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Abstract. We propose a new secure communication primitive called an Intrusion-Resilient Channel
(IRC) that limits the damage resulting from key exposures and facilitates recovery. We define security
against passive but mobile and highly adaptive adversaries capable of exposing even expired past secrets.
We describe an intuitive channel construction using (as a black box) existing public key cryptosystems.
The simplicity of the construction belies the technical challenges in its security proof.

Additionally, we outline a general strategy for proving enhanced security for two-party protocols when
an IRC is employed to secure all communication. Specifically, given a protocol proved secure against
adversaries with restricted access to protocol messages, we show how the use of an IRC allows some of
these adversary restrictions to be lifted. Once again, proving the efficacy of our intuitive approach turns
out to be non-trivial. We demonstrate the strategy by showing that the intrusion-resilient signature
scheme of [IR02] can be made secure against adversaries that expose even expired secrets.

1 Introduction

1.1 Motivation and Contributions

Background. One of the most basic problems in cryptography is that of secure communication
between two parties, call them Alice and Bob. Typically, Alice and Bob ensure confidentiality
and integrity of their conversation using a primitive called a secure channel that encrypts and
authenticates their messages using coordinated secret key(s). As long as only Alice and Bob know
these secret keys, the channel guarantees their messages remain secure. Once another party learns
these keys, confidentiality of all messages sent using these keys is lost.

Due to its importance, the secure channel problem has been widely researched, leading to
numerous results, many of which have been implemented in practice. Widely deployed cryptographic
secure channels include SSH, TLS/SSL, IPSEC, various VPNs, etc. See [MVV97] for a survey of the
rich history of this problem. Secure channels also form an important building block in protocols for
performing more complex tasks ranging from on-line auctions to secure multi-party computation.
Much of the relevant work to date has focused on initializing the channel, leading to the study of
(authenticated) key exchange: from the earliest ideas of Diffie and Hellman [DH76] to the more
refined and formalized extensions of [BR93,BCK98,Sho99,CK01], to name just a few.
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In contrast, our main goal is to limit the loss of confidentiality due to exposures of Alice and/or
Bob’s secret keys by an adversarial entity and to facilitate channel recovery. For signatures and
encryption these goals are achieved in intrusion-resilient schemes [IR02,DFK+03] by combining
key evolution ideas from forward-secure schemes [And97,BM99] and secret-sharing from proactive
schemes [OY91,HJJ+97]. Key evolution changes the secret key over time in such a way that prior
keys cannot be computed from the current key, thus limiting the loss of confidentiality to messages
sent with current and future keys. Secret-sharing distributes shares of the secret among multiple
parties who proactively refresh the sharing by exchanging refresh messages. Consequently, to learn
the secret the adversary must expose shares of multiple parties at the same time.

Channel Definition and Construction. In Section 2 we formulate a new secure two-party
communication primitive called an Intrusion-Resilient Channel (IRC) that uses familiar key-evolution
and proactive techniques to limit propagation of exposures both forward and backward in time and
facilitates restoration of confidential communication. In Section 3 we describe gIRC, our intrusion-
resilient channel construction based on any semantically secure public key encryption scheme with
sufficiently large domain1. gIRC uses public key encryption in a straightforward way to secure the
two-way channel traffic. Either party may proactively refresh the channel by generating new key
pairs and sending the appropriate public and private keys to the other party. Despite the simplicity
of the construction, its proof of security requires a surprising amount of work, since refresh messages
include new private keys for the recipient.

Channel Applications. In Section 4 we explore the message hiding capabilities of general
two-party protocols augmented with an intrusion-resilient channel. Specifically, in Section 4.3 we
outline a general strategy for proving the increased security of channel-augmented protocols. To
demonstrate the strategy, we prove the intrusion-resilient signature scheme of [IR02] secure against
adversaries with greater temporal adaptivity than was previously proved. We believe the strategy
will work for other two-party protocols as well, such as intrusion-resilient encryption [DFK+03] and
proactive two-party signatures [NKDM03].

A key component of our strategy is Theorem 3 which is developed in Section 4.2. Theorem 3
in turn relies on several useful adversary restrictions and a modified notion of protocol simulation
developed in Section 4.1. A key feature of our protocol simulators is the ability to measure their
success, i.e. indistinguishability, with respect to specified subsets of the views they generate. We
believe this type of simulator may be interesting in its own right and applicable in other contexts.

1.2 Adversary Models and Assumptions

Protocol Adversaries. General protocol adversaries may be static or mobile. Parties corrupted
by static adversaries remain corrupted until the protocol terminates. Mobile adversaries, introduced
in [OY91], capture the idea that corrupted parties may be able to detect intrusions and execute a
recovery mechanism, effectively removing the adversary and restoring the party to an uncorrupted
state. When considering mobile adversaries, it is useful to talk about secret exposures rather than
full corruption in order to specify to a finer degree the knowledge the adversary learns as the result
of various actions.

1 The public key encryption scheme must also be key-indistinguishable as defined in [BBDP01] for gIRC to be used
as a secure sub-protocol (see Section 4).
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Adaptive adversaries determine their next action based on the results of all previous exposures
and other queries, whereas non-adaptive adversaries must specify their entire activity schedule at
the time of protocol initialization.

Active adversaries may modify messages sent by uncorrupted parties and exert complete control
over corrupted parties, for example by arbitrarily modifying their internal state and messages and
causing them to deviate from the protocol. In contrast, passive adversaries are only allowed to
observe the internal state of corrupted parties, and may read protocol messages without modifying
them.

Our Model and Assumptions. Adversaries in this work are assumed to be adaptive and mobile
(even able to ask about “expired” information) but passive. Parties are not assumed to possess long
term secrets which cannot be exposed, but all parties are assumed to have access to independent
sources of private randomness, that is, they can privately generate truly random bits (even after
exposure). To simplify the proofs communication is assumed to be synchronous, that is, all messages
are delivered instantaneously and reliably. In practice only an ordered, reliable datagram delivery
mechanism similar to TCP is needed.

Although results exist for active, adaptive and mobile adversaries (see Section 1.3), restricting
to passive adversaries allows us to provide the desired resiliency and recovery capability via a
simple, generic construction. In particular, we avoid altogether the need for authentication which is
difficult to maintain against active adversaries. Despite its simplicity, significant technical challenges
are encountered in proving the message-privacy properties of our construction.

1.3 Comparison with Previous Work

Adaptive Mobile Adversaries. In [CHH00] Canetti et al. show how to restore authenticity to
a party in the presence of active, adaptive and mobile adversaries. This is accomplished by using
a “proactive distributed signature scheme” which they realize in a setting without authenticated
communication. Other proactive threshold2 schemes include [FMY99], built on the non-adaptive
scheme of [FGMY97], and [HJJ+97], based on [HJKY95] (see below). All such threshold schemes
require an honest majority of communicating parties, and thus are not applicable to the case of
two-party protocols.

[CK02] recasts the classical notion of secure channels into the powerful universally composable
(UC) model [Can01] by defining key exchange and secure channel functionalities in the presence of
active, adaptive and mobile adversaries. They realize relaxed versions of the intuitive functionalities
by using a modification to the UC model called “non-information” oracles. These oracles help bridge
the differences between indistinguishability and simulation based security. However, their exposure
model assumes that the active adversary does not learn the long-term authentication secret of a
party, allowing them to avoid the complexities of impersonation attacks considered in [CHH00].

In contrast, to avoid authentication altogether we assume an adversary that is passive but who
learns the entire state of a party upon exposure. This allows us to focus on damage containment
and recovery, the hallmarks of existing intrusion-resilient schemes, at the expense of the secure
composability of UC model. Indeed, the security proofs of the intrusion-resilient signature and
encryption schemes of [IR02,DFK+03], two potential applications for our IRC, are not in the UC

2 A threshold scheme remains secure provided the number of simultaneously compromised parties never exceeds the
given threshold.
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model. An interesting line of future research would be to combine the intrusion-resilient and UC
models together.

Non-Adaptive Mobile Adversaries. Secret sharing in the presence of non-adaptive mobile
adversaries is handled in [HJKY95]. To aid recovery, all parties broadcast channel refresh messages
according to a proactive “private key renewal protocol”. In contrast, in this paper a refresh consists
of a single party sending a single message. This was done to provide consistency with the existing
intrusion-resilient signature and public key encryptions schemes of [IR02] and [DFK+03]. The proof
techniques in this paper should suffice to prove the key renewal protocol of [HJKY95] intrusion-
resilient (and “spliceable”; see Section 2.3) against adaptive adversaries. We emphasize that this
key renewal protocol was not articulated as a stand-alone primitive.

2 Definitions

2.1 Functional Definition: Two-party Key-Evolving Channel

Let u ∈ {0, 1} and ū = 1−u denote the identities of the two communicating parties, and let τ > 0
be a natural number denoting a time period. The channel is fully bi-directional, so that in all that

follows u and ū may be interchanged. Let SK
[u]
τ denote the secret key for party u in period τ .

Similarly, R
[u]
τ denotes the key refresh message received by party u for period τ which is generated

and sent by party ū. Party u combines refresh information in R
[u]
τ with its current key SK

[u]
τ to

obtain its new key SK
[u]
τ+1 for the next period (τ +1) and then deletes the expired SK

[u]
τ , thereby

completing the refresh protocol. The current period τ thus gives the number refreshes executed since

channel initiation. It is assumed that τ is explicitly part of both SK
[u]
τ and R

[u]
τ . For convenience let

the array U contain the identity of the refresh message receiver for each period, that is U [τ ] ∈ {0, 1}
denotes the receiver for period τ . Note that the channel communicates two types of messages3: data
and refresh.

