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ABSTRACT

The stability of free surface, laminar Ekman layers is examined for both the homogeneous and the two-
layer case. The eigenvalues of the homogeneous case depend upon the wavenumbers « and v and the
Reynolds number Re. Those of the two-layer case depend upon a, v, Re, the depth of the top layer, and
the parameter Fr* = g3(p* — p)/(Usp), where g is the acceleration of gravity, 8 is the Ekman scaling depth,
p and p* are the densities of the top and bottom layers, respectively, and U; is the mean speed at the surface.
The behavior of the inflection point mode and the parallel mode of instability is examined as a function of

the independent parameters in both cases.

1. Introduction

The hydrodynamic stability of the laminar Ekman
boundary layer is a subject which has attracted a great
deal of attention. It has been the subject of a number
of studies over a period of some twenty years. Ex-
perimental investigations have included those of
Faller (1963), and Tatro and Mollo-Christensen
(1967). The problem has been treated theoretically
by Faller and Kaylor (1966, 1967), Lilly (1966),
Brown (1970), and looss et al. (1978).

With the exception of a short treatment by Faller
and Kaylor (1967) and brief mention by Iooss et al.
(1978), the free surface Ekman stability problem has
been neglected in favor of the problem which pos-
sesses a rigid lower boundary. As Faller and Kaylor
(1967) point out, however, there is a fundamental
difference between the two cases. The disturbances
in the rigid boundary problem are constrained to van-
ish at the boundary, whereas this is not so for the free
surface problem.

Since the free surface case is much more akin to
what might occur in the oceanic boundary layer, it
is worthwhile to examine the problem a bit more
closely, with an eye toward determining the structure
and distribution of the various modes of instability
which may exist. Such knowledge is necessary, for
example, if one is desirous of solving the initial value
problem for this case, as has been done for a rigidly
bounded Ekman layer by Spooner and Criminale
(1982).

Two different examples of a free surface Ekman
layer will be considered. The first will be an Ekman
layer in a homogeneous fluid. This is the problem
which was examined by Faller and Kaylor (1967) and
Iooss et al. (1978).
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The second example will be an Ekman layer in a
two layer fluid. Such a situation might arise, for in-
stance, when an Ekman layer is established in a pre-
existing mixed layer. Although the stability of a con-
tinuously stratified Ekman layer has been considered
by Faller and Kaylor (1967), Etling (1971), Kaylor
and Faller (1972) and Brown (1972), the author is
not aware of any work which has been done on the
two layer case. It will be seen that, in both these ex-
amples, the eigenvalue distribution and eigenfunction
structure depart markedly from the rigid boundary
case.

2. The homogeneous case
a. Derivation of the perturbation equations

The physical system which is to be considered is
a rotating, homogeneous, incompressible fluid. The
system is governed by the equations of motion and
the incompressibility condition.

di 19p
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The coordinate system is right-handed, with z di-
rected positive upward. The velocity components in
the x, y and z directions are #, D and w, respectively.
The remaining quantities are the pressure p, density
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p, the Coriolis parameter f, and kinematic viscosity
v. The Laplacian operator is represented by V>

The unknown quantities are now regarded as the
sum of a mean and a fluctuating part.

u=U+u,
etc.

The mean quantities, represented by upper case let-
ters, are time independent. The fluctuating portions
are represented by lower case letters. Substitution of
these sums into (1) and taking a time average yields
equations for the time independent mean flow. In the
present case, that of an oceanic Ekman layer, the
solutions of these equations will be

U = U, exp(z/d) cos(z/d),
V = U, exp(z/) sin(z/6),

where U is the magnitude of the velocity at the sur-
face, and & = 2v/f)'2 .

The perturbation equations are formed by sub-
tracting the mean flow equations from those which
result when the quantities in (1) are assumed to be
the sum of a mean and a fluctuating part. Assuming
that the amplitudes of the perturbations are small
allows the system to be linearized, yielding the fol-
lowing set of equations:

ou ou . du 18 1dp

a—t+Ua+'V5;+wE—fv=—;5;+"Vz“’

3—;’+'U3—;’C+V%+w3—:+fu=—i%+”vzv’
o 9

o ot ar =0 @

The perturbations are assumed to be of the form
u(x, y, z, t) = 1(z) expli(ax + vy — wt)}.

The x and y components of the wavenumber vector
are o and v, respectively, and w is the complex fre-
quency.

The coordinate system is now rotated. This is ac-
complished through the use of the following trans-
formations.

N
E 1

n -
2
>

|

ad, &aU=~U- aV,
b= aid + 0, aV=aU+7V,
al=a*++?

