinary
cnoidal wave given by (6.18) and (6.19). The N-po-
lycnoidal wave is a function of the N arguments

m=kx—cth+¢;, j=1,2,...,N, (620)

where the k; are wavenumbers, the c; are phase
speeds, and the ¢; are constant phase factors. In the
limit of small amplitude, the N-polycnoidal wave is
simply the superposition of N linear plane waves of
different wavenumbers and phase speeds. As done by
Stokes in 1847, one can calculate nonlinear correc-
tions in this small-amplitude regime using pertur-
bation methods and express the result as a Fourier
series. Boyd (1982) gives the Stokes’ series for the 2-
cnoidal wave for the Korteweg-deVries equation. In
the limit of large amplitude, the N-polycnoidal wave
consists of N solitons on each periodicity interval and
the parameters k; and c; give the width and speed of
each solitary wave. Besides their Fourier series, the
theta functions can also be represented as an infinite
sum of Gaussian functions. Boyd (1982) has shown
for the Korteweg—deVries equation that the lowest 2V
terms of the Gaussian series generate the exact N-
soliton solution and that the Gaussian series can be
the basis for a perturbation scheme that corrects for
the effects of the spatial periodicity on the solitary
waves in the same way that Stokes’ Fourier series
corrects for the nonlinear interactions of the N-plane
waves. Boyd (1982) also shows that there is a high
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degree of overlap between the small-amplitude, Fou-
rier series expansion and the large-amplitude Gauss-
ian series so that for moderately nonlinear waves, the
lowest term of either series is acceptably accurate.
Boyd (1983c) extends this work to the Nonlinear
Schrodinger equation.

The usefulness of this work on the Hill’s spectrum
method and polycnoidal waves is that there exists a
fairly complete understanding of the spatially peri-
odic solutions of the Nonlinear Schrodinger equation.
In particular, it appears that the “simple recurrence”
of Yuen and Ferguson (1978) for sideband instability
is basically a 2-cnoidal wave and the more complex
recurrences they observe can be approximated by
polycnoidal waves of higher N. If one represents the
polycnoidal waves via the Gaussian series and then
truncates at lowest order, one obtains an approxi-
mation in terms of interacting solitary waves. Phys-
ically as well as mathematically, the mechanism for
sideband instability is one of soliton formation.

7. Summary and conclusions

This present work has extended the theory of equa-
torial waves by calculating the nonlinear effects upon
a strongly dispersive wave packet due to its self-in-
teraction. It has been shown that the wave amplitude
satisfies the Nonlinear Schrodinger equation. When
the Landau constant and dispersion coeflicients of
this equation are of the same sign, envelope solitons
will readily form in which the usual spreading of the
envelope of the wave packet is exactly balanced by
nonlinearity to give a finite amplitude disturbance of
permanent form. Under these same conditions, an
initial plane wave is unstable due to sideband mod-
ulations, tending to form solitons. If the boundary
conditions are periodic, however, the solitons will
recombine to recreate the initial conditions, the so-
called FPU recurrence. If the signs of the Landau
constant and dispersion coeflicient are opposite, then
the nonlinearity will cause the wave packet to spread
more quickly than in linear theory—*‘superlinear”
dispersion.

Fig. 7 illustrates how dramatic these different ef-
fects of nonlinearity can be by comparing three nu-
merical integrations of the Nonlinear Schridinger
equation with the same initial condition but with
three different values of the nonlinear coefficient
(v = 0, 2, —2). Negative » has greatly broadened the
wave packet in comparison with the linear integra-
tion, while with » > 0 a narrow solitary wave has
formed.

The graphs of Section 5 show that which of these
two alternatives is realized for a given mode depends
on the wavenumber k of the wave packet. Gravity
waves propagating toward the east [w(k) > 0] have
no resonances, but the Landau constant »(k) does
change sign at some intermediate value of k so that
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solitons and sideband instability occur only for large

_k. The mixed Rossby-gravity or “Yanai” wave has
solitons only for an intermediate range of k which is
bounded from below by a second harmonic reso-
nance at k = 0.288 and above by a zero of v at
k = 0.624.