Definition 1. A two-party key-evolving channel KEC = (InitKeys , EncM ,
DecM , GenR, ProcR; SendMesg , RefKeys) is a quintuple of algorithms and pair of protocols as
described in Figure 1.

2.2 Security Definition: Channel Intrusion-Resilience

A KEC adversary A is modeled as probabilistic polynomial-time (PPT) Turing machine that con-
ducts an adaptive chosen-ciphertext (CCA2) attack4 against KEC with the aid of the oracles in
Ot according to the security experiment Expchannel−ind−b

KEC,A detailed in Figure 2. Let Q denote the

sequence of all oracle queries made by A during a run of experiment Expchannel−ind−b
KEC,A (k) in Fig-

ure 2. In addition to being exposed directly by querying Okey , keys may be exposed indirectly due
to the combined results of specific Okey and Oref queries. This leads to a notion of key exposure
analogous to that in [IR02].

3 In practice, a mechanism for distinguishing the two types like a distinguished 1-bit flag in the (unencrypted)
message header is needed. We omit this detail henceforth.

4 Appropriately restricting the set Ot yields definitions of intrusion-resilient security against ciphertext-only and
adaptive chosen-message attacks. Additional definitions can be created by specifying the appropriate oracles for
these notions.
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Fig. 1. Two-party Key-evolving Channel KEC Algorithms and Protocols (underlined)

KEC.InitKeys(1k[, . . .])→ 〈SK
[0 ]
0 , SK

[1 ]
0 〉: channel initialization algorithm

In: Security parameter k (in unary)

Out: Key pair 〈SK
[0 ]
0 , SK

[1 ]
0 〉 to be used by the channel endpoints

KEC.EncM
SK

[u]
τ

(m)→ c: message encryption algorithm

In: Message m to be sent from party u to party ū, current period secret key SK
[u]
τ of the sending party

Out: Ciphertext c

KEC.DecM
SK

[ū]
τ

(c)→ m′: message decryption algorithm

In: Ciphertext c (received by party ū from party u), current period secret key SK
[ū]
τ of the receiving party

Out: Message m′, where ∀m DecM
SK

[ū]
τ

(EncM
SK

[u]
τ

(m)) = m

KEC.GenR(SK
[u]
τ )→ 〈SK

[u]
τ+1 ,R

[ū]
τ 〉: key refresh generation algorithm

In: Current period secret key SK
[u]
τ

Out: Refreshed secret key SK
[u]
τ+1 and key refresh message R

[ū]
τ for party ū.

Party u sends R
[ū]
τ to ū, securely deletes SK

[u]
τ and R

[ū]
τ , and sets τ = τ + 1.

KEC.ProcR
SK

[ū]
τ

(R
[ū]
τ )→ SK

[ū]
τ+1 : key refresh processing algorithm

In: Secret key SK
[ū]
τ , key refresh R

[ū]
τ (received by party ū from party u)

Out: Refreshed secret key SK
[ū]
τ+1 . Party ū securely deletes SK

[ū]
τ and R

[ū]
τ , and sets τ = τ + 1.

KEC.SendMesg : Protocol for party u to securely send message m to party ū.
1. Party u calls EncM

SK
[u]
τ

(m) and sends output c to ū.

2. The other party ū on receipt of data message c from u, calls DecM
SK

[ū]
τ

(c) to retrieve the sent plaintext data
message m.

KEC.RefKeys: Protocol for refreshing the secret keys of both parties.

1. Party u initiates refresh by calling GenR(SK
[u]
τ ) which outputs (SK

[u]
τ+1 ,R

[ū]
τ ).

2. Party u sends refresh message R
[ū]
τ to ū (GenR securely deletes SK

[u]
τ and R

[ū]
τ , and increments τ by 1).

3. The other party ū on receipt of R
[ū]
τ completes the refresh cycle by calling ProcR

SK
[ū]
τ

(R
[ū]
τ ) which returns

SK
[ū]
τ+1 (ProcR securely deletes SK

[ū]
τ and R

[ū]
τ , and increments τ by 1).

Definition 2 (Q-exposure). For a sequence of adversary oracle queries Q and time period τ , we

say that the key SK
[u]
τ is Q-exposed5:

[directly] if (u, τ) ∈ Q; or

[via evolution] if SK
[u]
τ−1 is Q-exposed and U [τ − 1] = u and τ − 1 ∈ Q

(Given SK
[u]
τ−1 and R

[u]
τ−1 , A can compute SK

[u]
τ as KEC.ProcR

SK
[u]
τ−1

(R
[u]
τ−1 )) .

Channel Compromise and Recovery. Whereas key exposure models the “internal” side of a se-
curity breach, compromise refers to its “external” aspect. We say that party u is (Q, τ)-compromised

if SK
[u]
τ is Q-exposed. As long as party u is Q-exposed, the adversary can read all messages di-

rected toward u by simply decrypting them using SK [u]. If both sides of the channel are (Q, τ)-
compromised for the same period τ then the channel is totally compromised for period τ , i.e. neither
refresh nor data messages can be securely exchanged.

An important feature of intrusion-resilient channels, due the passive adversary assumption, is
their ability to recover from even a total compromise. Party u recovers from a compromise as
soon as it sends a refresh message, even if this message is observed and read. Party ū if also
compromised, can likewise recover by initiating its own refresh after receiving party u’s. Thus,

5 Alternate models allowing additional exposure types may have more efficient constructions with weaker security
are not explored in this paper.
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channel recovery is achieved whenever both parties send refreshes without any intervening direct
exposures. Moreover, if the adversary ever fails to intercept a refresh, then both the refresh sender
and receiver simultaneously recover from compromise.

Security Experiment. As in the standard security definitions for public key cryptosystems (see
Appendix A.1), A is divided into probing and distinguishing subcomponents: Aprobe and Adist. Note
that Aprobe maintains state during the experiment, and passes its final state to Adist. A specifies
the timing and direction of each channel refresh. A can obtain encryptions and decryptions on
adaptively chosen messages for the party, i.e. direction, and time period of its choice via the oracle
in the set Ot. Eventually, A requests a challenge ciphertext for a message pair, party (direction),
and time period of its choice, and attempts to distinguish. It is required that A not query Odec on
the challenge ciphertext or Q-expose the corresponding decryption secret.

Definition 3 (Intrusion-Resilience).
Let KEC = (InitKeys ,EncM ,DecM ,GenR,ProcR;SendMesg ,RefKeys) be a two-party key evolving
channel scheme with security parameter k, and let A = (Aprobe,Adist) be an adversary. The (CCA)
advantage of A against the channel KEC is defined as:

Advchannel−ind
KEC,A (k)

def
= Pr[Expchannel−ind−1

KEC,A (k)=1] − Pr[Expchannel−ind−0
KEC,A (k)=1].

KEC is (CCA) intrusion-resilient if Advchannel−ind
KEC,A (·) is negl. for all PPT A.

2.3 Channel Spliceability

As we will see when we explore the message-hiding capabilities of two-party protocols augmented
with an intrusion-resilient channel in Section 4, our results rely on an additional hiding property
of our channel. Namely, data messages sent over the channel should leak no information about
the specific key under which they were encrypted. In the context of public key cryptosystems this
property is called key indistinguishability and was introduced by Bellare, et al. in [BBDP01]. For
our channels we formulate an appropriate version of this property called spliceability, which we
define in detail in Appendix A.2.

3 A Generic Intrusion-Resilient Channel Construction

This section describes gIRC, our intrusion-resilient channel, which can be constructed using any
semantically secure, public key cryptosystem6 S = (G, E ,D). gIRC consists of two bi-directional
sub-channels, one to secure data messages and the other to secure refresh messages. Each party
holds a pair of public keys for sending and a pair of secret keys for receiving on each sub-channel.
Either party may proactively refresh the channel by generating a complete set of new keys for
both sides of the channel. The generating party retains its own new sub-channel keys. It sends
the complimentary keys to the other party in a refresh message encrypted under the appropriate
(expiring) refresh sub-channel key.

Despite the simplicity of gIRC, its security proof (see proof sketch below) is complicated by the
fact that refresh messages include the recipient’s new secret keys. A detailed description of gIRC
appears in Figure 3.

6 See Appendix A.1 for the definition of a public key cryptosystem. Any E with domain sufficiently large enough to
accommodate the messages described in Figure 3 can be used. If E is also key-private then the resulting gIRC is
spliceable.
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Fig. 2. Intrusion Resilience Security Experiment

Oracle Seta Ot

Okeyt(u, τ ): key exposure oracle

on input party identifier u and period τ ≤ t returns SK
[u]
τ .

Oenct(u, τ, m): message encryption oracle
on input party identifier u, period τ ≤ t, and message m returns EncM

SK
[u]
τ

(m).

Odect(ū, τ, c): message decryption oracle
on input party identifier ū, period τ ≤ t, and ciphertext c returns DecM

SK
[ū]
τ

(c).

Oref t(τ ): key refresh message oracle

on input period τ ≤ t returns R
[U [τ ]]
τ .

