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ABSTRACT

Observations from a recent field experiment in the Vema Channel are briefly described. These show a
remarkable change in the configuration of isopycnal surfaces within the channel and the development of
thick, nearly homogeneous regions near the bottom which are capped by sharp vertical gradients. Contrary
to previous speculation that these “bottom boundary layers” result from enhanced vertical mixing, a dy-
namical mechanism is explored. This involves the hydraulic adjustment of an inertial, semi-geostrophic flow
to the channel geometry.

First, an active two-layer flow in a rectangular geometry is studied to show that internal flow separation
can occur when the flow is accelerated sufficiently by a narrowing channel. Almost always this separation
accompanies hydraulic control: the slowest upstream moving Kelvin wave is stopped and upstream and
downstream states are not symmetric with respect to the channel width. An active three-layer flow with a
variable bottom profile is then presented as a more accurate model of the Vema Channel. The crucial
geometrical ingredient appears to be the growth of a plateau on the eastern side of the channel: this confines
the deepest layer laterally but it has more of a sill effect upon the upper layers. Many of the observed features
of the flow are explained by this model including the changing layer shapes, flow separation, and the reverse
flow found above the plateau.

A major disagreement is that the flow in the furthest downstream section does not appear to be separated,
but more closely resembles that at the entrance. It is suggested that upstream of this last section a hydraulic
jump occurs returning the flow to a subcritical state of lower energy. Consistent with this idea the potential
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energy of the deeper layers increases, and the wave perturbation amplitudes have the correct tendency.

1. Introduction

Relatively swift currents are found along the deep
western boundaries of most ocean basins. These flows
carry water away from polar sinking regions to tem-
perate latitudes where it is gradually lost to the in-
terior and returned poleward through vertical ther-
mohaline circulation. This journey is interrupted by
deep zonal ridges which separate the oceans into a
number of smaller basins. In the South Atlantic the
northward flow of Antarctic Bottom Water (AABW)
is interrupted by several barriers including the Rio
Grande Rise which divides the South Atlantic into
the Argentine and Brazil Basins to the west of the
Mid-Atlantic Ridge (Fig. 1.la). Near the western
boundary the top of the Rio Grande Rise (actually
the Sao Paulo Plateau) is at ~3700 m depth, or ap-
proximately at the level of transition from north flow-
ing AABW to south moving North Atlantic Deep
Water (Reid ez al., 1977; Hogg et al., 1982) and might,
therefore, be considered a dam which determines this
level in the Argentine Basin. However, the water does
not spill over this dam uniformly. Instead it proceeds
northward through a narrow, deep passage—the
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Vema Channel—which cuts through the ridge and
has a sill depth of ~4550 m some 850 m deeper than
the ridge crest (see, Fig. 1.1b).

The flow of fluid through a constriction is a clas-
sical subject of fluid mechanics and engineering. In
a more geophysical context, Whitehead et al. (1974)
introduced the effect of rotation and showed that,
when the flow is being controlled, the transport is
related to upstream surface height through a modified
wier formula. Observed flow rates and layer depths
from three passages (Denmark Straits, Straits of Gi-
braltar and the Anegada Passage) were found to sat-
isfy this formula reasonably well. The theory was
elaborated by Gill (1977) who showed that the phe-
nomenon of control was intimately associated with
propagation of long wave disturbances: that is, con-
trol occurs when the fluid is accelerated to the point
where long waves can no longer travel upstream at
the control section (section of minimum width or
depth or some function of the two). Gill (1977) also
considered the upstream basin to be of finite depth
as opposed to the infinitely deep basin of Whitehead
et al. (1974).

Both these studies consider the channel geometry
to be rectangular. In this situation as the flow accel-
erates under the constricting effect of the channel it
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FiG. 1.1a. Bathymetry of the South Atlantic showing the Vema Channel as a break in the Rio Grande Rise.
Arrows and streamlines indicate, schematically, the path of AABW. Adapted from Uchupi (1971).

becomes more and more banked against the right
hand wall (looking downstream in the Northern
Hemisphere). Near the control point (the narrowest
section), either immediately upstream or down-
stream, the flow separates from the left wall and con-
tinues as a current along the right wall only. Clearly,
if the only geometrical effect is a constriction of the
sidewalls the separation point must occur down-
stream of the narrowest section.

This paper is concerned with the separation phe-
nomenon and, in particular, with the possibility that
in a multi-layered fluid, layers may separate inter-
nally, away from the bottom. The effects of stratifi-
cation and rotation on the control problem have re-
ceived little attention in the literature—the only re-
lated work of which this author is aware is the study
of the Agulhas Current by Gill and Schumann (1979).

The principal motivation for this study comes from
an attempt to explain the configuration of isopycnals
observed in and near the Vema Channel during a
recent field experiment (Hogg et al, 1982). In Fig.

1.2 are shown three representative vertical sections
of potential density referenced to 4000 db (o,), one
each from the inflow end (section 6), the middle (sec-
tion 4) and the outflow (section 1). Section 4 is similar
to all other sections made within the channel (8 in
all) while sections 6 and 4 connect smoothly to other
sections in the Argéntine and Brazil Basins reported
by Reid et al. (1977).