For the other negative frequency, westward prop-
agating waves, both gravity and Rossby, it is also true
that envelope solitons are impossible for both small
and large k. The intermediate range of wavenumbers,
however, is confused by the existence of a finite num-
ber of second-harmonic resonances together with an
infinite number of discrete long-wave/short-wave res-
onances. Fortunately, for the gravity waves, only the
single second-harmonic resonance for each gravita-
tional mode is important; the long-wave/short-wave
resonances have very small interactions coeflicients
so that the neighborhood in k where each such res-
onance is significant is almost vanishingly small. For
all practical purposes, there is a single continuous
range of intermediate wavenumber for each west-
ward-propagating gravity wave where solitons occur.

"For Rossby waves, envelope solitons also form
when the wavenumber is intermediate, but the graph
of the Landau constant » is quite complicated because
the long-wave/short-wave resonances now are very
strong. The difference is simply that the long waves
are always Rossby waves, and short Rossby waves
interact with them much more effectively than the
short gravity wave packets do. The implication is that
a strongly nonlinear Rossby wave packet will evolve
in a rather complicated and confusing pattern if its
wavenumber falls within the range of the resonances.

Application of these results to the real ocean is both
easy and difficult. It is easy in the sense that the wave-
number X is the only nondimensional parameter; by
unscrambling the nondimensionalization given in
Section 3 and the canonical rescaling of the Nonlinear
Schrodinger equation presented in Section 6, one can
easily apply the numbers and figures of this work to
equatorial waves on any scale for any baroclinic
mode. Application is hard in the sense that one must
have concrete information about the wavenumber k
and the width and amplitude of the initial condition
before quantitative results can be obtained, and data
on equatorial waves is still very limited. Numerical
models are, of course, very good at generating the
necessary numbers, but the model results are nor-
mally presented in the form of contour plots of the
total currents and height field, which are the sum-
mation of all the equatorial modes. It is difficult to
use the Nonlinear Schrodinger equation to analyze
the effects of nonlinearity and dispersion on a single
mode if that mode is never seen in isolation.

Nevertheless, the decomposition of model data
into the free oscillations of the system as done by
Kasahara (1976) on the sphere is certainly possible
on the equatorial 3 plane also. When this is done, the
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present work will make it possible to go a step beyond
linear theory in understanding the evolution of equa-
torial waves.
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APPENDIX A
Numerical Details

Calculation of the Hermite series coefficients of the
forcing for u'°, u'? and the other O(¢?) fields involves
integrals of triple products of Hermite functions
which are too difficult for practical analytical calcu-
lation. It is, however, easy to perform the calculation
numerically using Gauss-Hermite quadrature. To
expand

F(y) = e/ 3 f.H (),

n=0

(A1)

where the H, are the normalized Hermite polyno-
mials, one writes

fn= fw e’ H,()F(y)dy

hage o}

(A2)

N
= 2 we "H,(v)F(), (A3)
i=1

where the Gaussian quadrature weights w; and ab- ~

scissas y; are tabulated for various N in Abramowitz
and Stegun (1965). N = 32, i.e., 32 quadrature points,
was used for most of the calculations reported in this
paper. However, it is only necessary to sum over half
the quadrature points in (A3) [those y; > 0] because
all the functions F(y) are either symmetric or anti-
symmetric about y = 0. It is shown in Table 2 of
Boyd (1980b) that the Hermite coefficients f, must
decrease like those of a geometric series; it can be
shown that the quadrature error decreases exponen-
tially fast with NV also. For the lowest modes, the coef-
ficients of the Nonlinear Schrodinger equation are
accurate to five or six decimal places.