Experiment Expchannel−ind−b
KEC,A (k)

INIT:

t← 0; q ← ref(0,1); c← ⊥;

〈SK
[0 ]
t , SK

[1 ]
t 〉 ← InitKeys(1k);

PROBE:

while q in (ref(w, w̄),“test”) do

q ← AOt

probe(1k)

CASE q

ref(w, w̄): % send refresh from party w to party w̄

〈SK
[w]
t+1 ,R

[w̄]
t 〉 ← GenR(SK

[w]
t ) % party w generates new key and refresh

SK
[w̄]
t+1 ← ProcR

SK
[w̄]
t

(R
[w̄]
t ) % party w̄ receives refresh and updates its key

U [t]← w̄ % party w̄ is recorded as the receiver for period t

t← t + 1 % time period incremented
“test”: % output challenge
if c 6= ⊥ then break % only one challenge allowedb

(u, ū, τ, m0, m1)← AOt

probe(1k) % request period τ challenge, (u, ū) directionc

c← Oenc(mb, u, τ ) % encrypt challenge with SK
[u]
τ ; decryptable with SK

[ū]
τ

AOt

probe(1k, c) % Aprobe receives challenge c

DIST:

s← AOt

probe(1k) % Aprobe outputs state s

b̂← AOt

dist(1
k, s) % Adist outputs distinguishing guess b̂ for challenge bit b

if SK
[ū]
τ not Q-exposed % decryption key not exposed (receiver not compromised)

and (Aprobe, Adist) did not query Odec with (ū, τ, c) % challenge not decrypted

then return b̂

else return ⊥

a Ot denotes the set of oracles to which A has access to during period t. All oracles take as input τ , the period
in which the adversary is interested. Queries about the future (τ > t) are prohibited, and result in the oracle
returning ⊥. Without loss of generality, we assume this never happens.

b Limiting A to a single challenge is not an essential restriction. Given an adversary A′ which is allowed poly(k)
challenges, one can easily construct an A with advantage one over poly(k) the advantage of A′.

c We require that u, w, and b̂ all be from {0, 1}. If τ > t, then Oenct returns ⊥. The adversarially chosen messages
m0 and m1 must of course be in the domain of EncM

SK
[u]
τ

(·) and be of equal length, i.e. |m0| = |m1|.
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Construction Details. During a given time period τ , channel party u maintains the gIRC

key SK
[u]
τ = 〈sk

[u]
τ , pk

[ū ]
τ 〉. The key sk

[u]
τ is used to decrypt incoming messages, while pk

[ū]
τ is used

to encrypt the outgoing ones. Furthermore, sk
[u]
τ = (sk

[u|d〉
τ , sk

[u|ρ〉
τ ) and pk

[ū ]
τ = (pk

[ū |d〉
τ , pk

[ū |ρ〉
τ ).

The S keys sk [·|d〉, pk [·|d〉 are used to secure the channel data traffic, while sk [·|ρ〉, pk [·|ρ〉 secure the
channel maintenance traffic (i.e., the refresh messages).

Party u initiates a refresh during period τ by invoking GenR. This in turn calls InitKeys ,

which uses G to assemble new composite keys SK
[u]
τ+1 ,SK

[ū ]
τ+1 for both sides of the channel. Party u

encrypts the new key SK
[ū]
τ+1 for party ū as E

SK
[u]
τ .pk

[ū|ρ〉
τ

(SK
[ū ]
τ+1 ) and sends this to ū. As soon as a

party obtains its new key, its expiring key is securely deleted. Recall that in our model7, ū’s secret

SK
[ū ]
τ+1 cannot be exposed by exposing u. Clearly, some synchronization issues must be addressed to

ensure that the refresh messages are not sent simultaneously from different endpoints. This should
be taken care of in the RefKeys protocol (namely, ensuring that at any time only a single RefKeys
protocol is running).

Fig. 3. Generic Intrusion-Resilient Channel gIRC Algorithms
gIRC.GenKeys(1k) gIRC.InitKeys(1k)

(sk [0 |d〉, pk [0 |d〉)← G(1k) (SK
[0 ]
0 , SK

[1 ]
0 )← GenKeys(1k)

(sk [0 |ρ〉, pk [0 |ρ〉)← G(1k) return (SK
[0 ]
0 , SK

[1 ]
0 )

(sk [1 |d〉, pk [1 |d〉)← G(1k) gIRC.ProcR(R
[ū]
τ , SK

[ū]
τ )

(sk [1 |ρ〉, pk [1 |ρ〉)← G(1k) SK
[ū]
τ+1 ← DSK

[ū]
τ .sk[ū|ρ〉(R

[ū]
τ )

SK [0 ] ← 〈(sk [0 |d〉, sk [0 |ρ〉), (pk [1 |d〉, pk [1 |ρ〉)〉 securely delete SK
[ū]
τ

SK [1 ] ← 〈(sk [1 |d〉, sk [1 |ρ〉), (pk [0 |d〉, pk [0 |ρ〉)〉 return SK
[ū]
τ+1

return (SK [0 ], SK [1 ]) τ ← τ + 1

gIRC.GenR(SK
[u]
τ ) gIRC.EncM (m,SK

[u]
τ )

(SK
[0 ]
τ+1 , SK

[1 ]
τ+1 )← GenKeys(1k) return c← E

SK
[u]
τ .pk[ū|d〉(m)

R
[ū]
τ ← E

SK
[u]
τ .pk[ū|ρ〉 (SK

[ū]
τ+1 ) gIRC.DecM (c, SK

[ū]
τ )

securely delete SK
[u]
τ and SK

[ū]
τ+1 return m← D

SK
[ū]
τ .sk[ū|d〉(c)

return (SK
[u]
τ+1 ,R

[ū]
τ )

τ ← τ + 1

Theorem 1 (gIRC is Intrusion-Resilient). If S is a CCA semantically-secure public-key en-
cryption scheme, gIRC is an intrusion-resilient channel.

More precisely, given any gIRC-adversary A, one can construct a triple of S-adversaries 〈E1,E2,E3〉
such that for each value of the security parameter k there exists some i ∈ {1, 2, 3} such that,
Advind−cca

S,Ei
(k) ≥ Advchannel−ind

gIRC,A (k)/(4qrefr
2·

(3qrefr − 2)), where qrefr is an upper bound on the number of refreshes requested by the adversary
in experiment Expchannel−ind−b

gIRC,A (k) (see Figure 2 in Section 2.2). The running times of the Ei are
essentially the same as for A.

7 In more complicated adversary exposure models where SK
[ū]
τ+1 could be exposed by corrupting u and stealing the

key before it is sent it would be useful to consider slightly more complex and less generic mechanisms utilizing
proactive encryption schemes. Such a model will be explored in future work.
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Proof (Sketch). (Complete proof available in Appendix C ). There are two cases to consider: the
ciphertext challenge and refresh message beginning the challenge period specified by the adversary
have either the same or opposite direction. If the direction is the same, a straightforward reduction
to the semantic security of S is used. In the opposite case, a two step reduction is used. First the
channel security is reduced to the security of a chain of S instances where the secret key of the
next instance is encrypted under the public key of the current instance and given to the adversary.
The security of this S chain is then reduced to the semantic security of a single S instance.

Theorem 2 (gIRC is Spliceable). If S is a CCA semantically-secure public-key encryption
scheme and S is CCA key-indistinguishable (IK-CCA) in the sense of [BBDP01], then gIRC is
spliceable.

Proof. [Sketch](Complete proof available in Appendix D). Follows by formulating a chain of inter-
mediate definitions connecting key-indistinguishability to channel spliceability.

4 More Secure Two-Party Protocols via Intrusion Resilient Channels

In this section we explore the message-hiding capabilities of general two-party protocols when
augmented with an intrusion-resilient channel. Suppose a two-party protocol P is secure against all
adversaries who can only view a protocol message by exposing the receiver during the same period
in which it was sent. Any messages for which this is not the case are called “forbidden” and are
never seen by the adversary. One would expect P ′, an IRC-augmented version of P, to be secure
against adversaries who can view any protocol message, even forbidden ones.

However, this seems difficult to prove in the adaptive adversary setting considered here, since
the set of messages which are forbidden depends dynamically on the adversary’s query sequence.
Indeed, a straightforward security reduction is frustrated by the fact that a simulator does not
know ahead of time which messages will ultimately be forbidden. Consequently, at the time of a
message query the simulator does not know whether or not it should substitute “garbage” in place
of the true protocol message. Thus, even though a secure channel hides the contents of all forbidden
messages, in general a simulator will not be able to capitalize on this fact.

To help avoid this dilemma, commonly known as the “selective-decryption problem”, in Sec-
tion 4.1 we add an extra restriction to our definition of forbidden messages (Definition 4, condition
2), require the order of adversary exposures to be “refresh-receiver-biased” (Definition 6), and in-
troduce a new type of protocol simulator (Definition 8). The success of these simulators is measured
in terms of indistinguishability on a subset of their output (Definition 7).

These restrictions suffice to prove a result about simulators rather than adversaries (Theorem 3
in Section 4.2). However, in Section 4.3 we outline a general proof strategy for applying Theorem 3
to prove that if the two-party protocol P is secure against refresh-receiver-biased adversaries who
cannot expose any forbidden messages, then the channel-augmented version P ′ is secure against any
refresh-receiver-biased adversary who can expose forbidden messages. To demonstrate the strategy,
we prove the intrusion-resilient signature scheme of [IR02] secure against adversaries with greater
temporal adaptivity than in the proof of [IR02].