The intersection between North Atlantic Deep
Water and AABW is near o, = 45.92 (Reid et al.,
1977; Hogg et al., 1982). Density surfaces with 45.87
< g4 < 46.11 slope downward from west to east geos-
trophically supporting a northward flow which inten-
sifies downward in the expected sense. At the two
extremities of the channel, sections 6 and 1 continue
this tendency to the deepest shown isopycnal, o,
= 46.13. However, there is a reversal of this trend on
section 4 such that isopycnals with o, > 46.11 actually
slope upward from west to east. A more detailed pre-
sentation is given in Fig. 1.3—potential temperature
isotherms contoured from a “YO-YO” profiling sta-
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F1G. 1.1b, Bathymetry of the Vema Channel within the area indicated in Fig.
1.1a. Also shown are hydrographic stations (solid circles) from Alantis H-107-leg
8 and mooring positions (solid diamonds). The region between the 4000 m isobath
and the dashed 4200 m one on the east delineates a plateau south of 30°30'S which
deepens to occupy the region between the 4200 and 4400 m isobaths further north.
Large bold numbers to the right denote section numbers.

tion down the eastern wall of the channel on section
4 (essentially identical to a section reported by John-
son et al., 1976). The reversal in isotherm slopes leads
to a region of highly intensified vertical temperature
gradient on the east walil which is further illustrated
by the two temperature profiles in Fig. 1.4—the
smooth one coming from the channel axis (station
115) while the stepped one is from the YO-YO por-
tion (112 cast 1).

The bottom several hundred meters of both profiles
in Fig. 1.4 are nearly homogeneous. Sarmiento ef al.
(1978) have taken this (and other similar property
distributions, e.g., dissolved radon gas) as evidence
for large vertical mixing rates in the channel—rates
that are at least two orders of magnitude greater than

those found elsewhere in the deep ocean. An alter-
native view, explored herein, is that these curious fea-
tures result from a dynamical interaction between a
broad western boundary current and the narrow
Vema Channel through which it must flow. In this
regard, note that the depth of the sharp vertical gra-
dient in Figs. 1.3 and 1.4, ~4225 db, coincides with
the depth at which the eastern wall of the channel
(Fig. 1.2) levels off to form a broad plateau before
rising again to the top of the Rio Grande Rise (see
also Fig. 2 from Hogg et al., 1982). This plateau will
be considered to be the major geometrical character-
istic of the channel: a constrictive effect which lat-
erally confines the deepest water but vertically con-
strains the more shallow regions.
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FiG. 1.2, Three cross sections of the channel showing depths of selected potential density surfaces o4; (a) section 6,
(b) section 4 and (c) section I. Section numbers refer to Fig. 1.1b.

Section 2 gives the mathematical formulation for
the problem following Gill (1977) and Gill and Schu-
mann (1979). In Section 3 the dynamical response
of two moving layers to a rectangular channel is ex-
plored in which the only constriction comes from
narrowing the channel. There are essentially three
regimes in this situation—one of which results in the
upper moving layer detaching from the left wall near
the control point.

In Section 4 a three layer model with a variable
bottom slope which more nearly resembles the Vema
Channel is presented. Here the flow is dynamically
constricted by the introduction of a plateau on the
cast side of an otherwise invariant channel geometry.
The results of this model are discussed in Section 5
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and related to the water properties described above.
Conclusions are in Section 6.

2. Formulation
a. Semi-geostrophic equations

The following analysis closely follows that of Gill
and Schumann (1979), and the reader is referred to
that paper for a more rigorous justification of the
assumptions and approximations. Their problem
concerned the influence of varying longshore topog-
raphy on a coastal jet; this work is an investigation
of a broad, deep current confined by the walls of a
channel. Consider the situation sketched in Fig. 2.1

12 1
10

4.8

FiG. 1.3. Isotherms (potential temperature contours) for section 4 which include a YO-YO station up
the eastern wall. Note the different horizontal scale for the YO-YO position and the variable temperature
interval below 0°C. Thick vertical bars show regions in which temperature changes by less than 0.002°C.
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in which homogeneous layers of fluid move along a
channel of depth H(x, y) under a resting layer which
is deep enough that a reference level (z = 0) lies en-
tirely within it. The z axis is vertical, the y axis along
the local isobaths and the x axis perpendicular to it
to form a right-handed cartesian system. If the chan-
nel is long with respect to its width and variations in
the y direction are sufficiently slow, then the along-
channel velocity component v will be much greater
than the cross-channel component u. Provided that
the time scale is no greater than the local inertial
period and that dissipative effects are negligible, this
narrow channel approximation results in the follow-
ing semigeostrophic equations; geostrophic in the
cross-channel balance but ageostrophic in the down-
stream balance:

_ aWwi/p)
fv; = Tax (2.1)
dy; . . o (pi/p)
o +w;e Vo, + fu; ——————ay . 2.2)

The subscript (i = 1, N) denotes layer number, p is
pressure, p density and u = (u, v) the horizontal ve-
locity vector. Each layer satisfies a shallow water con-
tinuity equation:

oD;

— + V,,-ﬁ,-D,-= 0,
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FIG. 1.4, Vertical profiles of temperature for stations 115 and
the first case of station 112 (see Fig. 1.3) showing remarkably dif-
ferent vertical structure.
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F1G. 2.1. Schematic diagram of model geometry.

and the vertical force balance is assumed hydrostatic
so that the pressure in each layer can be related to
its thickness (D;) and density by

Pi _ Pinx

N
- g,-(H— > D,) P o )
Pi  Pin j=i Po

Pi — Pi-
= (0)
Pi

being the reduced gravity acting between layers.

