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ABSTRACT

There are pairs of resonant triads with two common components. Analytic solutions describing the evo-
lution of a system with such a double resonant triad are presented and compared with the resonant three-
wave problem. Both solutions for constant energies (and shifted frequencies) and for maximum energy
exchange (and unshifted frequencies) are discussed. The latter problem is integrable; a subclass of solutions
can be written in terms of those of the one-triad system.

Unlike problems of mid-latitude quasi-geostrophic flow and internal gravity waves in a vertical plane,
there are resonant triads of equatorial waves with the same speed which have a finite interaction coefficient.
This includes the case of second-harmonic resonance or, more generally, a chain of resonant harmonics (a
finite number of them in the case of Rossby waves, but an infinite number for inertia-gravity modes). Some
analytic and numerical solutions describing the evolution of different chains of resonant harmonics are
presented and compared with the (resonant) three-wave problem. Both solutions for constant energies (and
shifted frequencies) and for maximum energy exchange (and unshifted frequencies) are presented. The
evolution of a chain of resonant harmonics with more than five components is aperiodic, chaotic and
unstable.

The derivation of the equations of long-short wave resonances and Korteweg-deVries is straightforward
from the evolution equations in phase~space, i.¢., there is no need of the usual and cumbersome perturbation
expansion in physical space. These equations govern the interaction of a packet of Rossby and inertia-gravity
waves with a long Rossby mode of the same group velocity and the self-interaction of long Rossby waves,

respe_ctively.

1. Introduction

In the first part of this paper (Ripa, 1983), we posed
the problem of weak interactions of equatorial waves
in a one-layer model of the ocean or the atmosphere.
A classification of all possible resonant triads was
presented, particular cases are triads of waves with
the same speed and non-local triads (in frequency
space). This paper is devoted to applications of those
results.

The simplest nonlinear wave system is probably
that of one isolated resonant triad for which there is
an explicit general solution [see Ripa (1981), hereafter
R81]. The next step in complexity may be that of two
resonant triads with two common components, a to-
tal of four waves. Here we study the possibility of
such systems in the equatorial waveguide and some
of their dynamics.

In the systems of quasi-geostrophic flow (QGF) and
internal gravity waves on a vertical plane (IGW)
waves with the same speed do not interact; as a con-
sequence, one wave is found to be an exact nonlinear
solution. That is not true for equatorial waves [see
Ripa (1982), hercafter R82], and thus an interesting
problem is to study the evolution of the system when
originally there is only one wave. This is addressed
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here for the particular case in which the initial wave
resonates with harmonics.

Finally, there are modes which effectively resonate
with a continuum of waves instead of a discrete set,
e.g., when the group velocities of two members of a
resonant triad coincide. These cases must be studied
with the evolution equation for wave packets which
is usually obtained by a perturbation expansion ap-
propriate to each particular problem. We present here
an alternative way of deriving that equation which
we believe to be simpler and more general.

This paper is developed as follows: Resonant dou-
ble triads are studied in Section 2, and the resonant
interactions among harmonics are discussed in Sec-
tion 3. Section 4 deals with the derivation of the evo-
lution equation for wave-packets, and a summary is
provided in Section 5.

Sections, equations and tables from the first part
of this paper are quoted using the prefix I-. The
reader is referred to the Appendix in that publication
for notation used throughout.

2. Resonant double triads

The simplest truncated system with nonlinear be-
havior is the three-wave problem (resonance with the
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harmonic, discussed in the following section, is but
a limiting case of that one). Here we investigate the
existence of resonant four-wave systems, made up of
a couple of resonant triads with two common com-
ponents in the equatorial wave-guide and study some
of their dynamics.

An N-wave system with only resonant 1nteract10ns
“has N degrees of freedom and (at least) three integrals
of motion: quadratic energy E®, quadratic pseudo-
momentum P®, and the value of the hamiltonian H
[see (I-3.13) and (I-3.14)]. The three-wave problem
is then integrable: its general solution, from an ar-
bitrary initial condition, is written in R81. We briefly
discuss its characteristics now, for the sake of com-
parison with larger systems. Two nondimensional
parameters, m' and m, fully describe the properties
of each solution. These may take any value on the
triangle (—1 <m'< 1,0 < m <1 — |m’]); m'is related
to the value of P?/E® and m to that of H*/[E®}.
The energies |Z/?, and instantaneous frequencies,
—d, arg(Z)), are periodic functions of time [with the
sole exception of the (m' = 0, m = 1) solution].

The cases m’ = —1 or m' = +1 correspond to all
energy in one of the stable components (extreme
slowness and thus smaller frequencies).

For (im = 0, —1 < m’ < 1), there is no energy
exchange and the instantaneous frequencies are con-
stant and shifted from their free values. These cases
correspond to Re(Z,Z,73) = 0 (e.g., X, = iY, with
Y, real, in the notation of Section I-3.b).

At the other sides of the (m, m') triangle, (m = 1
— |m’], =1 < m’ < 1), there is the maximum energy

exchange compatible with E@ and P® conservation’

and the frequencies are fixed at their free values. The
X, are real, aside from unimportant constant phase
factors, restricted by Im(Z,Z,Z,)= 0. {Thus H = 0,
and (I-3.14) does not represent a constraint indepen-
dent from (I-3.13a).] If |m’| =~ 1 there is a catalytic
energy exchange between one of the stable compo-
nents and the unstable one in a time scale determined
by the energy of the other stable mode, which is quite
unaffected by the process. If m’ = 0, on the other
hand, the solution represents the complete decay of
the unstable component into the stable ones followed
by generation of the former by the latter, just once.