4.1 Protocol Security Model

In what follows, all protocol parties are modeled as interactive Turing machines (ITMs) [Gol01].
Recall that ITMs have a random tape, a work tape, local input and output tapes, and a pair of
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communication tapes for incoming and outgoing protocol messages. Let P be any two-party protocol
with security parameter(s)8 κ, initial input γP , and randomness rP . Let A be an adversary for P
with input γA and randomness rA. A also gets security parameter κ (in unary) as an input.

Correspondingly, let A′ denote an adversary for P ′, a protocol identical to P but augmented so
that all inter-party communication is protected using IRC, a spliceable, intrusion-resilient channel.
P ′ is constructed from P as follows. At the beginning of protocol P ′, in addition to the usual
protocol secrets the parties also receive their respective initial keys for IRC. Next, whenever in
P party u would send message m, P ′ instead sends an encryption of m under party u’s current
channel key9. The sender u then executes a channel refresh and sends ū the resulting channel refresh
message10.

Protocol Adversary Interface. In attacking P, the adversary A may interact with the
protocol P via its user interface, which includes the ability to execute cryptographic routines and
specify protocol control commands to effect the evolving state of the protocol. Additionally, A has
additional “attack” capabilities, such as the ability to expose secret keys and protocol messages or
exert greater influence over the evolution P. We use Ot to denote the set of oracles11 which mediate
these interactions between A and P. Similarly, O ′

t denotes the oracle set for A′ attacking P ′.

Adversary Query Classes. Let Q denote the sequence of all oracle queries and control com-
mands made by A while interacting with a particular execution of P, and let Q denote a set of
adversary query sequences, i.e. a set of Qs. Let Q′ and Q′ be similarly defined for adversary A′ and
protocol P ′.

Definition 4. A message m sent in period τ using a key-evolving channel KEC is Q-forbidden
if: 1) the receiver of m is not Q-exposed for period τ , and 2) the sender of m sent the previous
(period τ − 1) refresh.

Let QFM ⊂ Q denote the set of all Q-forbidden messages. Generalizing, let Q \ QFM denote the
set of query sequences derived from Q by removing from each Q ∈ Q its corresponding QFM .

Definition 5. An interactive Turing machine I is Q-restricted if its sequence of outgoing mes-
sages Q is always in Q.

Definition 6. An adversary exposure sequence Q is refresh-receiver-biased if for all periods τ
in which both ends of the channel are Q-exposed, the τ − 1 refresh receiver is Q-exposed before the
sender. A class Q of exposure query sequences is refresh-receiver-biased if ∀Q ∈ Q, Q is refresh-
receiver-biased. An adversary A is refresh-receiver-biased if A is Q-restricted and Q is refresh-
receiver-biased.

8 If more than one, let κ denote a vector of security parameters.
9 Note that the granularity of channel time periods may differ from that of the protocol. Also, if necessary, m can

be fragmented into multiple sub-messages prior to encryption.
10 Other compositions are possible. For example, after every message sent, both parties could execute refreshes one

right after the other, etc.
11 While queries pertaining to past and current time periods are permissible, queries about the future and non-

existent messages are prohibited (return value ⊥). WLOG, we assume this never happens. In cases where A is
given protocol control capability beyond that available to an honest P user, the particulars of this interface are
handled by the security experiment in which A is participating. Note when the adversary is interacting with a
simulator for P, all oracle queries are handled by the simulator.
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Indistinguishability with Respect to Subsets of Distributions. In the following ex-
periment X and Y denote distributions over length n sequences of bit-strings. For a sequence of
bit-strings x, x[i] denotes the ith bit-string. Let J ⊆ {1, . . . , n} be an index subset. Dx denotes
oracle access to x by D on a per bit-string basis.

Experiment ExpJ−ind−b
X/Y,D (κ)

if b = 0 then x← X

if b = 1 then x← Y

b̂← Dx

if D queried for bit-string x[j] for j /∈ J then output ⊥ % D may only view bit-stings indexed by J

else output b̂

Definition 7 (J-indistinguishable distributions). Let J , X, and Y be as in the above experi-
ment, and let D be a distinguishing adversary. We define the J-distinguishing advantage of D
against distributions X and Y as:

AdvJ−ind
X/Y,D(κ)

def
= Pr[ExpJ−ind−0

X/Y,D (κ)=1]−Pr[ExpJ−ind−1
X/Y,D (κ)=1]. We say the two distributions X and

Y are J-indistinguishable, denoted X ≈J Y , if AdvJ−ind
X/Y,D(·) is negligible for all PPT D. More

generally, we say that two distributions X and Y are J -indistinguishable, denoted X ≈J Y , if
∀J ∈ J , AdvJ−ind

X/Y,D(·) is negligible for all PPT D.

Let VIEW
P ,AOt

A (γP , rP |γA, rA) denote adversary A’s view of its interaction with an instance
of protocol P via the oracle set Ot. Recall that γA and rA (γP and rP) denote the input and
randomness for A (P), and the security parameter κ is an implicit input to all parties. This view
consists of the sequence of all queries made by A along with the corresponding responses received.

Similarly, let VIEW
P ′,A

′O′
t

A′ (γP ′ , rP ′ |γA′ , rA′) denote the view of A′ interacting via the oracle set O ′
t

with an instance of P ′. In the definition below JQ′ ⊆ Q′ denotes a unique (non-empty) subset of
query sequence Q′ used to qualify the indistinguishability of the views. J denotes the collection of
all such JQ′ for all Q′ ∈ Q′.

Definition 8. An ITM Sim is a Q′-answering, Q-restricted, ε-good J -simulator for protocol
P with security parameter κ if

1. Sim is Q-restricted,

2. Sim interactively generates query sequence Q ∈ Q to ask P in response to interactive query
sequence Q′

3. ∃ an efficiently computable predicate Sim.OK : Q′ ×Q → {0, 1}

4. ∀Q′ ∈ Q′, Pr[Sim.OK(Q′, Q) = 1] ≥ ε(κ) taken over the random choices of Sim

5. ∀ ITM A asking Q′ ∈ Q′, if Q satisfies Sim.OK(Q′, Q) = 1, then

VIEW
P ,AOt

A (γP , rP |γA, rA) ≈JQ′ VIEW
Sim,AOt

A (γSim, rSim|γA, rA).

Intuitively, Sim simulates answers to any query sequence Q′ ∈ Q′ by asking a transformed query
sequence Q ∈ Q of P. Sim succeeds with probability at least ε in producing a view which is
indistinguishable when judged with respect to the smaller query set JQ′ ⊆ Q′.
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4.2 Intrusion-Resilient and Spliceable Channels Hide Forbidden Messages

In what follows, let Sim′ denote the ITM obtained by augmenting Sim with IRC in the same way
that P ′ is obtained from P. That is, Sim′ augments the view produced by Sim to include IRC
encrypted messages and keys. Sim′ passes query sequence Q′ to Sim which in turn interactively

generates query sequence Q to answer the Q′ queries. Note that Sim′.OK
def
= Sim.OK12.

Theorem 3. Let P ′ be instantiated with an intrusion-resilient and spliceable channel. If Q ′ is
refresh-receiver-biased and Sim is a Q′-answering,
Q-restricted, ε-good Q′ \ Q′

FM -simulator for P, then Sim′ is a Q′-answering, Q-restricted, ε-good
Q′-simulator for P ′.

Theorem 3 says that composing an intrusion-resilient and spliceable channel with a simulator
Sim which answers query sequences Q′ ∈ Q′ but may only be indistinguishable when forbidden
messages are excluded, i.e. for Q′ \Q′

FM , yields a simulator Sim′ answering the same set of query
sequences Q′ and which is indistinguishable even on forbidden messages. For forbidden message
queries Sim need only generate responses of the correct length. Note that Sim may have to deal
with arbitrary simultaneous compromise of both ends of the channel, and thus a total compromise
of P ′ in the two-party case.

Proof. By definition Sim′ satisfies the first four simulator properties. The indistinguishability of
views (Property 5) follows directly from Lemma 1, Lemma 2, and Lemma 3 (see below).

In the following lemmas P ′, Q′, Sim, and Sim′ are as in Theorem 3, and A′ is a P ′ adversary.
O ′

S,t denotes the oracle set O ′
t modified such that the key exposure oracle returns random keys in

place of the original data sub-channel keys for forbidden message senders.

Lemma 1. For all Q′-restricted A′,

VIEW
P ′,A

′O′
t

A′ (γP ′ , rP ′ |γA′ , rA′) ≈Q′ VIEW
P ′,A

′O′
S,t

A′ (γP ′ , rP ′ |γA′ , rA′).

Proof. Follows from assumption that IRC is spliceable.

Lemma 2. For all Q′-restricted A′,

VIEW
Sim′,A

′O′
t

A′ (γSim′ , rSim′ |γA′ , rA′) ≈Q′ VIEW
Sim′,A

′O′
S,t

A′ (γSim′ , rSim′ |γA′ , rA′).

Proof. Nearly identical to that for Lemma 1.

Lemma 3. Conditioned on the event that Sim′.OK(Q′, Q) = 1,

VIEW
P ′,A

′O′
S,t

A′ (γP ′ , rP ′ |γA′ , rA′) ≈Q′ VIEW
Sim′,A

′O′
S,t

A′ (γSim′ , rSim′ |γA′ , rA′).

