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ABSTRACT

The pressure along a closed hydrographic section can be correctly calculated from density data, in the
ideal case of perfectly steady, geostrophic, density-conserving flow; and from dense, error-free data, excluding
certain degenerate cases. A corresponding practical method, aimed at an estimate of the pressure from real
hydrographic data, has been designed.

The calculation is made by a minimization of the volume enclosed by the surface B = F(p, P) in the P-
p-B space, where p is the density, P = fp. the potential vorticity, and B = B* + p, the Bernoulli function,
split in a known baroclinic part B* and an unknown pressure p,, defined at a chosen depth z,. The min-
imization is made under free variation of po(s), as a function of the tangential coordinate s; the minimum
volume is zero under the ideal conditions. Practically, one minimizes a moment rather than the volume,
with identical results in the ideal case.

The minimization requires an identification of “corresponding points” (endpoints of the same streamline)
from the P-conservation; this may become impractical in the presence of strong noise. In such cases an
alternative method based on an integral equation expressing the detailed flux balance of P and B is proposed.
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1. Introduction

The problem of determining the pressure, or equiv-
alently the normal geostrophic current, at a closed
hydrographic section has recently been revived by
Wunsch (1977, 1978), who suggests a calculation
based on density flux conservation for a number (M)
of layers bounded by isopycnals. If the unknowns are
the normal geostrophic velocities b; between a num-
ber () of hydrographic stations at a chosen level z
= z,, the problem is generally undetermined, since
practically M < N. Wunsch makes the problem de-
termined by applying a method of inverse calculation,
which becomes equivalent to a statement that = b,”
is minimum. Fiaderio and Veronis (1982) vary z, to
obtain an absolute minimum for = b,-z, removing an
arbitrariness in the choice of initial reference level.

The inverse method can be extended in different
ways. Fiadeiro and Veronis have suggested the use
of potential vorticity layers rather than isopycnal lay-
ers. More generally, one can combine conservations
of density, potential vorticity P = fp, (which can be
estimated from the density data along the section),
and possibly other variables (salinity, chemical trac-
ers, etc.) to improve on the calculation, in cases where
one believes that such conservation laws are appli-

! Contribution No. 1322 from the School of Oceanography,
University of Washington.

© 1983 American Meteorological Society

cable. However, as long as one only deals with net
integrated fluxes for a few layers, the problem is still
an undetermined one. An added principle, such as
the minimization mentioned, is required to make the
problem determined. )

One may ask whether the problem, in principle,
would be a determined one when using all physical
information, applying for steady, geostrophic and
density-conserving flow combined with complete, er-
ror-free density data along a closed section. As will
be shown later, the entire physics is expressed by the
detailed conservation of the density p, the potential
vorticity P and Bernoulli function B, expressed either
as conservation along streamlines or as flux-conser-
vation along streamtubes, and it is thus sufficient to
explore the consequences of such conservations in the
present problem. If a unique solution exists and can
be calculated, it should also be possible to design a
practical method for calculating the pressure from
real hydrographic data which has the advantage of
“ideal correctness’: as the assumed model equations
get better satisfied, and as the boundary data get
denser and more accurate, the calculated pressure will
converge toward the correct solution. Such *“ideal
correctness” holds for the locally applied “B-spiral
method” (Stommel and Schott, 1977) and also for
the inverse method when the region is made small
(Willebrand, private communication, 1982), but it
does not hold for the inverse method as applied by
Wunsch and by Fiadeiro and Veronis (loc. cit.) for
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non-local problems: in the latter case one generally
obtains solutions which do not conserve all the three
variables p, P and B along streamlines.

In the present paper, a geometric discussion of the
surface B = F(p, P) in the p-P-B space, expressing an
existing functional relation between p, P and B in the
ideal limit (Welander, 1971), is used to show the ex-
istence of a solution to the ideal problem, except in
certain degenerate cases (for example, no unique so-
lution is found for purely zonal flows, or for flows
with P uniform on isopycnal surfaces). The calcula-
tion of the solution can be made by a minimization
of a certain volume or moment in the p-P-B space,
and it is suggested that such a minimization is a prac-
tically useful way for estimating the pressure along
closed hydrographic sections in the real oceans.