For ease of exposition, unnormalized Hermite
polynomials were employed in the main body of this
paper, but to avoid machine overflow—the unnor-
malized polynomials increase exponentially with n—
normalized Hermite polynomials were employed in
the computer program. The unnormalized series ex-
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pansion coefficients f, are related to those normalized
coefficients f, defined by (A1) and (A2) via

. Fn

The normalized Hermite polynomials satisfy the re-
cursion

H, = 2"%n+ 1)""yH,

(A4)

= [n/(n + DI'?H,,, (AS5)

with the starting values
Hy=n""4, (A6)
H, =z~ 14212, (A7)

The remaining technical problems are posed by the
complex arithmetic. Since all quantities can, by suit-
able choice of phase for the wave packet, be taken as
either real or imaginary, one can perform all the cal-
culations in real arithmetic and reduce the compu-
tational cost by a factor of 4. One must, however,
keep careful track of which quantities are real and
which are imaginary so that when two imaginary
terms are multiplied, the sign change due to squaring
i = (—1)"? is inserted.

It is necessary to be careful in any case, however,
because every wave field consists of a term plus its
complex conjugate. Thus, a term like

o109, (A8)
which would seem to have a minus because v°' is
pure imaginary, actually yields

—A3E? + 2| * + cc; (A9)

the sign change appears only for the second harmonic
in (A9) because the long-wave component is the prod-
uct of iAy, with its complex conjugate —idd;. A term
like

uOlvgl

(A10)

has a negative sign for both components on the other
hand because the x-derivative of idy E is i’kAo,E
while #°' is real. One must carefully write out each
product in terms of both 4y, and A%; to avoid mis-
takes.

The relationships between the Korteweg-deVries
and Nonlinear Schrodinger equations, derived in
Appendix C, provided useful numerical checks as did
the relationships between the residues of the poles of
v(k) at the resonant values of k and the coefficients
of the resonant dyad equations and long-wave/short-
wave equations.

APPENDIX B

Errors in Approximate Equatorial
Dispersion Relations

Both the dispersion coefficient w”(k)/2 here and the
calculation of long-wave and second-harmonic res-



446

onances in Boyd (1982a,b) depend on the dispersion
relation w(k). Unfortunately, this is determined by
the cubic equation

w3 —(k2+2n+ hw—k =0, (B1)

which does not have simple closed form solutions
except for n = 0 when (B1) reduces to a quadratic.
.However, the approximate roots

e [Rossby waves], (B2)

W ——————
2n+ 1+

w= +(2n + 1 + k*)'? [gravity waves], (B3)

or the higher approximation [Domaréki and Loesch,
(1977) who give a third approximation, too],

w o (k2 + 20 + 1)

k
% [1 DY 1)3/2] » (B9

are all very accurate.
To show this for Rossby waves, we define A by
writing

—k

Y Y an+ 1

[1 + A] (BS)

so that A is the relative error in the approximation
(B2). Substituting (B5) into (B1) gives the exact re-
lationship

A = ek, n)[1 + AP, (B6)
where '

. k2
,‘ (k*+2n+ 1)
By differentiating (B7) with respect to & to find the
maximum, one can easily show that
1

ES T3
27(n + hY

ek, n) = (B7)

(B8)

< 0.0165, foralln= 1. (B9)

Thus, € is a very small quantity even for the lowest
mode so that (B6) can be made the basis of the it-
eration

A" = ok, n)[1 + AP, (B10)

which gives

A =~ ¢ + 3¢ + O(). (B11)

The smallness of ¢ should make it clear that the it-
eration converges very rapidly and that A, the relative
error in (B2), is roughly equal to ¢. One can express
this mathematically by applying the methods of func-
tional analysis to the iteration (B10); the proof is
taken from Sawyer (1972) and is therefore omitted,
but the final result is given below.
In a similar way for gravity waves, we let

w=+(k2+2n+ 1)2[1 + Al  (B12)
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The iteration is
AT = X = AT + KA, (BI3)
where
k
A (B14)

= +
T2k 4 2n+ 1)V

One can show, again by differentiating with respect
to k, that |

AS 07— .
33)*2n + 1)
Like ¢, A 1s a small quantity and the relative error

is approximately given by the first iteration, i.e.,
A =~ X so that the error in the lowest gravity wave

(315)

- approximation [(B3)] is roughly bounded by the right-

hand side of (B15). Functional analysis gives the tools
to prove the following theorem. Details are given in
Sawyer (1972).