Finally, for (0 < m < 1 — |m'|, -1 < m’ < 1), the
energy exchange is partially inhibited by the conser-
vation of H and the instantaneous frequencies are
both shifted and modulated.

a. Kinematics

Given a resonant triad with components (7, 2, 3)
and in which s, is between s, and 53, we investigate
the possible existence of a component 4 such that the
interaction in the triad (4, 1*, 2) is also resonant.
[Component I*, with frequency and wavenumber
equal to —w, and —k;,, is physically the same as I,
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because its amplitude is equal to —Z%; see (1-2.19).]
The interaction and resonance conditions, for both
triads, take the form

Wy + wy + w3 = O, siw; + Sawy + S3w3z = O, (2.18)
wg — W + wy = 0, Sawgq — S1w; + Shwy = 0, (21b)
m+m+ny=o0dd, ns+n;=even. (2.1c)

All cases of a pair of RT with two common com-
ponents can be written in this way, via an appropriate
renumbering. Components I and 4 have the maxi-
mum |w| of triads (1, 2, 3) and (4, 1*, 2) respectively,
i.e., the four slownesses are ordered, in increasing or
decreasing values, as (s,, Ss, 51, §3); this implies sgn(ws)

= sgn(w;) = —sgn(w;) = —sgn(ws) [cf., Egs. (I-3.4)
and (I-3.5)).
The value of s, may be calculated, from (2.1a, b),
as
_ [2518; — s3(51 + )]
4 [Sl + 8 — 253] (2.2)

In order to evaluate n,, we use (I-4.12) with (aq, b, ¢)
= (1, 2, 3) and (I*, 2, 4), which yields

2(1 — 8;8¢Hw,wa/Bc = N3 — Ny — N,
=N, + N, — N,,
and finally, from the last two terms,
ng=2n +2n—n;+1

+ [sy + 5= (53 t+ 84)/2)c. (2.3)

Using the fourteen classes of RT from Table I-3
(including the permutation of b and ¢) we search for
values of s4 and n,, from (2.2) and (2.3), that cor-
respond to an equatorial wave, namely such that n,
is an integer larger than —2 and with s, within the
appropriate bounds from Table I-1. It is found that
there are isolated solutions (depending on the values .
of n;, n, and #n;), which fall into one of the following
classes: 1) R’RRR, 2) R'RRK, 3) GGG'R', 4) GGR'G’,
5) GGR'K, and 6) GGKR', where R: R or M(sc
< —1), and G G or M(sc > —1). Thus, there are a
total of 16 types of double-RT; classes (2), (3) and
(6) have an infinite number of solutlons in each
branch of (s, 52, $3).

b. Dynamics
Let v and v' denote interaction coefficients of the
two triads, namely,
y=~,2,3), v =v41%2). (2.4)

Truncating the expansion of the system to only these
four components, its evolution is controlled by [see
(I-3.10)]

[d: + iwd)Zy = ~Y'wa 2, 2%,
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[d+ i0|]Z) = Y01 Zy Zy + ya Z% 2%,
[d + iw)Z;, = —Y'02 ZF Z, + Yy, ZY Z},

[d + iws]Zs = yw3 ZY Z%. .5)

A complete discussion of the types of solutions of
(2.5) is beyond the scope of this paper; there does not
seem to exist a general (analytic) solution, unlike for
the three-wave problem. A few types of solutions are
discussed here.

1) STABILITY PROBLEM

First we consider the stability of each of the four
components; solutions of the form

i=12234, (26)

valid as long as |Z,| > |Z,) for b # a. Solving for the
6w; and neglecting nonlinear terms that do not in-
volve Z, (for each value of a), we get

Bwj = (05 —ﬂ'*; K, ﬂ), l‘l‘z = w2w3l721l2(0‘2 - 1)5

for a=1, (2.73)
dw; = (1, 0, =, )y ¥ = —ww3lyZ(1 + &%) > 0,

for a=2, (2.7b)
dw; = (1, ~p, 0,0), ¥ = —wwlyZs*>0,

for a=3, (2.7¢)

6(")] = (”’9 i, 0’ 0)1 ”'2 = 0)1(.02(')/'24‘2 < 0’

for a= 4, (2.7d)

where

a? =

~(v'/7)(wa/w3) = 0. (2.8)
Therefore, component 1 is unstable if o> < 1 [dom-
inance of the (I, 2, 3) RT] or stable if o > 1
[dominance of the (4, I*, 2) RT], component 2 is
stable, component 3 is stable and component 4 is
unstable.

In summary, 2 and 3 are stable, as required by E
and P conservation (I-3.13) because these compo-
nents have the extreme values of slowness; 4 is un-
stable, as the analysis of triad (4, 1*, 2) alone deter-
mines; finally, the stability of I, which is the unstable
component (intermediate slowness) of (I, 2, 3) and
one of the stable components (extreme slowness) of
(4, I*, 2) depends upon the parameters of which triad
dominates.

2) EQUILIBRIUM SOLUTIONS

As a second example, we seek solutions of (2.5)
with constant-energies and shifted-frequencies, viz.,
of the form

Z, = iY, exp[—iw1 + 8)1], (2.9)

where Y, and é are real and constant. Substitution

P. RIPA

1229

of (2.9) in (2.5) poses a nonlinear eigenvalue problem,
whose solution is given by the eigenvector

Y=Y, 8Y,+~'Y2=0,
80Y; = vY,2 =0, (2.10)
and the eigenvalue
8 = (Y2 +yY 2 =By + yPE®.  (2.11)

This is not the only equilibrium solution; those of
(2.7b, c) are other examples of solutions without en-
ergy exchange. In comparison with the one-dimen-
sional continuum of equilibrium solutions from the
three-wave problem, solutions (2.7a, b) (with all the
energy in an extreme-slowness component) are equiv-
alent to the m' = +1 cases, whereas solutions (2.9)
through (2.11) (with equal relative frequencies shift)
correspond to the m' = 0 case (see R81).

The m’ = 0 case of the three-wave problem, Eqgs.
(I-4.5) and (I-4.6), may be recovered by making either
v =0orv'=0in(2.9)-(2.11). Notice that the relative
frequency-shift 6 is larger for the double-RT than for
the three-wave problem (for the same total energy).
Also, there is no equi-partition of energy in (2.10),
unlike in its three-component counterpart.

3) MAXIMUM-ENERGY-EXCHANGE

As in the three-wave problem, we expect these so-
lutions to correspond to unshifted frequencies, e.g.
(I-3.9) with X, real. For this class of solutions H
= 0, and thus (I-3.13a) and (I-3.14) do not represent
independent constraints on the evolution of the sys-
tem. However, the solutions of (2.5) with real X, have
an extra integral of motion,

I = vyw3 Xy — v'ws X5 = constant. (2.12)

Together with (I-3.13) this allows for a complete in-
tegration of the model equations. We then expect all
possible solutions of X,(f) to be regular and periodic,
just as for the one-triad case [which has, for real X,
three components and two integrals of motion, £?
and P?)].

As an example, a vanishing value of I reduces the
evolution equations in the form

dX,/dt = y(1 + &®)w, X2 X3, (2.13a)
I=0= dXz/dt = 'Y(l - az)w2X3X,, (213b)
dX3/dt = ’Y(.O:;Xle, (2130)

which are, via an appropriate renormalization of the
X, the equations for the maximum energy-exchange
solutions of the three-wave problem [e.g., see Eq.
(5.23) in R81 for the expression of the X, (1)].