Proof. (Full proof in Appendix E).

12 For all pairs (Q′, Q), we should always have Sim.OK(Q′, Q) = 1 ⇒ Sim′.OK(Q′, Q) = 1, since if Sim does not
need to abort with unencrypted simulated messages, Sim′ with encrypted simulated messages should not have
to either. The reverse implication may not always hold, but by assuming it we only underestimate the success
(non-abort) probability of Sim′.
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4.3 Improved Two-Party Protocol Security

A Specific Example. Let SiBIR2 denote the channel-augmented version of SiBIR1, the Signer-
Base Intrusion-Resilient signature scheme of [IR02], in which all message traffic is secured via some
spliceable, intrusion-resilient channel IRC, as was described for general two-party protocols in the
beginning of Section 4.1. Recall in SiBIR1 the long-term signing secrets are shared between Base
and Signer modules (the two parties), whereas the complete signing secret for the current time
period is always held by the Signer.

Let Q′ be any query class consisting of refresh-receiver-biased query sequences against SiBIR2
such that for each query sequence in Q′ there is at least one time period for which the Signer keys
are not Q-exposed13. Provided these two conditions are satisfied, a sequence Q′ ∈ Q′ may contain
both Base and Signer key exposures and message exposures in any order.

Theorem 4. SiBIR2 is secure against all Q′-restricted adversaries A′, in particular any time-
adaptive adversary restricted to refresh-receiver-biased query sequences.

Proof (Sketch). (Proof available in Appendix F)

1. Select a suitably restricted SiBIR1 adversary query class Q.
2. Prove SiBIR1 secure against all Q-restricted adversaries.
3. Exhibit a Q′-answering, Q-restricted, ε-good Q′ \ Q′

FM simulator for SiBIR1.
4. Apply Theorem 3 to get a simulator which converts any SiBIR2 adversary into a SiBIR1 adver-

sary.
5. Observe that the loss in advantage is just ε = 1/T , where T is the number of time periods.

General Strategy. We believe that the strategy outlined in the proof sketch of Theorem 4 for the
specific case of intrusion-resilient signatures can also be used to prove the security of other channel-
augmented two-party cryptographic protocols, including intrusion-resilient encryption [DFK+03]
and proactive two-party signatures [NKDM03]. To do so, first decide on a query class Q ′. Then
follow the steps outlined above, replacing SiBIR1 and SiBIR2 with P and P ′ respectively. Note that
the challenge lies in selecting appropriate adversary query classes Q and Q ′ such that Steps 2 and 3
can be accomplished.
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Appendices

A Additional Definitions

A.1 Public Key Encryption

This subsection reviews the definition of security against adaptive chosen-ciphertext (CCA) at-
tack14. The definitions in this section are essentially those of [BDPR98].

A public key cryptosystem consists of a triple of algorithms S = (G, E ,D) where:

G(1k)→ 〈sk , pk〉: the probabilistic key generation algorithm
In: Security parameter k (in unary) [and other system parameters as needed]
Out: Public and private key pair 〈sk , pk 〉

Epk (m)→ c: the probabilistic encryption algorithm
In: Public key pk , plaintext message m
Out: Ciphertext c

Dsk (m)→ m′: the deterministic decryption algorithm
In: Secret key sk , ciphertext c
Out: Plaintext message m′ (where for all m, Dsk (Epk (m)) = m),

or a special symbol ⊥ indicating the ciphertext c is invalid

Let S = (G, E ,D) be a public key cryptosystem and let AGM = (Aprobe,Adist) be an adversary
consisting of a pair of probabilistic algorithms (Aprobe is the probing component, Adist is the dis-

tinguisher). Restrict b̂ to be b̂ ∈ {0, 1} and |x0| = |x1|. For a bit b ∈ {0, 1} and security parameter
k, define the following experiment:

Experiment Expind−cca−b
S,AGM

(k)

〈sk , pk〉
R
← G(1k)

〈x0, x1, s〉 ← A
Dsk (·)
probe (pk , 1k) % generate the plaintext messages and state information s to be passed to Adist

y ← Epk (xb)

b̂← A
Dsk (·)
dist (x0, x1, s, y, 1k)

return b̂

14 Both here and in the channel security definition we don’t distinguish between CCA1 and CCA2 security. We will
only consider the stronger CCA2 definition.
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We also require that Adist does not ask its oracle to decrypt the ciphertext challenge y. Define the
advantage of AGM against S to be:

Advind−cca
S,AGM

(k) = Pr[Expind−cca−1
S,AGM

(k) = 1]− Pr[Expind−cca−0
S,AGM

(k) = 1].

Scheme S is cca-secure if Advind−cca
S,AGM

(·) is negligible15 for all PPT AGM .

Auxiliary Definitions: Crucial Refresh; To- and Fro- Attacks. In each execution of the
above experiment, for a given adversary challenge request (u, ū, τ,m0,m1), call u as the challenge

sender, ū as the challenge receiver and τ as the challenge period. We refer to R
[w̄ ]
τ−1 (where w̄ =

U [τ − 1]), the refresh message initiating the challenge period, as the crucial refresh.
We say that A executes a to-attack whenever A specifies that the crucial refresh be sent from

the challenge sender to the challenge receiver, i.e. the crucial refresh direction is the same as the
challenge direction (w̄ = ū). Corresponding to this, let the to-attack advantage of A, denoted ε to(k),
be defined as:

εto(k)
def
= Pr[Expchannel−ind−1

KEC,A (k)=1 ∧ w̄= ū]− Pr[Expchannel−ind−0
KEC,A (k)=1 ∧ w̄= ū].

Inversely, we say that A executes a fro-attack whenever A specifies that the crucial refresh be
sent from the challenge receiver to the challenge sender, i.e. the crucial refresh direction is opposite
to the challenge direction (w̄ = u). Corresponding to this, let the fro-attack advantage of A, denoted
εfro(k), be defined as:

εfro(k)
def
= Pr[Expchannel−ind−1

KEC,A (k)=1 ∧ w̄=u]− Pr[Expchannel−ind−0
KEC,A (k)=1 ∧ w̄=u].

In this way we have partitioned the set of all possible executions of Expchannel−ind−1
KEC,A (k) into two

disjoint sets based upon the direction in which the crucial refresh is sent, so that

ε(k) = εto(k) + εfro(k) .

This classification of the advantage of A will be useful in proving the intrusion-resilience of the
channel construction detailed in Section 3.

A.2 Channel Spliceability

In formulating the following channel properties we assume that the KEC keys for party u consist of
four components: the incoming and outgoing data and refresh sub-channel keys. These are denoted

SK
[u]
τ .pk

[ū |d〉
τ ,SK

[u]
τ .sk

[u|d〉
τ ,SK

[u]
τ .pk

[ū |ρ〉
τ , and SK

[u]
τ .sk

[u|ρ〉
τ , respectively. Party ū has similar keys

with u and ū switched in the above.
In the splice experiment Expind−chan−splice−b

KEC,A (k) below, the distinguishing adversary A interacts
with a channel instance and selects a “test” period and direction. If the bit b = 1, a fresh random
key pair is “spliced” into the channel for the test period, replacing the outgoing data sub-channel
keys of that period’s refresh sender (details under ChangeFMKey(·) below). Encryption queries
corresponding to the refresh sender in the test period are still answered using the original key,

15 A function ν(k) is negligible if for any polynomial p(k) and all sufficiently large k, ν(k) < 1
p(k)

.
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but a key exposure of the refresh sender reveals the alternate key. Resulting consistency issues
are handled by the decryption oracle. If b = 0, no splicing is done. Recall that U [τ ] contains the
identity of the refresh receiver for period τ . A detailed description of the changes to the channel
key exposure and decryption oracles, Okey t and Odect, from Section 2.2 follows.

Oracle Okeyb,t,τ (u, α)

if b = 1 and α = τ and U [τ − 1] = ū and SK
[ū]
τ is not Q-exposed

then return C1.SK
[u]
τ % expose alternate C1 channel sender key

else return Okey t(u, α) % expose primary channel key

Oracle Odecb,t,τ (c, ū, α)

if b = 1 and α = τ and U [τ − 1] = ū and SK
[ū]
τ is not Q-exposed

and Oencb,t,τ does not contain (α, u, ·, c) % gave alt. key and c not from Oenc

then return Odec
C1.SK

[ū]
τ

(c) % enc. oracle not used; decrypt using alt. chan key

else return Odect(c, ū, α) % use usual channel decryption oracle

Algorithm ChangeFMKey(SK
[u]
τ )

〈SK [0 ],SK [1 ]〉 ← KEC.InitKeys(1k[, . . .]) % generate new channel key pair

C1.SK
[u]
τ ← SK

[u]
τ % copy primary channel u key to alternate channel u key

C1.SK
[u]
τ .pk [ū|d〉 ← SK [u].pk [ū |d〉 % replace u’s outgoing data message key

C1.SK
[ū ]
τ .sk [ū|d〉 ← SK [ū].sk [ū|d〉 % replace ū’s incoming data message key

return 〈C1.SK
[u]
τ , C1.SK

[ū]
τ 〉

The full splice experiment is given below, in which Ob,t denotes the entire set of oracles to which
A has access during period t.