Eqgs. (2.1) and (2.2) can be combined into a vor-
ticity equation by cross differentiation to eliminate
pressure:

(_;9; fu Vh)[(f + 3—‘;)1),.—1] 0. @6

For simplicity, the flow is assumed to have uniform
potential vorticity within each layer and the latitude
band of interest is assumed small enough that the
planetary vorticity f can be treated as a constant.

Therefore s f
Vi1 | =
[(f + ax)D' ] D;’

where D; is an upstream potential depth equal to the
actual layer thickness at points where the relative vor-
ticity vanishes. An equation for the Bernoulli poten-
tial B; can be obtained from (2.2) rewritten in the

with
2.5)

2.7

form
ov; ov; 0B;
L+ = - .
ot (f ax)”' 3y’ 2.8)
with
B =24 % 2. 2.9)

It is convenient to consider the above equations
in nondimensional form. Taking D, for a depth scale,
a = (g.D)"*f~! (the Rossby radius of deformation)
for the length scale, af for a velocity scale, f~! for a
time scale and g, D, for a pressure over density scale,
the nondimensional equations become:
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op;
;= 2.10
= (2.10)
9 op;
- = 11
al + ;- vhvl + U; ay > (2 )
—aaD + V,-uD; =0, (2.12)
D= piet — &1H ~ 2 D)), po=0. (2.13)
i=i

with §; = g;/g,. The purely depth dependent term in
the pressure, —pogz, has been subtracted. Nondimen-
sional vorticity and Bernoulli equations are

. oy, D;
l+—== 2.14
ax D, (2.14)
ov; D, 0B;
= - :
a DT ey (2.15)
where B; = p; + VavA (2.16)

Note that (2.10), (2.13) and (2.14) can be combined
into a coupled set of inhomogeneous second-order
differential equations in a single variable, D; — D;:

&p; _ D — D,
6x2 Di
azp,-_ ” i -
- <9)c21 _g{ax Zj [6 3 (Ds = Dj)]} )

]

2.17)

The inhomogeneous term involves the second deriv-
ative of the bottom topography function, and for ar-
bitrary H(x, y) the equations must be integrated nu-
merically subject to suitable boundary conditions. A
further complication is that layer thicknesses will van-
ish somewhere on the sidewalls (positions x = x;* on
Fig. 2.1) or, under some circumstances, in the interior
creating different dynamical regimes at whose bound-
aries matching conditions must be satisfied. In these

situations the pressure and downchannel velocity’

component are matched across the boundary for each
layer in order that the velocity and relative vorticity
remain finite.

b. Steady flow

In the steady state (2.12) allows definition of a
transport streamfunction:

, (2.18)
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B, )
ox dox ox ax
oy,
= ._l Tt
D dx
using (2.16), (2.14) and (2.10). Therefore,
Bi = ¢,‘Di_l + Ki, (2.19)

where K; is a constant of integration, yet to be de-
termined [K; has no y dependence from (2.15)]. If the
total nondimensional transport in each layer is Q;,
the value of ¥; at the left (x = x;!) and right extrem-
ities {x = x;*) of each layer can be taken to be
¢, = —Q,/2 and ¢; = Q,/2, respectively. The Bernoulli
constraint then gives boundary conditions for the
coupled second-order differential equations of the
form

2, 9

+K; at i
2D at x=x7

pi+ (2.20)

! v;
2 1
Far upstream, where the channel is presumed to
open into a wide, flat bottomed basin the flow will
be confined to currents along the boundaries with the
relative strengths of left versus right being given by
the value of the streamfunction in the interior ;. The
constant K; in (2.20) can then be specified using the
hydrostatic equation (2.13) and the conditions that
; = 0 and D; = D, in the interior. For a given dis-
tribution of layer thicknesses D; and density ratios g;,
the mean flow will be specified by the layer transports
Q; and the interior values of the streamfunction ¢;.

¢. Wave motion

If the steady flow above is perturbed by small am-
plitude periodic disturbances of the form

v; = vFO)P(y — cf),  u; = uf(x)'(y — o),

where ¢ is the arbitrary downchannel functional
form, u*(x) and v¥(x) give the cross-channel forms
and c is the phase speed, the resulting motions will
also satisfy the semi-geostrophic equations (2.10) to
(2.13). Similar to Gill and Schumann (1979) it is pos-
sible to show that

N .
pr=pr. + £ 2 D, (2.21)
j=i
op* Dr .
PRl (2.22)

Boundary conditions are obtained from (2.15) with
the stipulation that the cross-channel transport Du;
vanish at the left and right boundaries of a layer.
From the perturbed version of (2.15) it can be shown
that
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dpf
dx

With uniform potential vorticity in each layer the
only information needed about the steady flow is its
strength at the layer boundaries v;* and the potential
depths D;. Where mean layer thicknesses vanish, ei-
ther at the bottom or internally, the perturbation pres-
sures p¥, and velocities v} must be matched on either
side.