. The method requires that “corresponding points”,
that are the two endpoints of a streamline, can be
paired by use of P-conservation. Such pairing may
be unique or non-unique; in the latter, each possible
case must be explored separately. If the data are very
noisy, the number of possible cases become large, and
the proposed method may become impractical. In
such a case one may go to another method which is
based on detailed flux balances. These balances are
applied for streamtubes defined by given ranges AP
and AB of the potential vorticity and Bernoulli func-
tion, and do not require pairing of corresponding
points. Mathematically, the problem is described by
a nonlinear integral equation: Practical tests of the
methods mentioned to real hydrographic sections in
the oceans are presently being carried out. The results
of these tests will be presented in Part II of the paper.

2. Basic equations, conservation equations and the
first integral

We consider an idealized situation in which the
oceanic motion is steady, incompressible (Boussi-
nesq-type), geostrophic-hydrostatic and non-diffu-
sive. A top boundary is placed at z = 0 (rigid lid
approximation), and a bottom at z = —H(}, ¢), where
A, ¢, z are longitude, latitude and height, respectively.
We further assume the existence of a free, lateral
boundary L, at which the density is prescribed as a
function of z and a tangential coordinate s. The basic
equations are

pfz X v=—Vp—zpg,

(la, b, ¢)
V-v=0 2)
v-Vp =0, 3

where v = (u, v, w) is the velocity, p the pressure, p
the density, p a mean density, g the gravity acceler-
ation, f = 2Q sin¢ the Coriolis parameter ( earth’s
angular speed), and z a vertical unit vector. When
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applying this model to the real ocean, the model den-
sity p cannot be identified with the in situ density.
The model density corresponds better to such ocean-
ographic variables as g, or g,, but the correspondence
is not a perfect one, and in calculations involving P
and B the errors could be critical, in certain situations.
The problem will be further discussed in Part IIL.

Boundary conditions are zero normal velocity at
the top and bottom?

w=0 at z=0,
v,=0 at z=-—H(\ ¢).

C))
(5)

At the free, lateral boundary L the model density is
assumed known, i.e.,

(6)

where s is a tangential coordinate along the boundary;
positive direction counterclockwise (see Fig. 1).

It can be shown that the potential vorticity P = fp,
and the Bernoulli function B = p + gpz are conserved
along streamlines:

v-VB =0, (7)

v.VP=0. (8)

If we denote v-V by D/Dt and denote horizontal
components by subscript A, we have
Df D Df

D
Dt(fpz)_Epz—*-prz“B;pz

D .
+ f{(Bﬁt_’) - (vh)z : Vhp - szz} =0,

since Dp/Dt = 0, (v3),* V,p = 0 (thermal wind equa-
tion), and Df/Dt = fw, (vorticity equation in the
geostrophic approximation). For the Bernoulli func-
tion

p=p(s,2)=0 onlL,

D -Dp Dp Dz
P HEe) = gLz g =0,
since Dp/Dt = 0, p, = 0 (steady state), .v,-V,p = 0
(geostrophic balance), and p, = —gp (hydrostatic bal-
ance).