Experiment Expind−chan−splice−b
KEC,A (k)

INIT:

t← 0; τ ← ⊥

〈SK
[0 ]
t ,SK

[1 ]
t 〉 ← InitKeys(1k) % initialize primary chan. keys

PROBE:

q ← A
Ob,t

probe(1
k)

while q in (ref(w, w̄), test(w, w̄)) do % send refresh from party w to party w̄

〈SK
[w ]
t+1 ,R

[w̄ ]
t 〉 ← GenR(SK

[w ]
t ) % party w generates new key and refresh

SK
[w̄ ]
t+1 ← ProcR

SK
[w̄]
t

(R
[w̄ ]
t ) % party w̄ receives and processes refresh

if b = 1 and q = test(w, w̄) and τ = ⊥ then % generate alternate channel key pair only once

〈C1.SK
[w ]
t+1 , C1.SK

[w̄ ]
t+1 〉 ← ChangeFMKeys(SK

[w ]
t+1 )

τ ← t + 1 % record challenge period

U [t]← w̄ % party w̄ recorded as period t refresh receiver

t← t + 1 % time period incremented

q ← A
Ob,t

probe(1
k)

DIST:
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s← A
Ob,t

probe(1
k) % Aprobe outputs state s

b̂← A
Ob,t

dist (1
k, s) % Adist outputs distinguishing guess b̂ for b, i.e. plain vs. single splice channel

return b̂

Definition 9 (Spliceability).
Let KEC = (InitKeys ,EncM ,DecM ,GenR,ProcR;SendMesg ,RefKeys) be a two-party key evolving
channel scheme with security parameter k, and let A be an adversary. Define the (CCA) splice-
distinguishing advantage of A against the channel KEC as:

Advind−chan−splice
KEC,A (k)

def
= Pr[Expind−chan−splice−0

KEC,A (k) = 1]− Pr[Expind−chan−splice−1
KEC,A (k) = 1] .

KEC is (CCA) splice-indistinguishable16 or just spliceable if Advind−chan−splice
KEC,A (·) is negligible for

all refresh-receiver-biased PPT A.

In the above experiment the refresh sender’s key is changed for a single period of A’s choosing.
One can similarly define a multi-splice version Expind−chan−Msplice−b

KEC,A (k), in which keys of the refresh
sender are changed for all periods in which the corresponding refresh receiver is not exposed. In
this case the key exposure and decryption oracles become:

Oracle Okeyb,t(u, τ)

if b = 1 and U [τ − 1] = ū and SK
[ū ]
τ is not Q-exposed

% u is a forbidden message sender for period τ

then return C1.SK
[u]
τ % expose alternate C1 channel key

else return Okey t(u, τ) % expose primary channel key

Oracle Odecb,t(c, ū, τ)

if b = 1 and U [τ − 1] = ū and SK
[ū ]
τ is not Q-exposed

and Oenct does not contain (τ, u, ·, c)
% u is a forbidden message sender for period τ and didn’t use oracle to create c

then return Odec
C1.SK

[ū]
τ

(c, τ) % use alternate C1 channel decryption oracle

else return Odect(τ, ū, c) % use primary decryption oracle

The full multi-splice experiment is given below. As in the splice experiment above, Ob,t denotes
the entire set of oracles to which A has access during period t.

Experiment Expind−chan−Msplice−b
KEC,A (k)

INIT:

t← 0

〈SK
[0 ]
t ,SK

[1 ]
t 〉 ← InitKeys(1k) % initialize primary chan. keys

PROBE:

q ← A
Ob,t

probe(1
k)

16 A broader definition of forbidden messages is possible. Namely, any message whose receiver is not exposed could
be considered forbidden. However, proving that a channel is secure for this broader class of forbidden messages
seems difficult.
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while q in (ref(w, w̄)) do % send refresh from party w to party w̄

〈SK
[w ]
t+1 ,R

[w̄ ]
t 〉 ← GenR(SK

[w ]
t ) % party w generates new key and refresh

SK
[w̄ ]
t+1 ← ProcR

SK
[w̄]
t

(R
[w̄ ]
t ) % party w̄ receives refresh and updates its key

〈C1.SK
[w ]
t , C1.SK

[w̄ ]
t 〉 ← ChangeFMKeys(SK

[w ]
t )

U [t]← w̄ % party w̄ is recorded as refresh receiver for period t

t← t + 1 % time period incremented

q ← A
Ob,t

probe(1
k)

DIST:

s← A
Ob,t

probe(1
k) % Aprobe outputs state s

b̂← A
Ob,t

dist (1
k, s) % Adist outputs distinguishing guess b̂ for b, i.e. plain or spliced channel

return b̂

Definition 10 (Spliceability (multiple period)).
Let KEC = (InitKeys ,EncM ,DecM ,GenR,ProcR) be a two-party key evolving channel scheme with
security parameter k, and let A be an adversary. We define the (CCA) multi-splice-distinguishing
advantage of A against the channel KEC as:

Advind−chan−Msplice
KEC,A (k)

def
= Pr[Expind−chan−Msplice−0

KEC,A (k)=1]

−Pr[Expind−chan−Msplice−1
KEC,A (k)=1] .

KEC is (CCA) multi-splice-indistinguishable or just multi-spliceable if Adv ind−chan−Msplice
KEC,A (·) is

negligible for all refresh-receiver-biased PPT A.

The following lemma is used in the proof of Theorem 3, our channel composition result.

Lemma 4 (Spliceable⇒Multi-Spliceable). If KEC is spliceable, then it is also multi-spliceable.

Proof. Assume there exists a multi-splice adversary A with noticeable advantage ε against KEC.
We show via a hybrid argument that this implies the existence of a splice adversary A1 with
noticeable advantage against KEC. A1 initially guesses a hybrid period 1 ≤ τ ≤ T , and then
simulates a hybrid version of experiment Expind−chan−Msplice−b

KEC,A (k). In this hybrid experiment, all
forbidden message sender keys for periods < τ are spliced, all keys for periods > τ are not spliced
(left unchanged), and the key of a period τ forbidden message sender will be the key for the splice

challenge period in the experiment Expind−chan−splice−b
KEC,A1

(k).
A1 handles the oracle queries of A as follows. The only special cases are A’s queries for encryp-

tions, key exposures, or decryptions for time periods < τ . For all other queries, A1 simply forwards
A’s query to its own corresponding oracle, and hands the answer back to A unchanged.

To handle an encryption query (m,u, α) for some period α < τ , A1 still forwards the query to
its own oracle and returns the resulting ciphertext c to A unchanged. The only thing different is
that A1 adds this query-response pair ((m,u, α), c) to a running log of encryption queries made by
A for later use when answering decryption queries.

To handle a key exposure query (u, α) for some period α < τ , A1 checks to see whether party u
was the sender of the refresh initiating period α and whether the corresponding refresh receiver is
still unexposed. If either one of these conditions fails to hold, A1 forwards the query to its own oracle

19



and returns the answer unchanged to A. Otherwise, if both conditions hold, party u is a forbidden
message sender for period α. A1 still forwards the exposure query to its own oracle. However,

after receiving the answer SK
[u]
α , instead of passing this key unchanged to A, as in Experiment

Expind−chan−Msplice−b
KEC,A (k) A1 uses this key to generate alternate keys C1.SK

[u]
α and C1.SK

[ū ]
α . A1

gives C1.SK
[u]
α to A and stores C1.SK

[ū ]
α for later use when answering decryption oracle queries.

To handle a decryption query (c, ū, α) for some period α < τ , A1 first checks to see whether
u is a forbidden message sender for period α. If u is not a forbidden message sender for period
α, or if this is not yet determined (i.e. neither u’s nor ū’s keys for period α have been exposed
yet), then A1 simply forwards the query to its own oracle and returns the answer unchanged to A.
Otherwise, if party u is a forbidden message sender for period α, then A1 first checks its running
log to see if the ciphertext c was created via an encryption oracle query of A. If the log contains
some entry ((m,u, α), c), then A1 just returns the message m from this log entry directly to A (the
same answer as would be obtained by querying the decryption oracle). If on the other hand the log

does not contain such an entry, A1 decrypts c using the alternate party ū key C1.SK
[ū ]
α for period

α17.

When A outputs its distinguishing guess b̂ ∈ {0, 1}, A1 halts and outputs b̂ as its own guess.

Finally, note that if A has noticeable advantage ε in Expind−chan−Msplice−b
KEC,A (k), then by the above

hybrid simulation, A1 has noticeable advantage of roughly ε/T in Expind−chan−splice−b
KEC,A1

(k).