Egs. (2.21) and (2.22) with conditions (2.23) rep-
resent an eigenvalue problem for the phase speed c.
There will be twice as many eigenvalues as there are
layers, one set for internal Kelvin waves moving up-
stream and another for waves traveling downstream.
In the one layer case, Gill (1977) has shown that hy-
draulic control occurs when the doppler shifted phase
speed of the upstream traveling wave vanishes and
that this coincides with an extremum in the channel
geometry. In the multi-layer case where several in-
ternal modes are possible, the analysis will be re-
stricted to the situation in which the upstream state
is subcritical with respect to all modes and control
occurs when the channel is narrow enough to stop
the slowest moving mode.

Stopping just the slowest moving mode should only
be considered to be “partial” control. It is also pos-
sible for a channel to completely control a stratified
flow. In the nonrotating channel problem, Wood
(1968) has shown that virtual control points can be
found where the slower moving waves are stopped
upstream of the real control (narrowest cross section).
The layers essentially decouple and behave in a self
similar manner, each resembling a one layer flow,
and upstream layer thicknesses are uniquely deter-
mined by known volume transports and the channel
geometry. The fluid layers in the Vema Channel high-
lighted in Fig. 1.2 do not behave in a self-similar
manner and it must be concluded that, at best, only
part of the baroclinic structure is being determined
by this constriction.

pF+@*—o =0 at x=x% (223)

3. Two-layer flow, rectangular channel

The simplest geometry in which to study rotating
stratified hydraulics is the rectangular channel which
has been used by both Whitehead et al. (1974) and
Gill (1977). In the two layer case there are a number
of parameters to specify: channel width and depth,
density ratios, potential depths, layer transports and
the division of this transport between upstream
boundaries. In order to isolate the essentials of the
stratified hydraulics problem (for Vema Channel ap-
plications, at least) only a small subset will be varied.
The channel depth is fixed and control achieved
through varying the width; layer depths and density
ratios are taken equal (D; = 1, §; = 1), but the layer
transport parameters (; and y; are varied over a lim-
ited range.
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In this way the upstream state is specified and the
channel walls are narrowed to the minimum width
(control width w,) which is still consistent with the
specified upstream state. This, invariably is found also
to be the point at which the slowest upstream wave
is stopped. In order not to change the upstream state,
beyond this point in the channel the width must in-
crease, and the solution smoothly switches to a
different branch which is now supercritical. This pro-
cedure is somewhat backward from the usual phys-
ical situation in which the channel geometry is spec-
ified and the controlled upstream state then calculated.
With these simplifications (2.17) is a system of lin-
ear second-order homogeneous differential equations
in D; — D; which are solved analytically. Four con-
stants result and these are determined from the four
boundary conditions (2.20). Special considerations
must be given to situations in which an interface in-
tersects the channel bottom or a layer thickness van-
ishes internally. The boundary conditions involve the
square of the layer velocity and are, therefore, non-
linear. Solutions were found using the packaged sub-
routine ZSPOW from the International Mathemati-
cal Subroutine Library (IMSL). This approach also
allowed introduction of further unknowns and con-
straints: for instance, the control width w, could be
found by permitting the channel width to be a vari-
able and specifying that wave phase speed vanish; or
the separation width w,, at which a layer separates
from the wall, could be determined by allowing width
to vary and by specifying that a layer thickness vanish
at the sidewall. .
Given a specified upstream state (Q;, y¥:, D;) the
evolution of the layer thicknesses as the channel nar-
rows to a control section and then widens once more
was found to assume one of three characteristic states.
For example, in Fig. 3.1 the layer depth configura-
tions for three values of ¢, are shown (Q, = 0,
= 0.32, Y, = 0) as a function of the channel width.
In Fig. 3.1a ¢, = ~0.5Q, and all the transport for the
upper moving layer is along the right boundary in the
upstream basin and that for the lower layer is evenly
split between both boundaries. The flow along the left
boundary in the lower layer causes the interface to
dip down and, as the channel narrows and the flow
accelerates to conserve mass, this tilt increases. For
widths more narrow than 0.68 nondimensional units
no solutions are found which are continuous with
those at slightly larger widths. At this point the slowest
wave phase velocity vanishes: this is the control
width—the minimum consistent with the chosen up-
stream conditions. As the channel is allowed to widen
again, the solution switches in a smooth way to an-
other branch and the lower interface continues to
deepen on the left boundary: flow here is supercritical
with respect to the slowest internal mode, and the
lower layer accelerates much as water does after flow-
ing over a dam. Eventually when the width becomes
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FIG. 3.1. Layer configurations (lower curves) and downchannel velocity (upper
curves) for different values of §; and different channel widths both upstream and
downstream of the control section (narrowest). Number inserted into each config-
uration is the channel width. In each case the section at which flow separation occurs
is also shown (Q; = @ = 0.32, > = 0.0): (a) ¥,/Q: = —0.5; (b) ¥,/Q, = 0.0; (©)

¥i/Qr = 0.5.

greater than w, = (.86, the interface leaves the left
wall, and the lower layer begins to hug the right one.
These solutions, for the lower layer, look qualitatively
similar to those given by Gill (1977) and Whitehead
et al. (1974) for the one layer problem: loosely speak-
ing the lower layer is hydraulically controlled.