The conservation of p, P, B along streamlines im-
plies a functional relation, say, F(p, P, B) = 0, which
could be multivalued. Since p = —g " 'p,, P= ~fg"'p..,
B = p— zp,, by the hydrostatic equation, this relation
represents a second-order differential equation for p
after z, with A and ¢ occurring parametrically. From
this first integral certain classes of exact solutions can

2 These boundary conditions will only be relevant for isopycnal
surfaces that intersect the top and bottom. Excluding these surfaces,
and dealing only with isopycnals that cross the lateral boundary
L between the top and bottom everywhere, the method of calcu-
lation described in the next section applies for arbitrary top and
bottom boundary conditions; for example, we may have an Ekman
vertical velocity applied at the top.
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FIG. 1. Schematic picture of an oceanic region bounded by a top
surface at z = 0 (rigid lid approximation), a bottom at z = —H(A,
¢), and a lateral boundary L. The density p(s, z) on L is assumed
known. Here A, ¢ and z are longitude, latitude and height, and s
a tangential distance along the boundary, measured counterclock-
wise from an arbitrary origin. The intermediate curve indicates an
isopycnal line along the boundary.

be generated (Welander, 1971). Any solution for p
generated from this differential equation will produce
associated density and velocity fields that satisfy all
the original equations, when we solve for p from the
hydrostatic equation, v, from the geostrophic equa-
tion, and w from the density conservation equa-
tion (3). :

3. Determination of the pressure from collapse of the
B* (p, P) function

We consider the picture of an isopycnal surface,
in a horizontal projection, shown in Fig. 2. A simple
streamline pattern is assumed, and arbitrary values
of P and B are assigned to the streamlines; the values
are shown at the two “‘corresponding points” on the
boundary L. If we plot P and B as a function of a
tangential coordinate s we generate the curves shown
in Fig. 3. If we plot B as a function of P we get the
curve shown in Fig. 4a—a line segment covered twice
as we go around the section. If we only have density
data we do not know B, but can estimate the baro-
clinic Bernoulli function

B* =—g f pdz + gp(z — zo). 9
20
The relation between B and B* is
B = BX(s, z) + pos), (10)

where po(s) is the pressure at z = z,. With the B*
values assigned to the boundary points in Fig. 2,
which are now unequal at corresponding points, we
generate the curve B*(s) shown in Fig. 3, and the
curve B*(P) shown in Fig. 4b. The curve B*(P) ob-
viously “opens”, enclosing a certain area. To come
from this curve to the curve B(P) shown in Fig. 4a,
we must add a function py(s) to B*, making the curve
collapse to a line segment. This can obviously be done
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FIG. 2. Schematic picture of an isopycnal surface with contained
streamlines, in a horizontal projection. It is assumed that P and
B vary monotonically across the streamlines. Minimum and max-
imum values of P and B appear simultaneously at the points 7,
T’ where the streamlines are tangent to the boundary. Except at
these points, each point s; on the boundary with values P;, B; has
a different “corresponding point” s;., with the same values P;, B;;
these represent the entrance and exit points of the same streamline.
Hypothetical values for P, B and the (non-conserved) baroclinic
Bernoulli function B* are given at selected points.

in an infinity of ways. However, if such a collapse is
required at many isopycnals, only one function py(s)
will work, in the ideal case. Actually, two isopycnals
will generally be sufficient to determine the solution.
We assume that we have N “stations”, and corre-
spondingly N unknown values, denoted p,. The col-
lapse of the B-values at two corresponding points
(assumed for simplicity to fall at the stations, as in
Fig. 2) is then expressed by the equation B* + p)
= B* + p,, determining the difference between two
p; values. For the N/2 pairs of points (N assumed
even) we get N/2 equations, and for two isopycnals
we generate N equations. There is a degeneracy in the
problem, as only pressure differences can be deter-
mined, but this is physically acceptable, as we are
only interested in the horizontal variations of pressure
in the geostrophic calculation.

If we let p vary continuously, the curve B*( p) will
generate a surface B*(p, P) in the p-P-B* space which
encloses a certain volume. An example of such a sur-
face calculated from an analytical example is given
in Fig. 6 (see next section for details). The solution
is obtained by collapsing this surface to one that en-
closes no volume, by adding a function py(s) to B*.

Bis)

F1G. 3. Plot of interpolated functions P(s), B(s) and B*(s) corre-
sponding to the values given in Fig. 2.
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F1G. 4. The functions B(P), case a, and B*(P), case b,
obtained from the curves shown in Fig. 2.