For o < 1 [dominance of the (I, 2, 3) RT over
the (4, I*, 2) RT], and for the particular Case,
I = 0, the dynamics are those of the three-wave prob-
lem with 7 as the unstable component and 2 and 3
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(or 4) being stable because the nonlinear coeflicient
in (2.13a) has a sign opposite to those of the coeffi-
cients in (2.13b, c). [This is a general property of the
gyroscopic equations (2.13).] For o > 1 [dominance
of the (4, I*, 2) RT over the (I, 2, 3) RT], on the
other hand, 7 and 2 are the stable components, and
3 (or 4) is the unstable one of the reduced three-wave
system. Notice that o® < 1 («® > 1) is the condition
of instability (stability) of I, (2.7a), derived without
assuming / = 0.

3. Harmonics resonance

An equatorial wave is not an exact nonlinear so-
lution, unlike for the case of the systems of QGF and
IGW studied in R81. Thus if the initial fields corre-
spond to the structure of a single mode with param-
eters (k;, w;, n;) (namely, Z,(0) # 0 and Z,0) = 0,
for a # 1), then (I-2.25) through (I-2.27) imply that
other components with wavenumbers equal to any
integer multiplied by k, will be excited. For a short
enough elapsed time the amplitudes of modes with
k=0, w#0or |kl =2|k| and n = odd grow like
a|Z,(0)|’t; those with other values of k and/or parity
of n (as well as components with k¥ = w = 0) grow
like higher powers of ¢ and |Z,(0)|. If the amplitude
|Z,(0)| is small, the energy loss will be enhanced if
one of the harmonics is in resonance with the initial
wave, i.e., if there is a component 2 such that

w2+2w1=0, k2+2k1=0,

wR/c
- 0.5
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FIG. 1. Examples of Rossby waves (asterisks) that interact res-
onantly with a harmonic (diamonds) (see Table 1). Notice the
possibility of more than two modes coupled this way; e.g., n = 6,
5, and 1 along the line w = —3kc/41.
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FIG. 2. As in Fig. | but for gravity modes. The modes lie on the
line w = —3kc, and are in infinite chains (e.g., n=0, 1,5, ..., or
n=2,937 +--).

and
ny; = odd. (3 1)

This equation is a limiting case of triad of waves with
the same speed, whose solution is given by (1-4.7)
with n, = ny= n, and n. = n,, viz.,

5, =8 = (2n, — 81, — 3)/(30¢),

n, <n;, (Rossby), (3.2)

or i
s; = 51 = —1/(30), (gravity). (3.3)

The corresponding wavenumber of the fundamental
wave is given by

k2 = (2B/3¢)(n; — np)[1 — (s¢)7?]
=~ (28/3¢)(n; — ny), (Rossby),

(the last approximation represents an error smaller
than 1.6% in k), or i

k> = (8/120(3n, + 1), (gravity). (3.5)

Several examples of waves that interact resonantly
with the second harmonic are shown in Fig. 1 (for
Rossby modes) and Fig. 2 (for gravity ones); their
frequencies and wavenumbers are marked in the cor-
responding dispersion curves. Values of k and w are
also presented in Table 1 along with that of the in-
teraction coefficient v calculated for the ocean model
[A» = 1 in (I-2.2)]. For the sake of comparison, the

n2=4n,+ 1,

(3.4



JuLy 1983

P. RIPA

1231

TABLE 1. Examples of resonance of a wave with a harmonic. The first nine (last six) cases are made up of Rossby (gravity) modes.
R is the deformation radius and ¢ is the separation constant; R? = 2¢/8. The interaction coeiﬁcxent v is evaluated (for Tables 1, 2 and

3) for the ocean model; A = 1 in (I-2.34).

n kR wR/c

1 2 1 2 1 2 sc L74

2 { 1.173 —2.346 -0.207 0.414 -17/3 0.8744
3 1 1.645 —3.290 -0.197 0.395 —25/3 0.6059
4 3 1.161 -2.322 -0.120 0.240 -29/3 0.6854
4 1 2.008 —-4.017 —0.183 0.365 -33/3 0.4482
5 3 1.638 -3.277 -0.133 0.266 -37/3 0.5420
5 1 2.316 —4.631 —0.169 0.339 —41/3 0.3512
6 S 1.158 -2.316 —0.085 0.169 —41/3 0.5889
6 3 2.004 —4.009 -0.134 0.267 —45/3 0.4325
6 | 2.587 -5.174 —0.158 0.317 —49/3 0.2878
0 1 0.408 ~0.816 -1.225 2.449 -1/3 0.1656
1 5 0.816 —1.633 —2.449 4.899 -1/3 -0.1079
2 9 1.080 -2.160 -3.240 6.481 -1/3 0.0819
3 13 1.291 —2.582 —3.873 7.746 -1/3 —-0.0681
4 17 1.472 —2.944 —4.416 8.832 -1/3 0.0593
5 21 1.633 —3.266 —4.899 9.798 -1/3 -0.0530

value of yc corresponding to any trio of interacting
K modes is equal to 3'%/(2x'4) ~ 0.6505. (Recall
that the importance of nonlinear effects is measured
by the value of |yZ].)

In the case of Rossby waves, the resonant chains
are usually made of two components, although there
are solutions with more modes (e.g., n = 6, 5, and
1 along w = —3kc/41). The chains must always have
a finite number of components, though, because
Rossby modes have bounded |w).

Gravity modes, on the other hand, are found in
infinite chains along the w = —3kc line; zonal and
meridional numbers given by |k/k,| = 2, 4, 8, ...,
andn=4n, + 1,4(4n, + 1) + 1, 4[4(4n, + 1) + 1]
+ 1, .. .. In fact, these chains of resonantly coupled
modes are more dense: they involve all components
with k = jk, and n = j’n, + (j2 — 1)/3, where j is
any integer different from zero or a multiple of 3, and
ki and n, are the parameters of the fundamental wave,
related by (3.5). Even though there are infinitely
many harmonics in resonance, these chains are dy-
namically quite different from the system K modes
since the value of v, instead of being a constant, is
a function of the #n;, due to the different meridional
structures.