When both layers have their upstream transport
evenly distributed between boundaries (Y, = ¢, = 0,
Fig. 3.1b) the upper interface must now dip down at
the left boundary while the lower one actually rises
slightly upward yielding the same transport through
lower speeds distributed over a thicker layer. Now as
the channel narrows both these trends are increased:
the upper layer on average gets thinner and the flow
must accelerate more than in the lower layer which
gets thicker. Control occurs for w, = 0.80, and as the
channel broadens downstream the upper layer steadily
thins until it vanishes on the left wall for w > w;
= (0,98, beyond which point, the upper layer hugs the
right hand wall. The one layer analysis might now be
related- to the upper layer.

Finally, if the upper layer transport in the upstream
basin is confined to the left wall (y, = 0.5Q,, Fig.
3.1c) while the lower layer transport is evenly divided,
as before; the lower interface tilts strongly upward
against the left wall. A small change in width to
w, = 3.14 causes the upper layer to detach upstream
of the control point which is achieved when the width
becomes w, = 2.56. The upper layer continues to

decrease in area in the supercritical region down-
stream.

The above discussion has been in terms of the sim-
ple concepts of mass continuity and geostrophy but
it is a simple matter to see that these tendencies are
consistent with potential vorticity and Bernoulli po-
tential conservation. For instance in Fig. 3.1b when
the upper layer shrinks along the left boundary its
relative vorticity must decrease and the flow accel-
erates at the wall (see the downchannel velocity pro-
files at the top of each layer configuration plot). This
acceleration decreases the pressure to conserve the
Bernoulli potential and the lower layer rises. Its rel-
ative vorticity increases and the lower layer speed in-
creases away from the boundary.

Which of the various states will be achieved in a
given situation depends on the values of the various
nondimensional parameters. In Fig. 3.2a the bound-
aries of the different regimes are shown in the ¥ -y,
plane for two cases in which the layer transports are
equal. Here a fourth regime is identified in which the
upper layer is everywhere separated from the left wall,
Increasing the layer transports to @, = @, = 0.89
(dashed curves) greatly increases the extent of this
region because interfacial tilts are magnified.

Having unequal transports in each layer causes the
boundaries separating these regimes in ¢,-{, space to
move (see Fig. 3.2b). With larger transport in the
upper layer (dashed curves) the region in which it is
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FIG. 3.2. The dependence of flow separation on ¥, and ¢, for
(a) equal transport in each layer (solid dots show positions of so-
lutions in Fig. 3.1) and (b) unequal transports in each layer. The
shaded area is the only regime in which the upstream state is un-
separated but separatcs before being controlled.

effectively controlled is larger. Likewise, decreasing
the relative transport of the upper layer diminishes
this region.

It is important to note that the region in which
separation occurs upstream of the control width, but
not everywhere (the shaded region in Fig. 3.2a), is
quite small: with little qualification it can be said that
the existence of a separated upper layer at some sec-
tion when the upstream state is not separated is a
strong indication that the flow is hydraulically con-
trolled.

The channel widths (scaled by the Rossby defor-
mation radius) at which control and layer separation
are achieved, although generally order unity are a
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strong function of the’ parameters involved. In Fig.
3.3 a plot is shown of w, and w, versus ¥, (Y, = 0,
Q. = Q, = 0.32). The control width varies from a
minimum of ~0.6 at ¥, = —0.230Q, to values well
over 3.0 in the regime where the upper layer is always
separated—the numerical scheme becomes inaccu-
rate for nondimensional widths much greater than
~4. Except when the upper layer is either always or
never separated the two widths are very nearly equal,
another demonstration of the close dynamical link
between the two phenomena.

4. Three-layer model, variable bottom

The two-layer rectangular channel model reveals
the essential physics of the separation process and its
links with hydraulic control. However, it is hardly a
realistic model of flow through the Vema Channel.
Referring back to the density sections of Fig. 1.2 and
the discussion in Section 1 there appear to be three
(somewhat arbitrary) density surfaces isolating layers
which respond in characteristically different ways to
the channel geometry. Water with ¢4 < 45.87 lies
above the Rio Grande Rise and little change occurs
as it flows north through the channel. Between
os = 45.87 and o4 = 46.03 vertical columns thicken
toward the east and this thickening increases on tran-
sit through the channel. The layer from o, = 46.03
to o, = 46.13 thickens on the west and thins on the
east at mid-channel before relaxing back to a state
similar to that seen upstream. Finally the layer with
o4 > 46.13 is everywhere in contact with the bottom,
It hugs the left wall at the entrance, swivels to hug
the right wall in mid-channel and then rotates back
on exit. There is a net loss in area of this layer—an
indication that the flow may be hydraulically con-
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FIG. 3.3. Dependence of separation and control widths on
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trolled for the flow is not symmetric between up-
stream and downstream states.