Geometrically, we achieve the collapse by translating
individually the isopleths s = constant (dashed lines
in Fig. 6) along the B* axis, until they all make con-
tact. In the example shown in Fig. 6 the s-isopléths
are actually plane curves, and the collapsed surface
a single plane. Note that the surface always can be
displaced uniformly along the B* axis, corresponding
to the addition of a constant to all pressure values.

There is an obvious extremum principle that can
be applied to obtain the solution: if we define the
positive volume V = [[ |B’ — B|dPdp, the solution
is obtained from minimizing V. The minimum value
is zero in an ideal case.

If we work with real data, the set of linear equations
for the p,’s are inconsistent, if we use more than two
isopycnals. We will thus arrive at a non-zero mini-
mum V. The solution obtained by this minimization
will be one that, in a certain sense, lies as close as
possible to an ideal one. For practical reasons the
minimization of the volume is replaced by a mini-
mization of a quadratic moment:

TABLE 1. Parameter valtues for the analytical
example (cgs units).

= —~15°, A, =15° ¢o=10°, &, =20°, g=981

a=4Xx10" k=-147x10"° g=-331070 X 10’
b=-2.039 x 107* [=2.56x 107° r=1.38809 x 107
c=0 m = 1.0261 pm = 1.028
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M= ff (B' — B)’dPdp. (11)

The moment vanishes together with the volume,
and presumably is as good a measure as the volume
when calculating approximate solutions.

The calculation of the pressure by the present
method does not necessarily require a closed hydro-
graphic section. Points on an open section can be
used as long as they are connected by streamlines.
This contrasts with total budget methods, which bal-
ance net fluxes of water, potential vorticity, etc.,
across the boundary: in the latter case a closed section
(or a section closed partly by a solid boundary) is
obviously required.

4. An analytical example

We consider an analytical example in the class of
error-integral type solutions (Welander, 1971). This
solution is generated from a linear form of the first
integral

P=ap+bB+ec (12)

Inserting P = fp,, B = p + gpz, and taking a z de-
rivative, gives the p equation fp,, = (a + bgz)p, which
has a solution of the form

p = po(A, ¢) v
+ C(\, ¢) f ’ expla$ + Y2bgSHf~'1d¢. (13)
0

The pressure solution is found from the integrated
hydrostatic equation

FI1G. 5. Isopleths for B* and p (dashed), case a, and P and p,
case b, along the boundary in the analytical example.
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FIG. 6. The surface B*(p, P) calculated for the analytical ex-
ample, with a few s-isopleths. These isopleths are all contained in
parallel planes.

P = Do\, 9) — goo(A, 9)z — gC(A, ¢)
X JZ dz' fz, explal + Yebgt®)f'1ds.  (14)
0 0

We have one relation between pg, po and C from Eq.
(12), i.e.,

fC=apo+ bpy + ¢ (15)

(an extra arbitrary function was introduced by the
previous z differentiation); further we have the two
boundary conditions (4) and (5) for a total of three
conditions. We assume a surface density of the form
po = kX + lp + m, and a surface pressure of the form
P = gpo + r, which makes the top boundary condition
automatically satisfied; further we let the bottom be
represented by an isopycnal surface p = p,,, which
makes the bottom boundary condition automatically
satisfied.

We consider a specific solution in a hypothetical
oceanic region between free lateral boundaries
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A = Ag, A3 @ = ¢o, ¢1. The parameter values chosen
are given in Table 1.

The assumed known boundary variables are the
density p(s, z), the potential vorticity P(s, z) = fp,,
and the baroclinic Bernoulli function B*(s, z) relative
to z = 0, B¥s, z) = —g [§ pdz + gpz. Isopleths for
these three boundary variables along the boundary
are shown in Fig. 5. The coordinate s is running coun-
terclockwise, starting from s = 0 at the northeast cor-
ner. The surface B*(p, P) with a few s-isopleths in-
serted, is shown in Fig. 6.