[More generally, it follows from the expression for

w*(n, s) in Table I-1 that certain harmonics of a fun-
damental wave (with parameters &', n’, and «') belong
to a resonant chain (say, k; = ]k' and w; = ]w with
j an integer) if n, = j*n’ ¥ (*— + s¢)/2 is also
an integer, and (I-2.26) is satisfied for the correspond-
ing triads. This can only happen for certain values
of the slowness s of the chain (e.g., sc must be a
rational number); the particular cases (3.2) and (3.3)
correspond to the condition that the first and second
harmonics (j = 1, 2) belong to the chain. Resonant

chains of R (G) modes have a finite (infinite) number
of components, and higher harmonics correspond to
modes more (less) trapped to the equator. The com-
ponents of any coupled triad of high gravity har-
monics have also large values of #n;; the results of
Section I-2.e may be used to determine whether v is
negligible or not: the slowness s in (3.2) or (3.3) is
the solution of A(2n; + 1 + sc¢) = 0; with (1-2.40) it
follows that the stationary-phase latitudes are given
by yo? = —sc28™!. Consequently, only high harmonics
in resonant chains of westward propagating G waves
(—1 < sc < 0) interact, and the interaction region is
within one deformation radius from the equator.]

a. Resonance of the first and second harmonics

To illustrate some of the consequences of (3.1),
when there are no other states resonantly connected,
we consider (I-2.27) truncated to include only com-
ponents / and 2, i.e., the two-wave problem

[d,+ iw2]ZZ = l/Z‘szz?‘Z}
[ + iw]Z, = yo,Z% ZF

The coupling coefficients have been written using
(I-3.6). Neglect of the excitation of other components
(assuming that they are not initially present) is ap-
proximately valid for an elapsed time ¢ such that u?t
<}w,| (Bretherton, 1964); u is the inverse of the non-
linear time scale, defined in (3.8) below. If the reso-
nant pair is resonantly coupled with one or more
components, it is shown below that the truncated sys-
tem (3.6) is then justifiable only for a much shorter
time, viz., fult < O(1).

A system similar to (3.1)/(3.6) was obtained by
McGoldrick (1970) studying the interaction between
surface gravity and capillary waves.

(3.6)
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The general solution of (3.6) may be found from
that of the three-wave problem (e.g., replacing Z; by
Z,,and Z, and Z, by Z,27"? in the solution of Sec-
tion 5 of R81; it corresponds to the m’' = 0 cases of
that paper). All possible solutions are classified by a
single parameter m that may have any value from 0
to 1. Given any initial condition, m is calculated by
m = Y[l + 32 tan(e — =/6)], where 1 + cos(3a)
= 7/2Im(Z2Z)A(Z,) + 1Z,)73, and 0 < «
< w/3.

The m = 0 solution is given by (1-4.5) and (I-4.6)
with Z, and Z, replaced by Z,27'2 and Z, by Z,; it
corresponds to the case of constant energies and in-
stantaneous frequencies. Since both fundamental
wave and the harmonic suffer the same relative fre-
quency shift, this solution constitutes a first approx-
imation to a nonlinear periodic wave that propagates
with speed (1 = v|Z,|)/s’ without changing shape.
Notice that, unlike the Stokes wave (and due to res-
onance of the interaction), 1) the energy of the second

"harmonic is half that of the fundamental component,
2) the change in phase speed 6(w/k) may have either
sign, and 3) d(w/k) is O(|Z]) instead of O(|Z}?).

The m = 1 solution, on the other hand, corre-
sponds to the maximum energy exchange between
both components. In particular, this is the solution
of (3.6) for the initial condition Z,(0) = 0; viz.,

Z, = Z\(0)* tanh(uf) exp(—iwyt — ié.)} e

Z, = Z,(0) sech(ut) exp(—iw,?) :
where §, is the phase of Z,(0), and

e = (1, 1, 2%, Z,(0)]. (3.8)

The fundamental wave looses half of its energy to the
resonant harmonic in time ¢ = 0.88|u™' (i.e., cosh(ut)
= 2!72); with (3.8) this time is equal to the period of
the wave for |yZ,(0)] ~ 1/7. This solution is illus-
trated in Fig. 3a. Notice that the energy flux is from
the component with smaller frequency to that with
larger value of |w|. The opposite is true for the decay
. of component 2 into I, which is also represented by
(3.7) but from some initial time #, such that |u|f
< —1. This decay is not like the case of parametric
subharmonic instability of internal gravity waves in
which the frequencies are related as in (3.1) but
the wavenumbers are very different in magnitude;
see R81. , .

The two-wave system is one extreme case of res-
onant coupling; the other is given by the Kelvin
modes problem (see R82, Section 3): any interacting
trio is in resonance and has the same value of v
[=(2 + N)/(3'7227'4¢)] due to the fact that K com-
ponents have all identical meridional structure.
Therefore, it is interesting to compare the evolution
of both systems starting with one single wave at ¢
= 0: in (3.6) only the resonant second harmonic is
allowed to be excited whereas in the non-dispersive
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(K) case all harmonics gain energy; see Fig. 3b. For
the K modes problem the amplitudes of the funda-
mental wave and the second harmonic are given by
(3.7) with the replacements

tanh(ut) — [Jz(4ut)]/(2ut)}
sech(ut) — [J;Qu))/(ut) )’

and the solution is not valid for 2u¢t > 1 [R82 Eq.
(3.17) for j = 1, 2; the nonlinear time scale * used
in Section 3.3 of that paper is equal to 1/(2u)]. After
atime ¢t = 1/(2p), the initial wave will have lost 22.5%
of its energy and 12.4% will have been gained by the
first harmonic in the X modes system, (3.9). For the
two-wave problem (3.7), on the other hand, the en-
ergy loss is 21.4% and all of it goes to the second
harmonic. However, the most important difference
between both systems is that in the K modes problem
high harmonics gain energy coherently because the
value of v is the same for all triads, building up a
front at ut ~ Y.
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b. Resonance of the first, second, and fourth har-
monics

Now we consider the case of a wave I that interacts
resonantly with the second 2 and fourth 4 harmonics,

ie., .
k4 = _2k2 = 4k1,

Wy = _2w2 = 4(1)],

ns, np = odd. (3.10)

One particular example is given by the three R modes
(ny, ny, ng) = (6, 5, 1) with sc = —41/3. Neglecting
(off-resonant) interactions with other components,
the evolution of the system is controlled by

d + iw]Z, = vy, Z3 2}
[d + iw)Z, = Y'0, ZE Z% + Vovw, Z¥? ¢,
[dt + iw4]Z4 = 1/27,0)423‘2

(3.11)

where v and 4’ are the interaction coefficients of the
triads (I, 1, 2) and (2, 2, 4), respectively (for the R
modes just mentioned it is y¢ = 0.5889 and v'c¢
= 0.3512; see Table 1).