Using the formulation of Section 2, a three-layer
model was developed which includes a variable bot-
tom profile specified by the equation

+ 1 — 1
H(x) = H[—l + tanh(x S/zw) - tanh(x S/zw)]

- '/sz[l - tanh(x - x”)] . @

/4

Unsubscribted parameters are appropriate to the
channel and those subscripted by p are for an eastern
plateau which is hypothesized to be the dynamically
important constrictive effect. Only the plateau pa-
.rameters are varied in the downstream direction. The
constant H is the depth of the upstream basin away
from the sloping boundaries where the width w be-
comes much larger than the width of the slope s. This
depth is somewhat arbitrary and can be absorbed in
the constant K, in (2.19). For example, in the up-
stream basin away from boundary layers,

3
P = —6i[H - 2 D‘j]
. i=1

vl=0

v =¥

the constant K, can be set to zero and H determined
by satisfying (2.19) subject to the above conditions.

The system of differential equations is now non-
homogeneous and possesses nonhomogeneous, non-
linear boundary conditions. They were solved itera-
tively in a two-step procedure. First, guessing at layer
outcropping positions, the homogeneous form of the
system of differential equations was integrated three
times using three independent boundary conditions
on the west wall which also satisfied the Bernoulli
constraints there. The nonhomogeneous differential
equation was then numerically integrated using ho-
mogeneous boundary conditions on the west wall to
find a particular solution. The three homogeneous
solutions could then be linearly combined with the
nonhomogeneous solution and the amplitude factors
determined by making the layer depths vanish on the
east wall. Unless the initial outcrop positions were
correct, the Bernoulli constraints on the east wall
would not be satisfied. With these positions as un-
knowns, the IMSL routine ZSPOW was again used
to iterate until these conditions were satisfied. Kelvin-
wave solutions were then determined using the ve-
locities at the boundaries from the above calculation
and numerically integrating the wave equations in
Section 2¢ in a similar way such that the boundary
condition (2.23) was satisfied on the west wall and
the phase speed ¢ varied until it was also satisfied on
the east wall.
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A large number of parameters is required to com-
pletely specify the flow. The geometrical parameters
in (4.1) were taken to be

w = 60 km,

s=15 km} 42)
X, =5 km, '

S, =2 km

and the plateau height H, was increased from zero
until control was achieved and then decreased back
to zero. The density difference across each interface
was taken to be the same, 107 gm cm™. Upstream
layer depths were chosen to be

D, =500m, D,=450m, D;=300m, (4.3)

reflecting the tendency of layers to be thinner with
depth on section 6, Fig. 1.2. Transports were taken
to be (Sv):

0 =15 0,=25 0,=05 (44)

in approximate agreement with Hogg e al. (1982).
The most uncertain parameter is the division of this
transport between upstream boundary layers as de-
termined by y;. Rather arbitrarily, the values

Ui/O1 = ¥2/Qs = 0.3, $3/Q5 = 0.7

were chosen. For the upper two layers this implies
that 80% of the transport is along the west wall and
20% along the east wall. For the lowest layer there is
recirculation such that 0.1 Sv actually flows back
along the eastern upstream boundary and 0.6 Sv flows
in along the west. :

None of the above values are particularly critical:
the qualitative form of the result was found to be
obtained over a range although it was not possible to
explore the parameter space very exhaustively.

With the above specification of the problem iso-
pycnal slopes and layer speeds were determined and
are given in Fig. 4.1 for various heights of the eastern
plateau. At the upstream end of the channel (H,
= 0 m) isopycnals slope uniformly down to the east
except in regions on the left wall where layers vanish,
Here the uniform potential vorticity constraint causes
the relative vorticity to approach —f as the layer van-
ishes and geostrophy gives the shown configuration.
This is, perhaps, somewhat artificial but inspection
of Fig. 1.2 shows that there is a similar tendency in
the observed isopycnals. This change occurs over a
Rossby radius—approximately 9 km in this example.

-The true upstream state would be obtained in a
much wider basin with a flat bottom and more gently
sloping sides. Numerical inaccuracies prevented going
beyond the 60 km width in single precision or 80 km
in double. For the wider basin the flows do indeed
continue to separate into boundary currents. -,

Raising the plateau 5 km to the east of the channel
axis has the following dynamical effect on the mean
state. The middle layer is squeezed on the east pro-
ducing anticyclonic vorticity which accelerates the

4.5)
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FiG. 4.1. A three layer model of flow through a channel with variable bottom relief. The
only geometrical variable is the height of the plateau which rises 5 km east of the channel axis.
The plateau height is given above each configuration.

flow closest to the eastern boundary (Southern Hemi-
sphere). For the resulting increased shear to exist in
geostrophic balance this layer’s upper interface must
tilt down, stretching the upper layer and inducing
cyclonic vorticity which causes deceleration over the
-plateau: hence a developing region of weak southward
flow. The acceleration of the middle layer also reduces
the pressure felt by the lowest layer through the Ber-
noulli relation. Hence it rises but has little vorticity
change because of the sloping bottom.