A.3 Channel Key-Message-Splice Indistinguishability

This property captures the notion that for a single period during which the refresh receiver is not
exposed, no PPT adversary should be able to distinguish between the following two worlds. World
1 is identical to world 1 from the splice experiment above: the corresponding refresh sender’s key
has been changed in the test period. In world 0, the refresh sender’s key has not been changed in
the test period, but whenever the adversary queries for an encryption by the refresh sender for the
test period, he is given an encryption of randomness (under the correct key). For this experiment,
the key exposure, encryption and decryption oracles from Section 2.2 become:

Oracle Okeyb,t,τ (u, α)

if b = 1 and α = τ and U [τ − 1] = ū and SK
[ū]
τ is not Q-exposed

then return C1.SK
[u]
τ % expose alternate C1 channel key

else return Okey t(u, α) % expose primary channel key

Oracle Oencb,t,τ (m,u, α)
if b = 0 and α = τ and U [τ − 1] = ū

r
R
← {0, 1}|m|

return Oenct(r, u, α) % encrypt randomness instead of message

else return Oenct(m,u, α) % encrypt message

17 A1 decrypts c with the alternate key in this case since it knows that A did not generate c via an encryption oracle
query. This is done to ensure consistency since A may have produced c using the alternate party u key C1.SK

[u]
α

provided by A1. Consequently, A1’s decryption oracle in general will not produce the correct answer.
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Oracle Odecb,t,τ (c, ū, α)

if α = τ and U [τ − 1] = ū and SK
[ū ]
τ is not Q-exposed then

CASE b
0:

if Oencb,t,τ contains some (α, u,m, c) % enc. oracle used

then return m % return logged message instead

else return Odect(c, ū, α) % use usual chan. decrypt. oracle

1:
if Oencb,t,τ contains some (α, u, ·, c) % enc. oracle used

then return Odect(c, ū, α) % use usual chan. decrypt. oracle

else return Odec
C1.SK

[ū]
τ

(c) % decrypt using alt. key

else return Odect(c, ū, α) % use usual channel decryption oracle

Experiment Expind−chan−KeyMsg−splice−b
KEC,A (k)

INIT:

t← 0; τ ← ⊥; 〈SK
[0 ]
t ,SK

[1 ]
t 〉 ← InitKeys(1k) % initialize primary channel keys

PROBE:

q ← A
Ob,t

probe(1
k)

while q in (ref(w, w̄), test(w, w̄)) do % send refresh from party w to party w̄

〈SK
[w ]
t+1 ,R

[w̄ ]
t 〉 ← GenR(SK

[w ]
t ) % party w generates new key and refresh

SK
[w̄ ]
t+1 ← ProcR

SK
[w̄]
t

(R
[w̄ ]
t ) % party w̄ receives and processes refresh

if q = test(w, w̄) and τ = ⊥ then

τ ← t + 1 % record challenge period

if b = 1 then % generate alternate channel key pair only once

〈C1.SK
[w ]
t+1 , C1.SK

[w̄ ]
t+1 〉 ← ChangeFMKeys(SK

[w ]
t+1 )

U [t]← w̄ % party w̄ recorded as period t refresh receiver

t← t + 1; q ← A
Ob,t

probe(1
k) % increment time period; get next query

DIST:

s← A
Ob,t

probe(1
k) % Aprobe outputs state s

b̂← A
Ob,t

dist (1
k, s) % Adist outputs distinguishing guess b̂ for b, i.e. plain vs. single splice channel

return b̂

NOTE: A is not allowed to key expose receiver of refresh in period τ . In the b = 0 case A could
use key to decrypt altered ciphertexts.

Definition 11 (Key-Message-Splice-Indistinguishability).
Let KEC = (InitKeys ,EncM ,DecM ,GenR,ProcR) be a two-party key-evolving channel scheme
with security parameter k, and let A be an adversary. We define the (CCA) Key-Message-Splice
distinguishing advantage of A against the channel KEC as:

Advind−chan−KeyMsg−splice
KEC,A (k)

def
= Pr[Expind−chan−KeyMsg−splice−0

KEC,A (k)=1]

−Pr[Expind−chan−KeyMsg−splice−1
KEC,A (k)=1] .
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We say KEC is (CCA) Key-Message-Splice-Indistinguishable if

Advind−chan−KeyMsg−splice
KEC,A (·) is negligible for all refresh-receiver-biased PPT A.

Lemma 5. If KEC is spliceable and intrusion resilient, then it is Key-Message-Splice-Indistinguish-
able.

Proof. For the sake of contradiction, suppose that there exists an A with noticeable distinguishing
advantage in Expind−chan−KeyMsg−splice−b

KEC,A . Observe that the only difference in A’s view between the

case of b = 0 and b = 1 occurs in the test period τ . Let u denote the sender of the refresh, R
[ū]
τ−1 ,

that initiates period τ , and for 1 ≤ i ≤ N let mi be the message in the ith u encryption query for
period τ . Then A must be able to distinguish between:

(
R

[u]
τ−1 ,SK [u]

τ , ~m,
−−−−−−−−−−→
EncM

SK
[u]
τ

(r),~c,
−−−−−−−−→
Odec0,t,τ (c)

)
, and (1)

(
R

[u]
τ−1 , C1.SK [u]

τ , ~m,
−−−−−−−−−−→
EncM

SK
[u]
τ

(m),~c,
−−−−−−−−→
Odec1,t,τ (c)

)
(2)

where ri
R
← {0, 1}|mi |. But if this is the case, then by the triangle inequality A must be able

to distinguish either between (†) =
(
R

[u]
τ−1 ,SK

[u]
τ , ~m,

−−−−−−−−−−→
EncM

SK
[u]
τ

(m),~c,
−−−−−−−−−→
DecM

SK
[ū]
τ

(c)
)

and (2), or

between (†) and (2). Thus, such an A can by used in the former case to build a splice adversary
against KEC and in the latter case to build via a hybrid argument an intrusion-resilience adversary
against KEC. In either case this results in a contradiction.

B Intrusion-Resilient Model

B.1 Model Review

Actor, Base, Refreshes. Let us consider the intrusion-resilient model. There, some crypto-
graphic function (e.g., signature generation) is performed by an entity which we here call actor (in
[IR02,Itk02], the actor is referred to as Signer). However, the secret key information maintained
by the actor expires periodically, at which time he needs to receive an update message from an-
other entity (base). The life of the system is divided into time periods according to these updates:
each update signals the beginning of the new time period. In addition, the base may send refresh
messages to the actor — as frequently and as many as desired.

Exposures. Clearly, if an adversary exposes the actor during some time period, she can do
everything during that period that the actor could (e.g., generate signatures for the period of the
exposure). However, at the end of the time period, the exposed keys expire. The base will then
issue an update message. If the adversary does not receive this message then she will no longer
enjoy any benefit of the exposure. The exposures of the base by themselves are of no consequence.

Simultaneous Exposure. Of course, if the adversary manages to expose all the information of
the system —i.e., by exposing both the base and the actor simultaneously— then she can perform
all the functions of the system from that point onwards (one potential limitation on the adversary
even in this case is discussed in [Itk03]).

Even in this case of simultaneous exposure, intrusion-resilient systems preserve forward-security:
the system remains secure for the periods prior to the exposure (e.g., signatures cannot be back-
dated and old messages cannot be deciphered).
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Direct and Indirect Exposures. Similar to the definitions of exposure in Sec. 2.2, there are
likewise two types of exposures in the traditional intrusion-resilient model: direct and indirect.
The actor’s secret key can be indirectly exposed in a way similar to exposure via evolution as
defined in Sec. 2.2. The past definitions of intrusion-resilient models, however, also included a
separate indirect exposure of the base, also corresponding to exposure via evolution. While the
actor (receiver) evolution exposure is unavoidable, the base (sender) evolution exposure can be
eliminated, as discussed below. This would effectively restrict the exposures of the base to direct
only.

B.2 Motivations for Intrusion-Resilient Channels

Let us consider what exactly is meant by “simultaneous” exposures above. In the previous defi-
nitions of intrusion-resilient models, two exposures were considered simultaneous if there was no
refresh between them. As a result, in the past models, the security of the system can be recovered
as long as there is at least one refresh message not seen by the adversary between any two break-ins
(direct exposures). Thus, the users of the system can make the simultaneous exposure more difficult
by increasing the frequency of refreshes as deemed necessary.

Refresh Vulnerability. Still, this need to rely on the adversary missing some messages gave
rise to a valid criticism of the model: it seems reasonable to assume that mounting an exposure
(of either base or the actor) is a more demanding task than intercepting their messages. The past
responses to this criticism were limited to appealing to “out-of-band” methods, e.g., to bring the
actor into a physical contact with the base to secure transmission of refresh message. While this in
some situations may indeed be an acceptable or even desirable feature, using and intrusion-resilient
channel IRC offers a better option.

Let the base and actor use IRC to protect their communication. There are a number of benefits
of doing so which are discussed at length next.

Eliminating Indirect Exposures Of The Base. First, in the past intrusion-resilient models
it was possible to expose a base not only directly but also by using refresh or update messages it
sent. With IRC-secured communication, only direct exposures are possible for the base (except in
some cases following a simultaneous exposure — where the issue is already irrelevant).

Eliminating Leaking Unexposed Information. Secondly, the original definitions of expo-
sures allowed for the cases when the adversary knows a secret key, while that key is considered not
exposed. This strange circumstance did not harm the specific models and their security properties,
but it is counter-intuitive and creates a certain potential lack of robustness. Using IRC we elimi-
nate this strange aberration, creating a tighter link between the concept of exposed keys and the
knowledge of the adversary.

Tolerating More Powerful Adversary. Thirdly, some intrusion-resilient constructions
needed to limit slightly the power of adversary in order to guarantee security. For example, the
adversary could access only the very recent refresh messages (in a simulation). Some of such re-
strictions can be relaxed if the IRC is used.