The perturbation velocity components parallel to and
perpendicular to the disturbance wavefront are # and
D, respectively. Since « and vy are the x and y com-
ponents of the wavenumber vector, & is the magni-
tude of that vector.
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. The perturbation equations can be written as the
following sixth-order system of ordinary differential
equations. ‘

[V? — ia Re(V — o)l(iai) = ia ReU"W + 2w, (3a)
[V? — ia Re(V — )]V + i& ReV"W = —2i&i', (3b)

where w = &c. The equations have been nondimen-
sionalized on the velocity scale Uy, the length scale
8, and the time scale 6/U. The Reynolds number is
Re = Uy/v. Primes denote differentiation with re- -
spect to z.

b. Boundary conditions and method of solution

" For the perturbations in an Ekman layer bounded -
by a rigid surface, the appropriate boundary condi-
tions are

‘d=v=w=0 as z— —oo,
#=9=w=0 at z=0.

For the case of a free surface Ekman layer, the con-
ditions as z — —oo are the same. Those at z = 0 are
different, however. The proper conditions on the hor-
izontal perturbation components are that they exert
no stress at the surface:
o
% 9z 0 at z=0.
The third boundary condition is a consequence of the
fact that the pressure is a constant at the free surface
(Yih, 1969).
This third condition may be transformed into a
condition on W and #. Let the displacement of the
free surface be

n = 9 expli(ax + vy — wi)].

The pressure condition states that the total pressure
is a constant at the surface. The total pressure, how-
ever, is the sum of the perturbation pressure p and
the pressure which results from the displacement of
the surface, —gpn, where g is the acceleration of grav-
ity. The pressure condition becomes

p—gn=0 at z=0
where _ , . 4)
plp = D(z) expli(ax + vy — wi)]
The equations of motion may be used to obtain 7 in
terms of W, i, and their derivatives. Additionally, the
surface displacement is related to the vertical pertur-
bation velocity by the equation
Dn
Y= Di
Substitution of these forms of the pressure and dis-
placement into (4) yields the third boundary condi-
tion for the problem. The boundary conditions for
a free surface Ekman layer then become

at z=0.



GEORGE F. SPOONER

APRIL 1983
dA=d=w=0 as z— —o0, (5a)
a D)
—_—=—= =0, 5b
% 2 0 at z (5b)

[~Rea2c? + Re Fra + (V — ¢)(& Re/)w
+ (V- oO[-Rea(V — ¢) + ia® + 2ia}w'
+ [~V - W + 2a(V — )i =0
(S¢)

at z=0,

where Fr = gé/U2.

The boundary conditions (5) along with (3) form
an eigenvalue problem in which Re, «, v, and Fr are
held fixed and the eigenvalue ¢ determined. This was
accomplished by means of a standard shooting tech-
nique.

Since (3) is a sixth-order system, there will exist six
independent solutions. Far from the free surface, the
coefficients of (3) are constant, and exact solutions
in the form of exponentials can be found. Exami-
nation of the form of (3) reveals that the six roots of
the characteristic equation consist of six complex
numbers, three with positive and three with negative
real parts. Elimination of the three solutions repre-
sented by roots with negative real parts satisfies (5a).
The three remaining solutions were used to provide
starting values for a fourth order Runge-Kutta in-
tegration scheme. A guess was made for ¢, and the
three independent solutions were integrated in to
z = 0. At z = 0, it was determined by how much the
calculated solutions missed fitting the remaining
boundary conditions, (5b) and (5¢). The secant
method was employed to find the value of ¢ which
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provided a satisfactory small value of this residue.
The range of integration was —10 < z < 0, the step
size Az = 0.2, and the convergence criterion was that
the change in |c| between successive estimates was less
than 1073 (for details, see Appendix).

¢. Effect of boundary conditions on the eigenvalues

The boundary condition (5c) contains the param-
eter Fr = g8/U,2. For oceanic parameters this number
is very large. For example, a surface velocity of 0.2
m s~!, and a scaling depth § = 12 m yields Fr ~ 3.3
X 10%. In view of the size of this parameter, it is
natural to question the importance of the remaining
terms in (5c). Eigenvalues were obtained at three dif-
ferent Reynolds numbers for a series of Fr values.
The wavenumbers in these examples were chosen to
correspond to regions of anticipated maximum growth
rates, based on the work of Faller and Kaylor (1967)
and Lilly (1966). Growth rate is defined as w = é&c.
The results are shown in Fig. 1, where disturbance
growth rates are plotted against Fr~!. Examination
of the figure leads to the not surprising conclusion
that in the range of interest for geophysical problems,
Fr~' < 1, an excellent approximation to the solution
may be obtained by retaining only the term multi-
plied by Fr in (5¢). The boundary conditions become,
then,

=P=w=0 as z— —c0, (6a)

—=—;W=0 at z=0. (6b)

These will be referred to as the boundary conditions
for a free surface problem.