When the plateau height is ~460 m the slowest
upstream moving Kelvin wave is stopped, and no
solutions for higher plateaus match smoothly. This
is the control point. As the height decreases again the
solution proceeds continuously to a supercritical
state, and at H, = 420 m the lower interface has risen
to the point that the middle layer begins to separate
from the knee of the plateau (in the Southern Hemi-
sphere). The separation depth coincides with the pla-
teau height, and as the plateau is further lowered a

finite region of separation exists at a depth very near’

the depth where separation first occurred.

5. Discussion and energetics

There are a number of similarities between the
three layer model presented above and the actual flow
conditions observed in the Vema Channel. The upper
layer deepens toward the east, and the effect increases
as the water goes through the channel. The conse-
quent stretching of vortex columns induces a weak
return flow over the plateau which increases toward
the north. Of course, negative flow areas cannot con-

nect to the upstream state and, therefore, should be
considered to come from different reservoirs of po-
tential vorticity and Bernoulli potential. To account
for this adequately seems an unnecessary complica-
tion at this point. The one current meter placed on
the plateau shows weak southerly flow in the mean
over a one-year record as contrasted with a strong
(7-21 cm s7!) mean flow on instruments less than 10
km to the west over the channel axis (Schmitz and
Hogg, 1982). All dynamically computed current sec-
tions from hydrographic data referenced to 3700 db
show regions of weak southerly flow here, as well.
This flow was also found to be essential in supplying
water from the Brazil Basin to increase the salinity
of the water coming from the south (Hogg et al.,
1982). The non-mixing model of this paper gives a
dynamical explanation for the existence of this weak
flow.

When the middle layer detaches its thickness van-
ishes, and the relative vorticity must equal —f for the
potential vorticity to remain finite. In Fig. 5.1 cross
stream velocity profiles are shown at 4250 db (the
separation depth) computed with respect to 3700
dbar from the six hydrographic sections of Atlantis
Il-leg 8. The speed increases dramatically within the
narrow confines of the channel, and the maximum
shifts from the west to the east (compare with pre-
dicted profiles for the middle layer, Fig. 4.1). With
this shift the cross stream gradient increases and for
Section 4 (the best sampled) becomes very nearly
equal to —f, consistent with the interpretation of the
steep vertical gradients in Figs. 1.3 and 1.4 as being
evidence of flow separation.
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Fi1G. 5.1. Downchannel speed at 4250 dbar as a function of cross-
channel distance calculated from hydrographic observations ref-
erenced to 3700 dbar for the six sections across Vema Channel.
The heavy line shows the bottom depth on section 4 and the other
sections have been plotted at their appropriate depths referenced
to this section. Circled numbers refer to sections on Fig. 1.1b. (Note
that on section 3 only one speed determination was possible.)

This intensified flow in the middle layer also causes
the vertical velocity shear to reverse sign—a feature
noted by Hogg er al. (1982) in a comparison of di-
rectly meandered currents and those computed geos-
trophically (their Fig. 8).

In Fig. 4.1 the flow separates at the knee of the
plateau and the depth of the separated interface re-
mains at this depth as the plateau subsides. This fea-
ture is also in approximate agreement with the ob-
servations (Fig. 1.2b and 1.3).

There is at least one aspect of the computed flow
which is not in agreement with observations. In the
Vema Channel, as the water pours out into the Brazil
Basin (Fig. 1.2¢), the isopycnals appear to relax back
to a configuration similar to that observed at the up-
stream end (Fig. 1.2a) although, on average, they are
somewhat deeper. The computed flow by comparison
would have a separated flow continuing to accelerate
as the walls widened into the downstream basin and
becoming ever more supercritical with respect to the
slowest Kelvin wave.

In more conventional nonrotating, one layer flows
it is usual for the flow in this circumstance to undergo
a hydraulic jump at some position downstream of the
control section which is governed by conditions even
farther downstream. This jump is stationary and al-
lows the flow to become subcritical again by losing
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energy but conserving mass and momentum. Poten-
tial energy increases across the jump but is more than
offset by a larger loss of kinetic energy.

Assuming steady flow, it can be shown that the
Bernoulli potential for a compressible adiabatic fluid
can be written as (see Batchelor, 1967, p. 158)

B=%uP+E+ap+ ¢, (5.1

where o(T, S, p) is the specific volume (inverse of
density) dependent on temperature 7" and salinity S
as well as pressure. The internal energy (neglected in
(2.16) is

E= —§ pda, (5.2)

where integration is along a streamline and ¢ is the
gravitational potential (geopotential)

P
¢=g2=¢r—f odp.

pr

(5.3)

Here ¢, is the potential of a reference surface assumed
to be constant on p = p,. The internal energy and
pressure contributions can be integrated by parts:

E+ap= f adp. (5.4)

It is usual to separate the specific volume into two
parts, one of which removes most of the pressure
dependence:

T, S, p) = ao(0°C, 35%0, p) + o(T, S, p),

with o the specific volume anomaly.
The Bernoulli potential now becomes

B =Y%jul + ¢, + fp ao(p)dp — fp ao(p)dp
Dr

(5.5)