The system (3.11) does not have. the structure of
the three-wave problem discussed in R81; it is in fact
a limiting case of the five-wave problem, just like
system (3.6) is a limiting case of the three-wave prob-
lem. The evolution of system (3.11) is constrained by
the conservation of total quadratic energy (I-3.13a)
and of the value of the Hamiltonian (I-3.14).

The system (3.11) has two equilibrium solutions
(constant energies/shifted frequencies) of the form
(2.9) corresponding to Re(Z;Z,%) = Re(Z,Z,%) = 0,
with '

6=-v'Ys, 2E,=E,, E =0, (3.12a)
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FI1G. 3. Evolution of a wave (f = 1) that interacts resonantly with harmonics (j > 1). The energies of
the harmonics with § < 5 are shown, relative to the total quadratic energy E‘® (which is a constant of
motion). The nonlinear inverse time scale u is defined in (3.8). (a) Only the fundamental wave and the
second harmonic interact resonantly (several examples of pairs are presented in Table 1 and Figs. 1 and
2); the solution is given by (3.7). (b) The Kelvin modes problem (all interacting triads are resonant and
with the same interaction coefficient). Neglect of the off-resonant excitation of non-Kelvin modes makes
the solution invalid for ||t > %2 (see Ripa, 1982). (c) First, second and fourth harmonics interact resonantly
[see equations (3.10) and (3.11)]. (d) A chain of inertia-gravity modes that interact resonantly, truncated
down to the first six components; the interaction coefficients are presented in Table 2.

or
6= —vY,, 4‘YZE4 = ‘Y'ZEz,

E = [2 = v?/¥]E,. (3.12b)

The second solution is possible only if 2y2? = v~

As another extreme example of solution, (3.11)
was integrated from an initial condition correspond-
ing to only the first harmonic, viz., Z,(0) = E'2, Z,(0)
= Z40) = 0. It is easy to show that the solution in
this case takes the form (I-3.9) with X,: real, and thus
Im(Z,Z?) = Im(Z, Z,2) = 0.

Evolution of the energies is shown in Fig. 3c. The
parameter u is given by Eq. (3.8); this may be related
to the initial velocity field v(x, 0) (produced by the
n = 6 Rossby wave) in the form

pT = 0.6606 max|sv|, (3.13)

where T and s are the period and slowness of the
initial wave. If we make v’ = 0 in (3.11) we recover
the system (3.6); the solution is given by (3.7) [see
curve al in Fig. 3]: the energy goes rapidly [expo-
nentially, in a time ¢ = O(x™')] to the second har-

monic. With v’ # 0, the energy goes ultimately to the
fourth harmonic, but much more slowly [see curve
cl in Fig. 3]; in fact, after a time ¢ = O(x ') the system
reaches a state of quasi-equilibrium given by

E, ~ Ely'/ymt| = O™
E, =~ E/Qut)* = O(t™?)
E4NE_E| =E_O(Z‘—l)

(3.14)

This type of slow evolution is*not possible for the
regular three-wave problem (see R81).

¢. Resonance of many harmonics

The evolution of the systems (3.6) and (3.11) differ
for, say, ut > ‘2 because of the energy gained by the
fourth harmonic in the second case. We expect the
dynamics of the system of inertia—-gravity modes in
Fig. 2 to be quite different from these two cases since
an infinite number of harmonics are resonantly con-
nected. We also expect the evolution of the G-chain
to differ from that of the Kelvin modes problem be-
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cause the interaction coeflicient is not the same for
all triads.

A search for equilibrium solutions of the form
(3.19) for all components in the chain results in a
nonlinear algebraic eigenvalue problem in infinite
dimensions (6 is the eigenvalue and Y, the eigenvec-
tor). We suspect that it may have different solutions,
as (3.12a) and (3.12b) for the three-harmonics prob-
lem (3.11), but we are not aware of a mathematical
proof of this statement.

In order to investigate the maximum-energy-ex-
change solutions, on the other hand, we integrated
(I-2.27) truncated to the first six resonant harmonics
which have the mixed Rossby-gravity mode as fun-
damental; the parameters of modes and triads in-
volved in the integration are presented in Table 2.
The evolution of the first four energies (starting, as

before, with all the energy in the fundamental wave, -

n = 0) is presented in Fig. 3d. The parameter u is
given by Eq. (3.8); this may be related to the initial
velocity field v(x, 0) (produced by the M wave) in the
form

uT = 1.8328 max|vl/c, (3.15)
where T is the period of the initial wave. Thus, the
ratio of the fundamental wave period to the nonlinear
energy transfer time scale (i.e., the time it takes for
most of the energy to go to the second harmonic) is
approximately equal to the ratio of the maximum
particle velocity to the zonal phase speed (for Rossby
modes) or to the separation constant ¢ (for inertia-
gravity modes).

The curves shown in Fig. 3d are insensitive to trun-
cating the resonant chain to either five or six com-
ponents, up to ut =~ 3. The integration was made
using a fourth-order Runge-Kutta scheme with uAt
= 0.005. An idea of the errors involved in the nu-
merical integration is illustrated by the change of total
quadratic energy which should be constant: its order
of magnitude is given by E@@)/E®0) — 1 ~ 5
X 107Bput, at least for pt < 500 (100 000 time steps).

Cases a, ¢, and d in Fig. 3 (with 2, 3, and 6 com-
ponents respectively), present important differences
for ut > 1. In order to investigate further the dynam-
ical difference between the system of inertia—gravity
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modes (which has an infinite number of RT, un-
evenly coupled) and those with two or three har-
monics [Egs. (3.6) or (3.11)]. The former was inte-
grated, starting as in Fig. 3, for different truncations
of the resonant chain. Figures 4 and 5 show the evo-
lution, for ut < 50, of the envelopes X, of the G-chain
truncated to the first five and six resonant harmonics,
respectively, (the corresponding resonant triads are
Nos. 1-4, and Nos. 1-6 from Table 2).

With only five harmonics (M = 5), Fig. 4, the sys-
tem rapidly goes into a typical solution of three-wave
problem: components (; = 2) and (j = 7) have no
energy, and there is a catalytic energy exchange be-
tween the (j = 1) and (j = 5) harmonics in a time
scale determined by the energy of the (; = 4) mode
which is approximately constant (see R81. It corre-
sponds to the m’ = 1, m = | — m’ solution). Notice
that the extrema of (j = 1) correspond to the zeroes
of (j = 5), and vice versa. (The presence of compo-
nent 2 is essential to initially transfer energy from I
to 4, via the chain generation I + I —» 2,2+ 2 —
4.) Surprisingly, the same asymptotic solution was
reached starting from several random initial condi-
tions {(constrained to real X,, with uniform and in-
dependent distributions), i.e., this is a stable-limit
cycle of the system (Lorenz, 1963).