In the present case we know that the collapsed sur-
face must be a plane parallel to the one given by (12),.
and that the s-isopleths therefore must be plane
curves. The collapse is obviously unique, except for
uniform translations along the B* axis.

We demonstrate how the method of minimizing
the moment M works in this case. Eight “stations”
were taken along the described hypothetical section,
one in each corner and one at the midpoint of each
side. The moment is evaluated as

M=% 2 2 (By — By AP;Ap. (16)
i

The index i numbers the density surfaces, the index
j the stations. The index j' indicates values at a *““cor-
responding point”, obtained by linear interpolation.
If the potential vorticity at point j (index i omitted
for the moment) is P;, we look for two other con-
secutive stations & and k + 1 with P-values which
straddle this value. Weight coefficients @ and 8 = 1
— a are found from the relation P; = aPy + BPy+i,
giving Py = aPx + BPy.; = P;and By = aBj + BB+
The value of AP,'j is l/Z(Pi,j.H - P,',j_l), and A,'p is cho-
sen constant. The factor Y2 in relation (16) occurs
because we count the moment twice when summing

over all j’s.
We have B; —

By = b}y + p; — p;, where

. b} = BY — BY is a known quantity, and p,, — p,

= apy + Bpk+1 — D, is a linear combination of three
p;-values. The equations dM/dp; =0 (j =1, 2,
-« « 8), gives eight linear equations for the p,’s. The
equations are unchanged if a constant is added to all
p;’s. The degeneracy is removed by setting p; = 0 and
dropping one linear equation.

Using three isopycnals ¢ = 27.0, 27.5, 28.0, the
seven equations determining p,, ps, + + + Dg are

D2 D3 Da Ds Ds D Ds

3.825 0.287 —2.145 —0.868 0 0 —0.341 -0.599

0.287 2.594 —-0.100 0 0 0 —1.382 —~4.480
—2.145 -0.100 15.061 1.162 0. —-0.106 —12.848 —-20.134
—0.868 0 1.162 9.237 0.351 —-2.508 —4.630 = -10.275

0 0 0 0.351 5.923 —-2.055 —-4.,051 —2.975

0 0 —-0.106 —2.508 —2.055 2.923 1.745 4.620
—0.341 —1.382 —12.848 —-4.630 —4.051 1.745 20.125 27.942
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TABLE 2. Values for p, calculated by minimization of M with
three isopycnals (a), and two isopycnals (b). Exact values from the
analytical solution are given by (c). In all cases p, = 0. Units are
centibars.

Value of j
2 3 4 5 6 7 8
(a) —-0.728 -1.460 -1.034 —-0.612 0.119 0.848 0.425
(b) -0.727 -1.459 -1.033 -0.612 0.120 0.848 0.427
() —0.730 -1.460 -1.036 —0.612 0.118 0.848 0.424

and direct solution of this gives the p; values listed
in the first line of Table 2. The second line gives the
corresponding solution when the intermediate iso-
pycnal o = 27.5 is disregarded, i.e., only two isopyc-
nals are used. The third lines gives the exact values
according to the analytical solution. As seen, the
agreement is almost perfect.

5. Case of non-unique streamline patterns: the inte-
gral method

In the previous simple example the “corresponding
points” that represent the two endpoints of a stream-
line could be paired uniquely because the potential
vorticity attained the same value only twice when
following an isopycnal around the section. One can
construct analytical solutions for which the same P
values are attained four, six, or more times along an
isopycnal, giving several possibilities of pairing *“cor-
responding points.” For example, if we have numer-
ical P-values

along an isopycnal we can obviously find two stream-
line patterns, one rotated 90° from the other:

121 121
o ){( 0 ad 0 —— o
1oy 1 1, 1

with cases of crossing streamlines excluded. If the
number of identical P-values is large, the number
of possible streamline patterns increases rapidly, al-
though some cases can be eliminated by continuity
requirements going from one isopycnal to the next.
In all cases where the analytical solution is a unique
one we should, however, be able to recover it by a
calculation of the minimum AM-value, as described
previously. Such a calculation must be made for every
possible pattern; only one of these patterns should
give the zero M-value (or a very small M-value when
numerical errors are added).