Re = 100, a = -2, y = .51

~—~——
-~ -

Frt

FIG. 1. Plot of growth rate w; as a function of Fr™' for three different Reynolds
numbers: Re = 25, « = 0.01, ¥ = 0.39; Re = 100, « = —0.2, v = 0.51; Re = 500,

a=-02v =051
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F1G. 2. Contours of growth rate w, as a function of
wavenumber for Re = 25.

d. Results for the homogeneous case

Figs. 2, 3 and 4 show contour plots of growth rate
as a function of a and « for Reynolds numbers of 25,
65 and 100, respectively. The plot for Re = 25 is very
similar to the one produced by Faller and Kaylor
(1967). There is a maximum growth rate located at
o = 0.01, ¥ = 0.39. If this extremum is traced back
through Reynolds number space, a critical Reynolds
number of 11.647 is found at the location a = 0.05,
v = 0.33. This is in good agreement with the Faller
and Kaylor (1967) estimated critical Reynolds num-
ber of 12 + 3 and the value of Re = 11.816 obtained
with bifurcation methods by looss et al. (1978). The
nondimensional phase speed of the mode at the crit-
ical Reynolds number is estimated as ¢, = —0.527.
This departs somewhat from the results of Iooss er
al. (1978) who obtained a value of —0.561. There is
also a slight difference in the location of the extre-
mum in wavenumber space. looss et al. located the
critical mode at a = 0.034, v = 0.318. It should be
noted, however, that the numerical method employed
in this work is much less sophisticated than that of
Iooss et al., and this may account for the difference
in results.

In Fig. 3, the growth rate contours have not altered
markedly from those in Fig. 2. There is a slight shift
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in the location of the maximum growth rate. It is now
located at o = —0.04, v = 0.31. In general, however,
the isopleth pattern remains the same.

At Re = 100, however, the situation changes, as
shown in Fig. 4. Whereas previously there was a single
maximum in growth rate, two now exist. In itself, this
is not a surprising result. It is, in fact, expected, as
this is what occurs in the stability problem for a rigid
boundary Ekman layer. In this case, however, it ap-
pears that the two different unstable modes can exist
simultaneously for certain pairs of wavenumbers.
Lilly (1966) pointed out that for the rigid boundary
Ekman layer, no more than one unstable eigenvalue
was ever found for a given set of parameters. It ap-
pears that this is not necessarily true for the free sur-
face case. .

In the rigid boundary case, the two types of insta-
bility present are the parallel mode and the inflection
point mode, as demonstrated by Lilly. The parallel
mode is dependent upon the mean component of
shear parallel to its wavefront as a source of energy,
whereas the inflection point mode draws upon the
shear in the mean velocity component perpendicular
to its wavefront and requires the presence of an in-
flection point in that velocity component.

Several numerical experiments were run to deter-
mine the types of instabilities occurring in the present
case. Arbitrarily setting the component of shear par-

Y
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FIG. 3. As in Fig. 2, but for Re = 65.
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FIG. 4. As in Fig, 2, but for Re = 100.

allel to the disturbance wavefront equal to zero had
little effect on the growth rate of the mode centered
at o = —0.20, v = 0.53. Smoothing the velocity com-
ponent perpendicular to the wavefront and thereby
removing its inflection points, however, stabilized this
mode. It seems safe to assume that this is an inflection
point mode. The mode centered near o = —0.04,
¥ = 0.31 was stabilized by removal of the parallel

02+
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component of shear, but remained unstable when in-
flection points were removed. This, then, seems to be
a parallel mode of instability. As in the rigid boundary
case, there are two types of instability present. The
locations of the extrema associated with these modes
are somewhat different, however.

In the rigid boundary case, the inflection point
mode is centered near « = —0.10, v = 0.51 and the
parallel mode near « = 0.04, v = 0.30 (Lilly, 1966).
Thus, in the free surface case the inflection point ex-
tremum occurs at a somewhat larger wavenumber
than (and oriented ~ 10° counterclockwise from) the
rigid boundary case. The wavenumber vector of the
parallel extremum has approximately the same mag-
nitudes in the two cases, but that of the free surface
case is rotated approximately 14° counterclockwise
from the rigid boundary case.

Phase speeds for the parallel mode and the inflec-
tion point mode extrema are ¢, = —0.319 and ¢,
= —(.278, respectively.

Unfortunately, it proved difficult to track the con-
tours of the separate modes at higher Reynolds num-
bers. By analogy with the rigid boundary case, one
would expect that at higher Reynolds numbers the
inflection point mode would tend to dominate and
the parallel mode to eventually disappear. There is
evidence, however, that this is not accomplished in
the present case by the simple disappearance of the
parallel mode along with the expansion of the inflec-
tion point mode. Whereas the two modes possess sep-
arate “sheets” in eigenvalue space at Re = 100, at
higher Reynolds numbers it appears that these sheets
fuse to form a single surface of unstable eigenvalues
as is found in the rigid boundary case.

Evidence for this process can be seen in Figs. 5 and
6. These portray phase speeds and growth rates along
a line of fixed 4 which intersects both eigenvalue

-6

FIG. 5. Growth rates w;, for fixed v = 0.51 [solid line, parallel mode, Re = 100; heavy
dash-dot line, inflection point mode, Re = 100; dashed line, parallel mode, Re = 120;
heavy dashed line, inflection point mode, Re = 120; dash-dot line, parallel mode, Re
= 140; heavy solid line, inflection point mode, Re = 140].
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FIG. 6. Phase speed ¢, for fixedy = 0.51 [dashed line, parallel mode, Re = 100; heavy N

dashed line, inflection point mode, Re

= 100; solid line, parailel mode, Re

= 130; heavy solid line, inflection point mode, Re = 130).

modes at Re = 100. The joining of the separate ei-
genvalue surfaces can clearly be traced as Re in-
creases.