With one more component (M = 6), Fig. 5, the
solution is found to be, again quite unexpectedly,
aperiodic and unstable.

The trajectories of Figs. 4 and 5 are shown in Fig.
6 in the form of energy partition diagrams for selected
triads: a point near, say, the vertex / [the side (4, 5)]
of the triangle (I, 4, 5) means that component / has
much more (less) energy than 4 4+ 5. Since total qua-
dratic energy is conserved, a point in M — 2 inde-
pendent triangles, as shown in Fig. 6, gives the in-
stantaneous energy distribution among all compo-
nents in an M-wave system. That distribution and
the signs of the X, fully determine the state of the
system in the cases of Figs. 4 and 5, because the X,
are real.

In a three-wave system, one point in a single tri-
angle describes the energy partition; conservation of
pseudomomentum (or action differences) requires the
trajectory to be along a straight line. The possible

TABLE 2. Components used in the integrations of Fig. 3d and /f. The parameters j and n are the order of harmonic and the meridional

quantuni number [k, = §28/(12¢), w; = —3k,c]. The interaction coefficients of each resonant triad involved is presented in the bottom
line. ) :

] n Triads

1 0 XX X X

2 1 X XX X

4 5 X X XX

5 8 X X

7 16 X X

8 21 X X

R4 0.1656 -0.1079 -0.0894 -0.0614 0.0554 —0.0530
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FIG. 4. Evolution of the envelopes of the resonant harmonics
which have the mixed Rossby-gravity wave as fundamental (see
Table 2). The ordinates are X,(t)/[E®]"/2. The system is truncated
to five components; the solution is regular and stable.

lines are parallel, the longest emerging from the vertex
corresponding to the unstable component (maximum
frequency) and the shorter are infinitesimals at the
other two vertices (see Fig. 6 in R81). The trajectory
at the (/, 4, 5) triangle in Fig. 6a takes precisely this
form, after a short transient, as pointed out in the
analysis of Fig. 4 (however, one can appreciate a slow
drift towards the vertex 4). On the (2, 5, 7) triangle,
the system is most often in the vertex 5, and there
is a sudden excursion to the side (2, 7) each time the
amplitude of component 5 goes through a zero.

The orbit of the M = 6 case, Fig. 6b, on the other
hand, looks quite ergodic. The system passes through
all available points in the triangles. [This was firmly
demonstrated integrating the system from several
random initial conditions and for an elapsed time
much larger than that of Fig. 6b: the triangles are
effectively (and always) filled up by the orbit drawn
on paper.] Notice that there is not a minimum of
energy, or any other critical parameter, for the onset
of chaos in this case: a change of the total energy only
modifies the nonlinear time scale through the defi-
nition (3.8) (see Section 1-3.b).

Similar chaotic behavior has been found, after the
pioneering work of Lorenz (1963), in several models
with few components (e.g., Lorenz, 1980; Pedlosky
and Frenzen, 1980, Pedlosky, 1981; Gent and
McWilliams, 1982; in geophysical fluid dynamics
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problems). However, unlike for the M = 6 case, the
systems studied by these authors are dissipative,
forced and (in the cases of Lorenz, 1963; Pedlosky
and Frenzen, 1980; Pedlosky, 1981) linearly unstable.
The chaos in these systems is related to the presence
of strange attractors, which need dissipation for their -
existence (for a review article, see Ott, 1981). On the
other hand, the solution with M = 6 is an example
of chaotic evolution in a conservative, unforced, few-
components system, and, furthermore, with the phases
locked due to the resonance. We believe that this is
a case of conservative chaos, first discovered by
Hénon and Heiles (1963) in the study of the rotation
of a star in an axial symmetric galaxy. (For a review
article see Tabor, 1981). Meiss (1981) also found cha-
otic behavior in a resonant five-wave system when
all triads (not just those where the test-wave is present)
are allowed to interact; see Section I-3.b.

In order to further stress the dramatic difference
between the A = 5 and M = 6 cases, variance spectra
of the X, are presented in Fig. 7. The spectra were
calculated from records of length u7 = 163.68 in
order to increase the frequency resolution and, start-
ing from a random initial condition to minimize the
effect of transients. Groups of four consecutive bands
were averaged in the M = 6 case because otherwise

! j=8,n=214

J \/ N7 N
_' .
[ j=l,n=0
OJ
-1
pt
T T T T T T L T \J 1
[ 5 10 1] 20 25 30 335 40 45 50

FIG. 5. As in Fig. 4 but with the system truncated to six
components; the solution is irregular, aperiodic, and unstable.
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FI1G. 6. Trajectories of the systems in (a) Fig. 4 and (b) Fig. 5
in a energy partition diagram for selected triads.

the spectra are too noisy; no band averaging was done
for M = 5. _

The most outstanding feature in the spectra of the
M = 5 case, Fig. 7a, are the peaks at the frequency
f1 = 0.183u cycles, for components / and 5, which
correspond to the catalytic energy exchange between
these two components, evident in Fig. 4. This non-
linear frequency is indistinguishable from the three-
wave prediction, [v(1, 4, 5)*5w,*(E;)]'? = 0.1838u
cycles. The amplitude of component 4 is modulated
at twice this frequency. One can also perceive a peak
for 2 at 2f, produced by the generation / + 1 — 2,
a peak at 3f, for I and 5 produced by the interaction

of 1 with 2 and 4, respectively, and a peak at f, for
7 produced by the interaction of 2 and 5.

No significant peaks were ever observed in the
spectra of the M = 6 case, Fig. 7b.

It may be argued that ut = 50 is too large an elapsed
time for boundary effects to be neglected in the case
of the ocean. Moreover, we expect the solution to be
quantitatively quite different if more resonant har-
monics are included in the integration. Nevertheless,
these calculations are done in the spirit of arbitrarily
isolating one part of a complex problem, as stated in
the Introduction of Part I. The unexpected results of
the M = 5 and’' 6 cases justifies this philosophy,
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F1G. 7. Variance spectra of the envelopes X, of the problem from
(a) Fig. 4 and (b) Fig. 5.

eventhough we do not know yet its significance for
a more realistic system.