Going to the case of real data we generally have
a large number of possible streamline patterns, except
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when the region is small and the data are smooth.
The noise comes to some extent from errors in the
measurements but the main part is due to the exis-
tence of internal waves and mesoscale eddies. We
may want to smooth out such features, but it is not
obvious how this should be done without introducing
further errors in the assumed conservation relations.
In the end, we are still likely to have several possible
streamline patterns. If we calculate the minimum
M-values for each of these, one may be small and the
others large, in which case we feel that ‘“a solution™
is found. However, it may also happen that we have
several solutions with M-values of comparable mag-
nitudes, and must accept equally many solutions.

It seems possible to avoid the problem of sorting
out the different streamline patterns by using an an-
alytical approach along the following line. The con-
servation of p, P and B along streamlines can be writ-
ten in flux form as

ff F(p, P, By,dzds = 0, an
L

where F is an arbitrary function of its arguments, the
three conserved variables, and v, is the normal ve-
locity, in geostrophic form. Incompressible flow is
obviously assumed. If we integrate over a layer
bounded by two neighboring isopycnals p; and p;
+ Ap, with thickness Ah;(s), we end up with the
equation '

f F(P, By, Ah;ds = 0 (17a)

that can be applied to a series of such layers.

Eq. (I7) or (17a) contains all the physics of the
problem, and applying it to an ideal case we should
be able to derive the same solution as is obtained by
the M-minimization. The potential advantage of a
calculation based on (17a) is that we do not need to
do the pairing of “corresponding points” and thus
need not examine the possible streamline patterns.

A project is under way for calculating the Bernoulli
function B and thus the unknown pressure py(s) from
Eq. (17a) by using a series of piece-wise constant
functions F;:

F,=1 P,<P<P,+AP

B, < B< B;+ AB

F; =0 outside this interval

(18)

The number of values P,, B, and associated inter-
vals is determined by practical considerations. If the
data are ideal or nearly ideal we use many points and
fine intervals, if there is strong noise in the data, we
are satisfied to use a few points and large intervals.
If we have N stations and thus N unknown pressure
values p;, application of the equation to R intervals
for P, and S intervals for B, at I layers, produces a
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total of RSI equations for the N unknowns. In one
practical example we plan to use N = 20, R = §
= 8, I = 4, producing 256 equations for the 20 (really
19, since one p; value is arbitrary) equations. The
problem is typically overdetermined. The equations
are nonlinear, since both B and v, depend on p;, and
it is suggested to solve them by an iterative method,
using B* instead of B as an argument in F; in the first
calculation, solving for a set of p;’s through a least-
square fit for the resulting linear system, then replac-
ing B* by a better approximation using the calculated
p;-values, etc. Instead of calculating the solution by
exploring a number of possible streamline patterns,
we try here to iteratively steer into a solution which
conserves both P and B along streamlines, which
themselves are undetermined until the end of the cal-
culation.

It is finally noted that once the boundary value
problem is solved by one method or another, and the
functional relation between p, P and B is established
at the boundary, it may be possible to solve also for
the density and pressure fields at interior points, that
is, points in the region enclosed by the section. As
mentioned in Section 2, the functional relation rep-
resents a second-order differential equation for p after
the vertical coordinate z. In regions of closed stream-
lines every interior point is connected to boundary
points through a streamline, and we therefore only
need the function in the range known from the
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boundary values. If we further have two suitable
boundary conditions for the pressure at the top and
bottom (for example, the conditions w =0 atz =0
and z = —H, will do) the p-equation presumably
could be solved along local verticals. Since the prob-
lem generally is non-linear, weé may not necessarily
find unique solutions.
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