THEOREM: The errors in the approximations (B2)-

(B4) have the following bounds:

@ w= _____k__
k*+2n+1
X [1 + A] (Rossby waves), (B2)
where 0.039
|A|<m, n=l. (B16)

The relative error is no worse than 1.7% even for
n=1.
(i) w ~ =(k*>+ 2n + 1)/
X [1 + A] (gravity waves) (B3)
0.141

(n+ %)’
The relative error is no worse than 10% even for
n=1.

(iii) The relative error in the second approxima-
tion (B4) for gravity waves is bounded by

w — [£(k? + 2n + D)VX(L + )|

(B17)

Al =

0.021
€ .
(n + )?

For the mixed Rossby-gravity (n = 0), the cubic
dispersion relation collapses to a quadratic which can
be solved exactly, so we lose nothing by demanding
that # = 1 in the theorem.

(B18)

APPENDIX C

The Relationship Between the Nonlinear
Schrodinger Equation and the
Korteweg—deVries Equation

In Boyd (1980Db), it was shown that the Korteweg—
deVries equation is a consistent description of ultra-
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long Rossby waves of small amplitude. To derive the
Nonlinear Schrodinger equation for this same class
of waves, one can bypass the complicated modal anal-
ysis of Section 3 and attack the Korteweg-deVries
equation

u, + autt, + b, = 0 (C1)

‘directly, thus keeping to but a single spatial dimen-
sion. The multiple scales analysis, however, is exactly
the same as for Section 3. Thus, a derivation of the
NLS equation from (C1) is presented here so that the
reader may see the skeleton of the perturbation theory
without the Hermite function analysis that makes
Section 3 rather heavy reading.
As in Section 3, we assume that

ek, (C2)
k> e (C3)
introduce slow space and time scales via
T = €, (C4)
= elx — ), (C5)

and take the lowest order solution as the wave packet
u® = Ay (§, T)e™* 9 + cc., (C6)

where c.c. denotes the complex conjugate. A uni-
formly valid perturbation expansion can then be ob-
tained in the form

2 Apl§, VE™ + cc.,  (CT)

=
n
ﬁMs

where )
. E= e:k(x - Cpl)’

with ¢, and ¢, as the linear phase and group velocities,
respectively. Derivatives transform according to the
chain rules:

0 . 9 6
FYin —ikc, — e, — 3¢ + & (C8)
i) 0
e =ik + e a5 (C9)
The lowest [O(e)] equation is
ul + bul, =0, (C10)

with the solution given by (C6) with the dispersion
relation
¢, = —bk>. (CL1)

The function of this lowest order equation is simply
to determine the dispersion relation. For notational
simplicity, the second superscript on #° has been sup-
pressed because the whole lowest order solution is
proportional to E,

At O(¢?), however, we have three separate equa-
tions in E°, E! and E? (plus the complex conjugates
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E~' and E~? but these need not be explicitly solved).
By multiplication, the nonlinear term #%? is the sum
of terms proportional to E® and E? and thus provides
the forcing for u'® and u'?. The forcing for u!' is
linear, i.e.,

3bul (C12)
= (¢, + 3bk?)u. (C13)

Eq. (C12) can have a bounded solution, i.¢., the “non-
secularity” condition can be satisfied only if the right-
hand side of (C13) is identicaily equal to zero, which
implies

ul' + buin, = cu} —

¢, = —3bk>. (Cl14)

However, the usual definition of the group velocity,
ow

Cp= 9%’ (C15)

where w = kc, is the frequency, gives (C14) again if
the dispersion relation (C11) is used. Consequently,
the O(62E") equation merely tells us what we knew

already, namely (C15) and
ul'= (Cl6)

In the two-dimensional problems such as those solved
in Section 3, however, u'' need not (and generally
is not) identically equal to zero. Eq. (C15), and its
justification via the non-secularity condition at this
order, are both general results, however.