4. Wave-packet interactions

We conclude by showing that the nonlinear evo-
lution equation for the wave-packets can be derived
directly from that of the Z,, (I-2.27). Let us deﬁnc
the amplitude of a wave-packet by

Aagx, £) = iQm) "' (Bc™")'

X f dk, Z (1) explik,x), (4.1)

where a = (ay, k,) and the factor / is introduced for
convenience. This is not the most general, or even
useful, definition (e.g., suitable filters may be included
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in the integrand): it is used here just to illustrate the
method; a more detailed description will be presented
elsewhere.

We now: 1) Expand the linear and nonlinear coef-
ficients in (I-2.27) at some central wavenumbers from
a discrete set (k,,), in the form

w, = 2 wa,j(ka - k
]

ao)ja

(4.2a)

= 2 ol iy — ko) (k. — ko). (4.2b)
i1

Here ¢% need not be expanded in k,, because k,
= —k, — k., in virtue of (1-2.25). 2) Multiply (I-2.27)
by exp(ik,x) [=exp(—ikyx — ik.x)] and integrate in
dk,. 3) Use (4.1) and (4.2), obtaining

i0,Ag, = Z wg Ay, + Y2 Z 2 ol AL, A%, (4.3)
where
Auj = (—i0x = kapY Ag- 4.4)

In principle, eq. (4.3) is equivalent to (I-2.27) and
thus an exact representation of the original model
equations (I-2.1), but the latter involve only a few
dynamical fields and are of first order in 9d,. Clearly,
(4.3) represents no improvement over (I-2.1). It was
obtained with the purpose of constructing approxi-
mations, by a suitable truncation of 1) the set of
modes (ao, kg,), 2) the expansion (4.2a) of the linear
frequencies w,, and 3) the expansmn (4.2b) of the
nonlinear coupling coefficients ¢%°. The dynamical
fields are obtained by expanding the coefficients of
the linear eigenfunctions in powers of (k, — k,,) and
replacing (4.1) in (I-2.14). This expansion is also trun-
cated at an order consistent with the approximation
done to (4.3).

The advantage of obtaining the approximate equa-
tion in this way instead of the customary perturbative
multiple time-scale expansion is that the coefficients
are but derivatives of known functions; it is easier to
calculate them and, more importantly, to improve
the first approximation by including extra terms.

One particularly simple example is that of the self-
interaction of the Kelvin mode, because the expan-
sion (4.2) is in this case exact at the first order, viz,,
we = ke and o2 = —(2 + N@Y2x"N Uk, + k).
Moreover, A(x, ?) is real in this case, and thus (4.3)
takes the form of the one-dimensional advection
equation 9,4 + cd,4 + (2 + N3Y2xV4"149,4
= (). This way of obtaining the equation, used in R82,
should be contrasted with the strained coordinates
perturbation method of Boyd (1980a).

A couple of other examples of use of this method
are included next, with the purpose of clarifying it.

a. Self-interaction of long Rossby modes

We consider the self-interaction of a long-Rossby
wave, i.e., the central component has parameters &,
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= wy = 0 or so¢ = —2n — 1; see Table I-2 (we drop
the subscript a for simplicity, since we are dealing
with a single mode). Iterating twice the equation sc¢
= —2n — 1 — w¥(1 — 5%c?)/Bc (from Table I-1), with
w = k/s starting at k = 0, we get
I ak?kc
(2n+1)
_ B 'ddn(n+ 1)
@2n+ 1)
The detuning w, + w, + w,, of any interacting triad,
k, + ky, + k. = 0, of Rossby waves with the same
value of n is then O(ak,®). Therefore, using the expres-
sion (I-2.33) for the evaluation of the coupling coef-
ficients we get

036 = yw, + O(kl3)
= —yc2n + 1)7'(ky + ko) + O(K?),

+ O(k?)
4.5)

(4.6)

where v, which is evaluated at k, = k, = k. = 0

vanishes unless n (=n, = n, = n.) is odd in virtue of
Eq. (I-2.26). The amplitude A(x, ?) is again real, to
lowest order in k. Therefore, using (4.5) and (4.6) in
(4.3), including only Rossby modes of the same value
of n, we get

A= cn+ 1)7'(1 + @dy + vA4)3,4A =0, (4.7)

which is the Korteweg-deVries equation (sece Miles,
1981). For a review of the solutions of this equation,
see Miura (1976). Notice that for » = —1 it is «
= 0, and we recover the nonlinear advection equation
which controls the self-interaction of Kelvin modes;
whereas for n = even, it is v = 0 because (I-2.26) is
violated. The self-interaction of even-#, long-R modes

is governed by the modified Korteweg—deVries equa- -

tion, with cubic nonlinearity (Boyd, 1980b).

Clarke (1971) and Boyd (1980b) derived this equa-
tion in a B-plane model like the one in this paper, for
a midlatitude channel and for an unbounded equa-
torial ocean respectively. These authors make the
usual multiple time-scale perturbation expansion
with the original model equations [formally, A4 is
O(6?) and is a function of 8(x — Cf) and &%, with 6
< 1]. The point here is that it is easier to derive (4.7)
from the evolution equations in phase-space, (I-2.27).

As a result, the nonlinear coefficient of the Korteweg—

deVries equation is but vy. From the expression (I-
2.34) and for the ocean model (A = 1) we calculate
(n, v¢) = (—1, 0.6504937), (1, 1.3327326), (3,
0.8253934), (5, 0.6677558), (7, 0.5807777), (9,
0.5231703), (11, 0.4812273), (13, 0.4488387), (15,
0.4231557).

b. Long-short wave resonance

As a second example, we consider the case of a
long-Rossby mode, with label ¢, interacting with a
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packet of shorter Rossby or inertia-gravity waves,
with label a,. The resonance condition (I-4.2a) in-
dicates that the group velocity of the packet matches
the phase-speed of the long wave, viz.,

4

4.8)
where n, must be odd as required by (I-2.26) and
positive (i.e., the long mode cannot be a K, n. = —1,
because C, < c¢ for n, # —1). The solution of (4.8)
is reduced to finding a root of a third degree poly-
nom1a1 since

c[1 + sc(4n + 2 + sc)]

[4n + 2 + s¢(3 — s2¢?)]

o[cX1 + 25C) — 3C7]
(&? + YBsc?)

If ¢ is an R mode, it must be n, < #n., because C,

> —c/(2n, + 1) for k, # 0. There are solutions for .
any n,, though, when ¢ is a G; asymptotically it is

sq¢ — —(Q2n. + 1)™" as n, — oo. For large values of
n, and n., the interaction occurs mainly at the turn-

ing latitude of the long wave, if n. < n,, or where the

local meridional wavelength of the long mode is half
that of the short wave, for n. > n,; cf., Eq. (I-2.43a)

with a < ¢, or (I-2.43b), respectively. Several ex-

amples of long-short wave resonance are presented

in Table 3.