Fig. 7 is a plot of the eigenfunctions w, for the two
different modes at Re = 100, « = —0.12, & = 0.51.
Although the two modes have distinct eigenvalues
(w, = 0.1845, w; = 0.0057 for the paraliel mode, and
w, = 0.1259, w; = 0.0053 for the inflection point
mode), the real part of their eigenfunctions are very
similar. The imaginary parts differ more markedly,
with the inflection point mode having a smaller am-
plitude and changing sign earlier than the parallel
mode.

A comparison of the eigenfunctions for the rigid
boundary case and the free surface case is shown for
a Reynolds number of 65 in Figs. 8, 9, 10, and 11.
Although the free boundary conditions do not appear
to produce much effect on the vertical perturbation
velocity, there is a notable difference in the horizontal
components.

Finally, Fig. 12 is a plot of the growth rate asso-
ciated with the inflection point extremum.

3. The two-layer case

Next, the stability of an Ekman layer in a two layer
system will be examined. A top layer of finite depth
and density p is assumed to exist above a bottom
layer of density p* and infinite depth. Fig. 13 depicts
the physical situation. This problem differs from the
homogeneous case in two ways. First, the presence
of a density interface, along with an attendant change
in eddy viscosity, will alter the mean Ekman flow and

confine it to the upper layer. Second, when pertur-
bations develop in the upper layer, the density inter-
face will tend to inhibit penetration of cells into the
lower layer.

A A
W/ [Winax

-10

FIG. 7. Normalized vertical perturbation velocity W/|Wima:, for
Re = 100, @ = —0.12, ¥ = 0.51 [heavy solid line, Real W/ Wlmax)s
parallel mode; solid line, Imaginary (W/|Wlmas), parallel mode;
heavy dashed line, Real (W/|W|max), inflection point mode; dashed
line, Imaginary (/|W|ma,), inflection point mode].
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a. The mean flow

The problem of Ekman flow in a two layer fluid
has been considered by Nomitsu (1933). Although
the mean equations of motion are the same as those
in the homogeneous case, the boundary conditions
differ. While the upper and lower layers are regarded
as having a constant eddy viscosity, at a sharp density
interface the eddy viscosity may fall to almost zero,
thus confining the effect of the wind to the top layer
(Defant, 1961). At the interface, since the water will
meet no resistance, it is assumed that the lighter top
layer of fluid will slide over the heavier lower layer
with no transmission stress. The boundary conditions
for the mean flow in the top layer are

U=U, V=0 at z=0,
au 9V
az—az—o at z=—h.

The nondimensional solution for the mean velocity
in the top layer can be written as

U = (C, cosz — C, sinz)e”
+ [(1 — C)) cosz — C; sinz]e ™7,
V = (C, sinz + C, cosz)e*

+ [—(1 — () sinz — C), coszle 7,

AN
W/ Wimax

FIG. 8. Normalized vertical perturbation velocity W/|W]max, for
Re = 65, a = —0.04, v = 0.33 [heavy solid line, Real (W/|W|max),
free boundary; solid line, Imaginary (W/|Wma), free boundary;
heavy dashed line, Real (W/|Wlms), rigid boundary; dashed line,
Imaginary (#/|Wlma,), rigid boundary).
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FIG. 9. Normalized horizontal perturbation velocity &#/|Wimax, for
Re = 65, a = —0.04, ¥ = 0.33 [heavy solid line, Real (#/|%|max);
free boundary; solid line, Imaginary (#/|W|m.), free boundary;
heavy dashed line, Real (fi/|W|max, rigid boundary; dashed line,
Imaginary (#/|W|mex, rigid boundary].

where
C = exp(2h) + cos(2h)
' exp(2h) + exp(=2h) + 2 cos(2h)’
_ sin(2A)
" exp(2h) + exp(—=2h) + 2 cos(2h)

The mean velocity in the lower layer is assumed
to be zero.

G

b. The eigenvalue problem and method of solution

Considered separately, the top and bottom layers
are homogeneous fluids. The disturbances in each
layer are governed by (3) and require six boundary
conditions. Thus, 12 boundary conditions are re-
quired in all. Perturbation quantities are defined as
in the homogeneous case. In the following discus-
sions, starred and unstarred quantities refer to the
bottom and the top layer, respectively.

Far from the free surface, the appropriate condi-
tions are

P*=9*=w*—>0 as z— —oo.
The free surface boundary conditions are
#7=9=w=0 at z=0.