[r 74
+ f odp — f odp.  (5.6)
pr
The pressure dependence of the combination of the
first two integrals disappears so that if By is the value
of B at some reference position,

14 f4
B — By = Va(ju> ~ ug|?) + f odp — f odp. (5.7)

po Dr

Tracing a streamline by the intersection of a potential
density (o4) surface along the eastern boundary it is
found that ¢ is very nearly constant, changing at most
by a few percent. The last two integrals are related
to the dynamic height anomaly D, so that

B — By = Va((ul? — [uof?)
+a&p — po) — 10(D — Dy) (5.8)

with & the average anomaly along the streamline.
In Fig. 5.2 the effective potential energy part of
(5.8) is plotted for various isopycnals along the east
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wall of the channel. Speeds required to make the total
energy constant are also shown. For ¢, = 46.05 and
46.10 the potential energy decreases monotonically
from south to north. Comparing the speeds needed
to make the kinetic energy compensate with those
calculated in Fig. 5.1 it is plausible to think of the
total energy being constant up to ~300 km after
which it decreases, most markedly on the last section.

Below a4 = 46.10 the potential energy also de-
creases to about the 350 km point (Section 2), but
a reversal occurs on the last section and the potential
energy rises. Even though the isopycnals actually fall
in section 6 (Fig. 1.2) this decrease in gravitational
potential energy is more than offset by compressional
increases in the internal energy and the effective po-
tential energy rises. This is a highly depth dependent
phenomenon, reflecting the baroclinic nature of the
hydraulic effect, but is reminiscent of the nonrotating
single-layer flow.

Pratt (1982) has numerically investigated the one

layer rotating problem and shown that the hydraulic -

jump resembles a long Kelvin wave in which ampli-
tude would decrease away from the eastern boundary
in the Southern Hemisphere. Fig. 5.3 shows the cross-
channel layer thickness distribution for the slowest
moving Kelvin wave at the last section in Fig. 4.1.
This mode is supercritical but, presumably, would
propagate more quickly at finite amplitude and ac-
commodate the transition to a subcritical state. The
wave is high-mode baroclinic having its largest am-
plitude in the middle layer and opposing effects above
and below. The amplitude tendencies are consistent
with the observed changes, the middle layer thickens
while those above and below get thinner and the up-

ENERGYZUNIT MASS (mésec?)
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FIG. 5.2. Effective potential energy of various streamlines de-
termined from where the indicated potential density surfaces in-
tersect the east wall. Distance is measured from section 6. Speed
values are those needed to make the total energy of the 46.10
surface uniform.
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FIG. 5.3. Layer thickness perturbations for the small-amplitude
supercritical Kelvin wave propagating in the furthest downstream
mean state in Fig. 4.1. These are normalized such that the maxi-
mum value is unity.

per layer to the east of the separation point also thick-
ens. Note that the thickness perturbation of the wave
is not continuous across the separation point; how-
ever, the pressure is. '

6. Conclusion

The steady, inertial flow of a multi-layered flow
through a constriction can assume one of several dif-
ferent states in which different layers separate from
the channel walls. A lateral constriction (rectangular
channel) accelerates all layers of the flow and ampli-
fies upstream interfacial slopes. The result is that if
a layer is thinnest at the boundary it will become even
thinner when the channel narrows. Given a specified
upstream state, subcritical with respect to all wave
modes, the channel can only narrow to a certain point
(the control width) at which the slowest upstream
wave becomes stationary. Downstream of this point
the channel must widen, the flow becomes super-
critical and the change in layer configurations con-
tinues to be amplified. If no layer has vanishing thick-
ness in the upstream basin, one of the layers will pinch
off and separate near the control point, almost always
just downstream from it. Widths at separation and
control are nearly equal.

These ideas have been applied t0 a model of the
Vema Channel with more realistic bottom topogra-
phy. The phenomenon of separation of an interme-
diate layer is offered as an explanation for the thick
so-called bottom boundary layers observed in the
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Vema Channel. It is suggested that these do not result .

from enhanced vertical mixing but instead are man-
ifestations of the dynamic adjustment of the isopyc-
nals to the narrow constriction.

This flow separation is circumstantial evidence that
the flow is also hydraulically controlled—at least
some. part of the baroclinic structure is being deter-
mined by the channel in an analogous way to that
in which a dam or a wier controls the level of water
upstream of it. More direct evidence for hydraulic
control is that the potential energy of deep streamlines
falls along the eastern wall going through the channel
but then rises abruptly upon entering the Brazil Ba-
sin—as though going through a hydraulic jump
downstream of a dam. The supercritical baroclinic
Kelvin wave has the form required to adjust the sep-
arated channel flow back to a non-separated, lower
energy state which resembles that upstream.

There are some fundamental questions concerning
stratified hydraulic control that have been glossed
over in this analysis and remain unanswered. Most
puzzling is the transition to continuous stratification
where an infinity of vertical wave modes becomes

possible with phase speed diminishing to zero as ver-

tical mode number increases. Any upstream flow
state would have to be initially supercritical with re-
spect to these high mode numbers. What the impli-
cations are and what role friction might play are ques-
tions presently unanswered.
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