The expansion (4.2a) takes the form

kag) + Clafks —

C = dw/dk =

4.9)
C' = dPw/dk?* =

wg 7= way + Cuolk, —

w, =~ Cyok,,

kao)?, (4.10a)
(4.10b) -

where. C,, and C,, are evaluated at k, = k,,. The
triads that build up the nonlinear term have wave-
numbers of the form (k,, ky, ko) = (ksy + 84, —ka,
+ 8, —85 — 8.). The detuning is then 12C7, (3,7 — 8;°),
and therefore the dominant term for the coupling
coefficients is given by the first term in (I-2.33),
namely

bc
Tq = YWgqq,

0% ~ —yC,(k, + ks), 4.11)

where v [=v(ao, af, )] is evaluated at k, = k,,, k;
—k,, and k. = 0. Using (4.10) and (4.11) in (4.3)
we then get

[0, + Cpo0x — Y2iCl0xx
[0, + Caoax]Ac =

Once again, there are no ad hoc nonlinear coefficients
to evaluate; rather, these are given by yw,, and
vC,,. Boyd (1983) has obtained (4. 12) making a
multiple time-scale perturbation expansmn with the
original model equations.

Ma and Redekopp (1979) have found many inter-

’

— iyweyAclAa =0

} . @4.12)
'VCaoax(,Aalz)
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TABLE 3. Examples of a long, almost non-dispersive, Roosby mode that interacts with a shorter inertia-gravity (—1 < sc) or Rossby
(sc < —3) wave. The phase-speed of the long wave, —c/(2n + 1), matches the group velocity C of the short one; C' = dC/dk.

Short

Long
n n sc wR/c kR C'/Rc yc
1 1 —0.4641 2.5425 —1.1800 0.4136 0.1281
1 2 —-0.4114 3.3237 -~1.3675 0.2941 0.1063
I 3 —0.3892 3.9474 ~1.5363 0.2406 0.0988
1 4 —-0.3768 4.4834 ~1.6895 0.2086 0.0924
1 5 —0.3690 49611 ~1.8305 0.1868 0.0864
1 © —0.3333
3 2 —5.5662 0.1943 ~-1.0817 —0.0889 0.6265
3 1 —3.8392 0.3495 ~1.3419 -0.1914 —-0.7688
3 1 —0.3039 2.4374 ~0.7407 0.4435 0.0626
3 2 —0.2385 3.1776 ~0.7579 0.3245 0.0045
3 3 -0.2111 3.7698 ~0.7958 0.2690 0.0140
3 4 -0.1959 4.2791 ~0.8385 0.2350 0.0282
3 5 —0.1863 4.7334 ~0.8818 0.2113 0.0360
3 0 —0.1429
) 4 —9.6073 0.1153 —1.1081 -0.0327 . 0.5565
5 3 -8.0703 0.1827 —1.4744 -0.0555 -0.0556
5 2 —6.3293 0.2609 —1.6513 ~0.0886 —0.9585
5 1 —4.2601 0.3834 —-1.6331 -0.1631 0.7294
5 1 -0.2572 2.4237 -0.6233 0.4410 0.0153
5 2 —0.1894 3.1590 —0.5983 0.3258 0.0557
5 3 -0.1611 3.7473 —0.6036 0.2712 0.0043
5 4 —0.1455 4.2535 -0.6187 0.2374 —-0.0052
5 5 —0.1355 4.7048 -0.6376 0.2138 0.0045
5 1) —0.0909

esting solutions of (4.12); side-band instability, phase-
jump and envelope solitons, envelope-hole solitary
waves, interacting solitons, and bound-states. It is
easy to generalize (4.12) including more than one
short wave that interacts with the same long one (see
Table III); Ma (1981) has found several solutions for
the case with two short waves.

5. Summary

There are isolated cases of a double resonant triad,
namely, a pair of resonant triads with two compo-
nents in common making a total of four independent
waves. A few solutions for the evolution of such a
system are calculated neglecting (off-resonant) inter-
actions with other modes. The main results are:

1) Two of the four waves belong to only one triad;
their stability is that dictated by the three-wave prob-
lem criteria (i.e., the component with intermediate
slowness is unstable and the other two are stable; see
Ripa, 1981). One wave is one of the stable compo-
nents of each triad (if decoupled from the other) and
it is also stable when both triads are taking together.
Finally, the remaining wave is the unstable compo-
nent of one triad and one of the stable components
of the other; its stability depends on which triad is
stronger. ,

2) There are equilibrium solutions, i.e., with con-
stant energies and constant shifted frequencies. For
the particular one with equal relative shifts, (2.9),
there is no equi-partition of energy (as in the three-
wave problem) and the shift is larger than the one
obtained when only one triad is considered, (2.11).

3) The solutions with unshifted frequencies (and,
presumably, maximum energy exchange) are com-
pletely integrable. In particular, a subclass of these
problems can be reduced to the maximum-energy-
exchange solution for the three-wave problem, see
Eq. (2.13).

There are equatorial waves that are resonantly cou-
pled with several harmonics; indeed, with an infinite
number of them for inertia—gravity waves. This is not
like the Kelvin mode problem (Ripa, 1982), though,
because the different triads interact with uneven
strength. The difference in the evolution of the system
in the cases of a wave interacting with (a) only the
second harmonic, (c) the second and fourth harmon-
ics, (d) many harmonics, and (b) the Kelvin modes
case (all interacting triads resonate and with the same
strength) may be appreciated in Fig. 3. An important
qualitative difference is found in the behavior of the
chain of resonant harmonics, truncated to either the
first five or six components. With five modes (Fig. 4) .
the energy rapidly goes into three of them, the evo-
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lution is regular, quasi-periodic and stable. On the
other hand, with six modes (Fig. 5) the evolution is
irregular, aperiodic and unstable. This is quite an
unexpected result, considering that the system is un-
forced, energy-conserving and with the phases locked
due to the resonance.

The interaction coefficient v is the only nonlinear
parameter in the equations of long-short wave reso-
nance and Korteweg-deVries. These equations gov-
ern the interaction of a packet of Rossby and inertia-
gravity waves with a long Rossby mode of the same
group velocity and the self-interaction of long Rossby
waves, respectively. The derivation of these equations
from the evolution equations in phase-space is
straightforward, i.e., there is no need of the usual (and
cumbersome) perturbation expansion in physical
space.
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