The conditions on the horizontal velocities at the
boundary between the two layers are the same as
those applied to the mean flow, i.e., no transmission
of tangential stress.
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YITAY
V/ [Wimax

FiG. 10. Normalized horizontal perturbation velocity d/(Wlmax,
for Re = 65, a = —0.04, vy = 0.33 [heavy solid line, Real (3/#lmax),
free boundary; solid line, Imaginary (/|W|ma), free boundary;
heavy dashed line, Real (0/|wl.m), rigid boundary; dashed line,
Imaginary (3/|Wlmex), Tigid boundary].

d=v=q*==0 at z=-h

Two more conditions are required. The first is ob-
tained by applying the kinematic boundary condition
to both sides of the interface. This yields

w=(-V/iow* at z=—h

The final condition is a result of the assumption
that there is no pressure difference across the interface
(Yih, 1969). In dimensional quantities, the pressure
condition is

p=p*—g@*—phn,

where 7 is the displacement of the interface and g is
the acceleration of gravity. Nondimensionalized and
written in terms of the perturbation velocity com-
ponents, this condition becomes

[-& Re(V — o)W + & ReV'W + 2&il
— iW” — &*W')] — [& Recw*' + 2air*
— i(W*" — &*W*) + Rea? Fr*w*w™! = 0,

where Fr* = gd(p* — p)/(Up), and it has been as-
sumed that p*/p ~ 1.

With these boundary conditions, the perturbation
equations can be solved to find the relevant eigen-
values. Once again, Re, a, v and Fr* were held fixed
and the eigenvalue ¢ was searched for with a shooting
technique.
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In the bottom layer, the coefficients of the pertur-
bation equation are constant, so exact solutions can
be found in the form of six exponentials. As in the
homogeneous case discussed previously, three of
these exponential solutions will grow as z — —co and
are therefore eliminated.

In the top layer, there again exist six independent
solutions. These may be obtained by integrating the
perturbation equations from z = 0 to z = —h with
appropriate starting conditions. These starting con-
ditions are chosen such that the six solutions satisfy
the free surface boundary conditions and are inde-
pendent.

A guess was made for ¢, the solutions in the bottom
layer calculated analytically, and those in the top
layer integrated from z = 0 to z = —hA. It was then
determined by how much the calculated solutions
missed fitting the boundary conditions at z = —A. As

"in the homogeneous case, an acceptable value of ¢

was found by means of the secant method, an inte-
gration step size of Az = 0.2 was used, and the con-
vergence criterion was that successive estimates for
lc| differed by less than 1075,

¢. Results for the two layer case

Fig. 14 is a plot of contours of w; as a function of
the wavenumbers a and vy. The Reynolds number is
100, h = —4, and Fr* = 35. If U, = 0.083 m s~! and
6 = 12 m, the ratio (p* — p)/p has a value of ~0.002

NORMALIZED ENERGY SOURCES

-2 -1 0 1 2
] ! I

-10

FIG. . Normalized energy source terms for Re = 65, «
= —0. 04 7 0.31 [heavy solid line, —ﬂwU’/(lwlm,‘) free bound-
ary; solid line, DV J(1Wmar)?, free boundary; heavy dashed line,
— TR0 /(1W]mar)?, rigid boundary; dashed line, ~DWF"/(|W|max)?, rigid
boundary].
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150
Re

FI1G. 12. Growth rate w;, as a function of Reynolds number for the inflection
point mode (a = —0.20, v = 0.51).

for this choice of Fr*. The contours are very similar
to those shown in Fig. 4 for the homogeneous case.
Both the inflection point and the parallel modes are
present and are located in approximately the same
region of wavenumber space. A detailed search for
the maximum growth rates was not made. The cal-
culations which were carried out indicate that the
inflection point mode is centered near « = —0.2,
v = 0.53, and that the parallel mode is centered near
a=-0.01, vy = 0.31.

The Reynolds number dependence of these modes
is shown in Fig. 15. Once again, Fr* = 35 and 4
= 4. The wavenumber values are chosen to corre-
spond to the extrema of Fig. 14, and these growth
rates are traced as functions of Reynolds number. It
can be seen that the critical Reynolds number is
~90 for the inflection point mode and ~19 for the
parallel mode. For both modes, the critical Reynolds

number is greater than it is for the homogeneous case.
Although this plot shows the parallel mode stabilizing
at Re ~ 240, the extremum shifts to a different region
of wavenumber space at higher Reynolds numbers,
and, in fact, does not stabilize until approximately
Re = 420.

The variation of growth rate with the depth of the
top layer is shown in Fig. 16. Both modes stabilize
as the depth decreases, with the inflection point mode
stabilizing first. When # is greater than 6, both modes
have eigenvalues nearly identical to those for the ho-
mogeneous case.

It should be noted that changing the depth of the
top layer has a dual effect. First, it changes the po-
sition of the density interface. Second, it affects the
mean velocity profile. An effort was made to separate
these two effects by making calculations identical to
the ones shown in Fig. 16, but with the density dif-

~n [aV]
e. U(2), V{2

2=0

zZ~* — 0o

FI1G. 13. Physical situation for the two-layer case.



672

! | L ] ] ]
-4 -3 -2 -1 0 K] 2 4

FiG. 14. Contours of growth rate w;, as a function of wave-
number for the two layer case (Re = 100, Fr* = 35, h = 4).

ference between the two layers arbitrarily set to zero.
The results are shown in Fig. 17.