The lowest order nonlinear term is

u§ = (Ao, E + ASE ™' WikAo E — ikASE™"), (C17)
ik)|Ao\|* — ikA8*E2, (C18)
(C19)

where the asterisk and c.c. both denote the complex

kA3 E? + (ik -

1l

k43, + c.c.,

- conjugate. Thus, to O(e?) there is no forcing of the

long waves, but this should not be interpreted to mean
that there is no O(¢?) long-wave component. This
rather subtle point will be explained in a moment.

The second harmonic, however, presents no com-
plication if we assume that

ul? + bull, = —ikad3,E* + c.c. (C20)
has a particular solution proportlonal to E?
{=exp[2ik(x — ¢,)]} to obtain

2 _ A4 E?
6bk?

By assumption, there is no second harmonic which
is not directly forced by the fundamental wave packet
49, so there is no need to add a homogeneous solution
of (C20) to the particular solution (C21). More im-
portant, the free second harmonic travels at a speed
different from that of (C21) and would therefore be

+ c.c. (C21)
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irrelevant to the Landau constant even if the har-
monic had a non-zero amplitude.

The subtlety involving #'° may be called “deferred
determination of the long waves”: although u'? itself
is O(€?), the terms in the perturbation equation that
determines it are O(€), i.e.,

—cul® + 3buld, = —Yha(u®u®, (C22)

where the overbar denotes that only that portion of
(u°u®), which is independent of E is to be taken. The
reason for this peculiar state of affairs is that u'°
independent of the “fast” space and time scales and
is therefore a function of the “slow” variables { and
7. The {-differentiations introduce the extra ¢ in
(C22). The derivatives with respect to x cause the
second term in (C22) to vanish, reducing it to

—cuf’ = —Y2a(2l40i*):, (C23)
which implies
: a
ulO = 3bk2 ,AOII > (C24)

where, as in Section 3, it was necessary to integrate
with respect to { in the final step.

We are now ready to proceed to the final step which
is to attack the O(¢*E") equation

ui' + buko = —{[u + 3buls]
ll) 0

12 0]}

The terms in the first set of brackets come from ap-
plying the chain rules (C8) and (C9) to the linear
terms in the Korteweg-deVries equation (C1) and
supply the two linear terms in the Nonlinear Schro-
dinger equation.

The first term in the second set of brackets is zero
because u'° is independent of the “fast” variable x,
so the forcing due to the interaction of the funda-
mental with its forced long wave is simply

1100 = —iaAy, |A01 '2
¥ 3bk

By direct multiplication, the corresponding sec-
ond-harmonic forcing is

0 l2+u12 0

+ a[uul® + u

+ a[u’ul? + (C25)

(C26)

_iady .y iadoldoPE
2bk 6bk

The first term is proportional to E3 and must be dis-
carded from (C25); it provides the forcing for an
O(E?¢) third harmonic. The surviving term is equal
to —': the value of its long-wave counterpart (C26).

The non-secularity condition is that the forcing in
(C25) vanish (except the E? part), which demands
that

E3 + (C27)
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Ao
+3
or bk 6{2 6bk

which is the usual Nonlinear Schridinger equation.
The corresponding derivation for the Modified
Korteweg~deVries equation

!onl Aoy =0, (C28)

u, + au*u, + b =0 (C29)

is similar but essentially trivial because the cubic non-
linearity in (C29) implies that #'® = »'? = 0 so that
the nonlinear term in the Schrodinger equation is
determined directly from that term in (x%)*u% which
is proportional to E. We find

9401
+ 3i bk
ar 6(2
Note that the Landau constant vanishes as k& — 0
instead of blowing up as in (C28); resonance as
k — 0 occurs only for the Korteweg-deVries equation
as discussed previously in Section 4.

L+ iak|lA% 24 = 0. (C30)
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