In this case, the eigenvalues remain very close to
those of the homogeneous case until # ~ 4. Then
there is a slight increase in the growth rate for both

0.020

w; 0.010

0.0
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modes, followed by a rapid stabilization. The parallel
mode stabilizes at approximately the same value of
h-as in the Fr* = 35 case, but the inflection point
mode remains unstable until a smaller value of 4 is
reached.

The behavior of the eigenvalues with changing Fr*
is interesting. This behavior is shown in Fig. 18 for
Re = 100, /2 = 4. At Fr* = 0, the eigenvalues are very
close to those of the homogeneous case. These values
fall rapidly and become stable at very low values of
Fr*. For Fr* slightly greater than zero, however, two
more modes appear, and the growth rates of these
modes rapidly increase to values which are nearly
constant with Fr*. Fig. 19 is a plot of the growth rates
associated with this second pair of modes. Exami-
nation of the values of Fr* = 35 and comparison with
Figs. 14 and 4 show that these two modes are still
associated with the parallel and inflection point in-
stability.

Finally, Fig. 20 is a plot of the eigenfunctions of
the disturbance associated with the parallel mode.
Both the mode which stabilizes as Fr* increases, and
that which destabilizes as Fr* increases are shown.

4. Discussion
a. The homogeneous case

Perhaps the most notable difference between the
growth rates of this case and those of a homogeneous
rigid boundary case (henceforth referred to as simply
the rigid boundary case) is that the free boundary
problem becomes unstable at a much lower Reynolds
number. As in the rigid boundary problem, the mode
which becomes unstable first is the parallel mode.
The critical Reynolds number for the inflection point

FIG. 15. Growth rate w;, as a function of Reynolds number for the two-layer case
[heavy solid line, parallel mode, o = —0.04, v = 0.31, Fr* = 35, & = 4; heavy dashed
line, inflection point mode, o = 0.20, ¥ = ~0.51, Fr* = 35, h = 4].
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made is also lower, as is seen in Fig. 12. This mode
becomes unstable at a Reynolds number of approx-
imately 75, as compared to ~ 115 in the rigid bound-
ary case.

Examination of Fig. 11 reveals a possible candidate
for the source of this difference. The energy available
to_the perturbation through the source terms
—awU’ and —dWV” is greater in the free surface case.
Presumably, this is because the horizontal perturba-

- tion velocities are not forced to go to zero at the
boundary. Even though W still must go to zero at
z = 0, the net effect of relaxing the conditions on #
and D is to allow the existence of larger Reynolds
stresses. These occur in the region where the mean
shear is greatest, and the result is a more efficient
extraction of energy from the mean flow.

The coexistence of more than one unstable mode
for a given set of parameters «, v and Re presents a
problem more difficult to explain. Possibly the exis-
tence of distinct modes is allowed in this case because
there is enough energy available to support each one
separately. This does not explain however, why the
parallel mode does not simply disappear with increas-
ing Reynolds number instead of apparently merging
into the sheet corresponding to the inflection point
mode. The subtleties of this process remain unre-
solved.

The double mode structure has certain implica-
tions for the initial value problem in an Ekman layer.
The similarity of the two modes’ eigenfunctions,
demonstrated in Fig. 7, suggests that, if one mode is
excited by an initial disturbance, both may be. The
resulting perturbation, which is the sum of the two
separate modes, might well appear to be a single wave

0.020 —

0.015

w; 0.010

0.0

FIG. 16. Growth rate w;, as a function of / for the two-layer case
[heavy solid line, parallel mode, a = —0.04, v = 0.31, Re = 100,
Fr* = 35; heavy dashed line, inflection point mode, « = —0.20,
¥ = —0.51, Re = 100, Fr* = 35].
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FIG. 17. Growth rate w;, as a function of 4 for the two-layer case
[heavy solid line, parallel mode, a = 0.04, ¥ = 0.31, Re = 100,
Fr* = 35; heavy solid line, inflection point mode, « = —0.20,
y = 0.51, Re = 100, Fr* = 35).

since the horizontal wavenumbers are identical. The
growth rate of such a disturbance is the sum of the
individual growth rates. In the example given in Fig.
7, w; = 0.00573 for the parallel mode and w;
= 0.00534 for the inflection point mode. The wave
representing the sum of these two disturbances would
have a growth rate very nearly equal to that of the
maximum growth rate of the parallel mode and ex-
ceeding that of the inflection point mode. The result
might be a very broad peak in the power spectrum
of an arbitrary disturbance. An initial disturbance
might well maintain a compact shape much longer
than in the rigid boundary case and take much longer
to develop into a well defined wave packet.

Finally, it should be noted that in the free surface
case considered here, which is analogous to an
oceanic Ekman layer, the most unstable modes both
possess phase speeds which are a significant fraction
of the speed at the surface. For example, at Re = 100,
the parallel mode has a phase speed of —0.319 and
the inflection point mode has a phase speed of
—0.278. This is in contrast to the rigid boundary,
atmospheric type Ekman layer, where the phase speed
of the inflection point mode is very close to zero.

However, these differences in phase speeds are, in
large part, not a reflection of different physics but of
different coordinate systems. If the free surface case
is considered in a coordinate system (x’, y') whose
origin is moving with the surface velocity and is ori-
ented such that the velocity far from the surface is
in the x' direction, the perturbation equations will be
the same as those for the atmospheric case. To con-
vert the phase speeds of the free surface case into
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F1G. 18. Growth rate w;, as a function of Fr* [heavy solid line, parailel mode, Re
100, « = ~0.04, v = 0.31, h = 4; heavy dashed line, inflection point mode, Re

=.100, « = ~0.20, v = 0.51, h = 4].

those which will occur in the primed coordinate sys-
tem, the appropriate transformation is 4

¢y = ¢, — cos®d,

where ¢, is the phase speed in the primed coordinate
system and & = tan~!(y/a). With this transformation,
the phase speeds of the parallel mode and the inflec-
tion point mode become 0.190 and —0.075 respec-
tively, which are much closer to the values which
have been obtained for the rigid boundary case.

b. The two-layer case

Examination of Fig. 14 indicates that the two-layer
case appears to be more stable than the homogeneous
case. Although the growth rates in this example are
still greater than those of the rigid boundary case at
a comparable Reynolds number, they are less than
those shown in Fig. 4. Additionally, the regions of
instability in the a—y plane are smaller for both
modes in the two layer case. Further indications of

] ] ] ]
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F1G. 19. Growth rate w;, as a function of Fr* {heavy solid line, parallel mode, Re

100, a = ~0.20, ¥ = 0.51, h = 4].

100, « = —0.04, v = 0.31, h = 4; heavy dashed line, inflection point mode, Re
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this stabilization are the critical wavenumbers, which
are larger than those in the homogeneous case for
both modes of instability.

Despite this change in magnitude, the location of
the most growing modes in a—y space has changed
very little from what occurs in the homogeneous
problem.

Fig. 14 represents a case in which the top layer
extends to z = —4. This is very nearly the depth of
the boundary layer in the homogeneous case, and,
correspondingly, there is little difference in the mean
velocity profiles for the two cases. Presumably, it is
the presence of the density interface which has a
damping influence on the instabilities, a conjecture
which is supported by examination of Figs. 16 and
17. Without a density interface present, there is little
change in the eigenvalues until /2 =~ 3.5. The eigen-
values then actually become slightly more unstable
before stabilizing at approximately the same value of
h as when there is a density interface present. These
results seem to indicate that it is the change in mean
velocity profile which causes the ultimate stability
cutoff in both modes. The interface, however, has a
large effect on the relative magnitude of the growth
rate.

It appears as if each physical mode of instability
can occur in two different eigenfunction types. These
are shown in Fig. 20 for the parallel mode. The first,
call it type 1, occurs at low values of Fr* and is similar
1o the eigenfunctions for the homogeneous problem.
In fact, for # = 4 and Fr* = 0, the eigenfunctions and
eigenvalues differ only slightly from those of the ho-
mogeneous case. With increasing Fr* the type 1 ei-
genfunction is stabilized, and a new eigenfunction,
type 2, comes into existence. A very small density
difference is enough to accomplish this, and once it
occurs, the type 2 eigenvalue remains constant out
to large values of Fr*, as shown in Fig. 19. The type
2 eigenfunction is essentially limited to the top layer.

Examination of Fig. 21 reveals a possible expla-
nation for this behavior. The dispersion relation for
an inviscid internal wave in a two layer system is

Fr* 12
N S
a&(coth(ah) + 1)

in the present system of nondimensionalization. The
top layer is of depth 4, the bottom layer is assumed
to be infinitely deep, and ¥} is the mean speed of the
fluids.

In Fig. 21, the value of ¢ obtained from this relation
using the negative square root and a mean speed of
zero 1s plotted as a function of Fr*. The wavenumbers
correspond to the extremum of the parallel mode of
instability. Also plotted are the phase speeds of the
two types of eigenfunctions discussed above.

Although initially far apart, the curves representing
the type 1 eigenfunction and the internal waves con-
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FIG. 20. Normalized vertical perturbation velocity, ¥/|W|max, for
Re = 100, @ = —0.04, v = 0.31, & = 4 {heavy solid line, Real (+/
[Wlmax), Fr* = 0; solid line, Imaginary (W/|W|max, Fr* = O; heavy
dashed line, Real (W/|Wima,), Fr* = 35; dashed line, Imaginary (W/
[Wlmax), Fr* = 35].

verge rapidly and parallel one another for Fr* > 1.
If V, = —0.05, a value obtained if V' is integrated over
—11 2 z < 0 and then averaged, the two curves co-
incide for Fr* > 1. .

The type | eigenfunction has in common with the
gravest internal wave mode the property that it has
large amplitude near the density interface. It would
seem that a very small increase in density stratifica-
tion causes the type 1 eigenfunction in coalesce with
the internal wave mode. In fact, resonance between
the two modes may account for the maximum in the
growth rate which occurs for the type 1 eigenfunction.
Evidence for such a resonance in the continuously
stratified case has been reported by Fuller and Kaylor
(1967) and Kaylor and Fuller (1972). Increasing strat-
ification eventually stabilizes the mode, however. The
energy available from the mean shear is no longer
sufficient to displace the density interface, and the
type of instability becomes indistinguishable from a
damped interval wave (there is dissipation in the
system).

As Fr* increases, the shear instability reappears as
the type 2 eigenfunction, which is confined to the top
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FI1G. 21. Phase speed ¢,, as a function of Fr* [heavy solid line, parallel
mode, Re = 100, « = —0.04, v = 0.31, h = 4; heavy dashed line, internal
wave mode, o = —0.04, ¥ = 0.31, 7 = 4).

layer. Thus it does not have to work to displace the
interface. The type 2 disturbance is very similar to
what would occur if it had. as its lower bound a rigid
wall.

Since the density interface functions as a wall in
its constraint of the eigenfunction, it might seem rea-
sonable to expect that as /2 decreases, there would be
a shift in the stability contours to larger wavenum-
bers. Rather surprisingly, this does not seem to occur
for the inflection point mode. Even when # = 4,
which is quite close to the cut off point in Fig. 16,
the maximum growth rate remains close to the same
location in wavenumber space as in the homogeneous
case. In contrast, the parallel mode does seem to ex-
hibit some shift to higher wavenumbers as 4 de-
creases. Further calculations at a value of 2 = 2.2
reveal that for Re = 100, Fr* = 35, the maximum
growth rate has shifted to the region of o = —0.08,
v = 0.45. There appears to be little change, however,
in the cutoff value of / from that depicted in Fig. 16.

It appears that for 4 less than a value of ~2, the
parallel and inflection point modes are stable in the
two layer case. This would seem to make them un-
likely candidates as the stirring agents which act to
deepen a preexisting mixed layer. It should be real-
ized, however, that other modes of instability, such
as Kelvin-Helmholtz waves, for example, might well
occur in such a situation. However, the search for
other modes was outside the bounds of the present
work.
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APPENDIX
The Shooting Method

The shooting method is a means by which succes-
sive estimates of the eigenvalue ¢ are calculated until

the boundary conditions of the problem are satisfied
to within an acceptable tolerance. In practice, this
amounts to determining the zeros of a function, f(a,
v, Re, ¢), which is the residue obtained from the dif-
ference between the desired values of the boundary
conditions and the values obtained by use of the cal-
culated solutions. When a, ¥ and Re are fixed, f will
be an analytic function of the complex eigenvalue c.
The secant method of root finding is easily adapted
to this case.

Since f is analytic, it can be expanded in a Taylor
series about a point ¢, which is close to a root of f.
The same arguments which are used to derive New-
ton’s method of root finding for real valued functions
then follow directly for the complex case, as do those
for the closely related secant method (see, €.g., Horn-
beck, 1975). The secant method, which employs a
difference expression inplace of the derivative found
in Newton’s method, was employed here as it was
less cumbersome than calculating an approximation
for the derivative of f.

Two initial guesses are needed to implement the
secant method. The first was made with the aid of
previously published work (Faller and Kaylor, 1967)
or calculations made previously in the area of interest.
The second guess was made at a point ¢y + Ac where
|Ac| = 1074,

TABLE 1. Eigenvalues ¢, and growth rates &c;, as a function of
step size and starting point of the numerical integration.

Az Zgan Cr [ ac;
0.10 -10.0 —-0.22690 0.00672 .0.00206
0.13 -10.0 —-0.22690 0.00673 0.00206
0.20 -10.0 —-0.22691 0.00675 0.00207
0.20 -8.0 —0.22644 0.00650 0.00199
0.20 -10.0 —0.22691 0.00675 0.00207
0.20 -12.0 —0.22702 0.00682 0.00209
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Several runs were made in order to determine an
optimum mesh size and starting point for the inte-
gration scheme. The results of these runs are shown
in Table 1. Studies such as the ones made here require
the calculation of a great many eigenvalues. In the
interests of efficiency and economy, it was desirable
to use as coarse an integration mesh and as small an
integration range as was compatible with the desired
accuracy of the eigenvalues. A domain of integration
of —10 < z < 0 and a mesh size of Az = 0.2 were
therefore chosen. This appears to yield accuracy in
the phase speed and the growth rate to three and four
decimal places, respectively. Decreasing the termi-
nation criterion by an order of magnitude did not
appreciably affect the results.

Finally, a limitation of the shooting method is that
it yields only one eigenvalue at a time. For any given
‘set of parameters, there may be an entire set of dis-
crete eigenvalues (Mack, 1976, has presented evi-
dence that such discrete eigenvalues consist of a finite
set in the case of the Orr—-Sommerfeld equation for
a Blasius layer). Indeed, it has been demonstrated that
more than one unstable eigenvalue may exist for a
given set of parameters in the free surface Ekman
flow. The complete exploration of all such possible
modes, stable and unstable, lies outside the scope of
the present work, however.
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