Uni-Directional vs. Two-Directional IRC. Finally, last, but not least: all three benefits
above apply even if the IRC is restricted to send all messages —data and channel maintenance—
in only one direction: from the base to the actor. The unidirectional nature of the intrusion-resilient
model was motivated by the following consideration. The base and the signer together maintain
some long term secret (even if it is evolving). For any implementation of a cryptographic module,
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the ability to observe the module react to various inputs (or even provide these inputs) represents
a significant power for the adversary. Clearly, the actor cannot avoid this threat. However, it is
possible to restrict the base to accept no inputs, thus raising its, and therefore system’s, level of
security.

In contrast, IRC maintains no long term secrets. Therefore, the above motivation for unidirec-
tionality does not apply to it. This may justify the ability of the IRC to support two-directional
channel refresh messages (even if the data traffic is still only from the base to the actor). This
strengthens the model even further, since the channel recovers even if its channel refresh message is
intercepted. In other words, the window of vulnerability for indirect exposure of the actor is limited
to the interval between the last IRC refresh sent by the actor’s end of the channel and the sub-
sequent refresh sent by the base. Since this interval can be made arbitrarily small, this practically
eliminates even the indirect exposures of the actor: the only way then to expose either party is a
direct exposure.

C Channel Security: Proof of Theorem 1 (gIRC is Intrusion-Resilient)

The following proof of Theorem 1 relies on Lemma 6 and Corollary 1, which in turn comes from
Lemmas 7 and 8. These Lemmas and Corollary are precisely stated in section C.1. Lemma 6
deals with the case of a fro-attacking channel adversary, while the case of a to-attacking channel
adversary is dealt with in Lemmas 7 and 8. The proofs of these Lemmas and Corollary appear in
Appendices C.2–C.6.

Proof (of Theorem 1). For a given PPT channel adversary A, let ε(k) = Advchannel−ind
gIRC,A (k) =

εfro(k)+ εto(k) as defined at the end of Section 2.2. Then Lemma 6 implies that there exists a PPT

adversary AGM with advantage Advind−cca
S,AGM

(k) =
εfro(k)
qrefr

against S. Also, Corollary 1 implies that

there exists a pair of PPT adversaries (Arand
GM ,Ahyb

GM ) such that

max{Advind−cca
S,Arand

GM

(k),Advind−cca

S,Ahyb
GM

(k)} ≥
εto(k)

2qrefr
2(3qrefr − 2)

.

Since ε(k) = εfro(k) + εto(k), it follows that either εfro(k) ≥ ε(k)
2 or εto(k) ≥ ε(k)

2 . Thus, either

Advind−cca
S,AGM

(k) ≥ ε(k)
2qrefr

or max{Advind−cca
S,Arand

GM

(k),Advind−cca

S,Ahyb
GM

(k)} ≥ ε(k)
4qrefr

2(3qrefr−2) .

Using qrefr ≥ 1 ⇒ ε(k)
2qrefr

≥ ε(k)
4qrefr

2(3qrefr−2) , the above yields that for each value of k at least one

adversary of the triple (AGM ,Arand
GM ,Ahyb

GM ) will have advantage ≥ ε(k)
4qrefr

2(3qrefr−2) against S.

Finally, note that the running times of the three S-adversaries above are essentially the same
as A. ut

C.1 Lemma and Corollary Statements

In the Lemma statements below let A, qrefr , ε(k), εto(k), εfro(k) all be defined as above.
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The Fro-Attack Case In the case of a fro-attack the only part of the challenge receiver’s key to
appear in the crucial fro-refresh message is his new public key. Consequently, it is the easier case
to simulate: the S-adversary AGM when lucky enough to guess the challenge period correctly can
easily slip the given public key into the crucial refresh and thus trick A into answering the challenge.
The following lemma gives the advantage of S-adversary AGM in terms of channel adversary A’s
fro-attack advantage.

Lemma 6 (∃A ⇒ ∃AGM ).
Let A be any gIRC-adversary causing at most qrefr PROBE loop iterations in Expchannel−ind−b

gIRC,A (k)
and having fro-attack advantage εfro(k).

Then there exists an S-adversary AGM such that Advind−cca
S,AGM

(k) =
εfro(k)
qrefr

.

Furthermore, AGM runs A as an oracle and performs at most qrefr gIRC.GenKeys operations, and
one gIRC.EncM or gIRC.DecM operation or Odec query per each Oenc or Odec query made by
A; all other work done by AGM does not exceed O(1) per each of the above operations.

The To-Attack Case In contrast to the case of a fro-attack, in a to-attack the challenge receiver’s
secret key for the challenge period appears in the crucial to-refresh message. Consequently, this is
the harder case to simulate: even when lucky enough to guess the challenge period correctly, an S-
adversary AGM cannot properly construct the crucial refresh message. To get around this difficulty,
we first define a weaker S-adversary AChain which receives a chained sequence of public key pairs
and ciphertexts. For each element in the chain, the pair of public keys corresponds to the data
and refresh public keys of a new channel period. Likewise the ciphertext of a given chain element
corresponds to the to-refresh message initiating the new channel period; its plaintext consists of
the new data and refresh secret keys, together with an arbitrary suffix padding chosen by AChain.
As in the channel setting, each successive ciphertext (to-refresh) in the chain is encrypted with
the previous refresh public key. AChain’s goal is to pick an instance in the chain against whose
data secret key it will attempt to distinguish ciphertexts. We refer to such an adversary as a chain
adversary and detail its security experiment in Appendix C.3.

Lemma 7, stated below, shows that there exists a chain adversary who can perfectly simulate
for a given to-attacking channel adversary and thus capitalize on its to-attack advantage.

Lemma 7 (∃A⇒ ∃AChain).
Let A be any gIRC-adversary causing at most qrefr PROBE loop iterations in Expchannel−ind−b

gIRC,A (k)
and having to-attack advantage εto(k). Then there exists a chain S-adversary AChain such that

Advchain−ind
S,AChain

(k) ≥ εto(k)
2qrefr

2 .

Furthermore, AChain using A as an oracle obtains at most qrefr chain elements in Expchain−ind−b
S,AChain

(k),
performs at most qrefr executions of gIRC.GenKeys, and one gIRC.EncM or gIRC.DecM execu-
tion or Odec query per each Oenc or Odec query made by A; all other work done by AChain does
not exceed O(1) per each of the above operations.

Finally, Lemma 8 below shows that an ordinary S-adversary can be constructed from a given
chain adversary and realize comparable advantage.

Lemma 8 (∃AChain ⇒ ∃AGM ).
Let AChain be any chain S-adversary obtaining at most qnext chain elements in Expchain−ind−b

S,AChain
(k).
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Then there exists a pair of S-adversaries Arand
GM and Ahyb

GM such that

max{Advind−cca
S,Arand

GM

(k),Advind−cca

S,Ahyb
GM

(k)} ≥
(

1
3qnext−2

)
·Advchain−ind

S,AChain
(k).

Furthermore, both Arand
GM and Ahyb

GM use AChain as an oracle, perform at most 2qnext executions of
S.G, qnext executions of S.E, and one S.D execution or Odec query per each Odec query made
by AChain; all other work done by Arand

GM and Ahyb
GM does not exceed O(1) per each of the above

operations.

The following Corollary composes the above pair of lemmas:

Corollary 1. Let A be any gIRC-adversary adversary with to-attack advantage εto(k) causing
at most qrefr PROBE loop iterations in Expchannel−ind−b

gIRC,A (k). Then there exists a pair of adversaries

(Arand
GM ,Ahyb

GM ) such that max{Advind−cca
S,Arand

GM

(k),Advind−cca

S,Ahyb
GM

(k)} ≥ εto(k)
2qrefr

2(3qrefr−2) .

Furthermore, both Arand
GM and Ahyb

GM use A as an oracle and perform at most qrefr executions of
gIRC.GenKeys and one gIRC.EncM or gIRC.DecM execution or Odec query per each Oenc or
Odec query made by A; all other work done by Arand

GM and Ahyb
GM does not exceed O(1) per each of

the above operations.

The proofs of the above Lemmas and Corollary appear in Appendices C.2–C.6.

C.2 The Fro-Attack Case: Proof of Lemma 6

Proof. Let p̂k denote the public key for the S instance being attacked by CCA-adversary AGM .
Hence, AGM is given p̂k (but not the corresponding ŝk), and needs to produce a pair of messages
whose ciphertexts she can distinguish. AGM accomplishes this by simulating a channel experiment
Expchannel−ind−b

gIRC,A (k) for A as follows.
First, AGM guesses a time period τ ∈ [0, qrefr − 1], which she hopes will coincide with A’s

challenge period in the simulated experiment. AGM succeeds only if this guess is correct and if A
mounts a fro-attack in this period.
AGM simulates the channel experiment for A up to the period τ with perfect fidelity by using

gIRC.GenR to generate all channel secrets and appropriate refresh messages. Responses to A’s
oracle queries for these periods are constructed accordingly.

Period τ is initiated with the refresh R
[w̄ ]
τ−1 requested by A. Assuming a fro-attack in period τ ,

the originator w of this refresh will also be the challenge receiver. AGM constructs the refresh R
[w̄ ]
τ−1

by setting the data public key SK
[w̄ ]
τ .pk [w |d〉 = p̂k and generating the rest of R

[w̄ ]
τ−1 as before. Note

this does not require knowledge of ŝk , and AGM can still answer A’s Odec queries for period τ by
querying its own decryption oracle. For all subsequent periods AGM simulates the experiment for
A as prior to the challenge period: by generating all the keys herself.

Eventually, in order to succeed in the simulated experiment, A must output two messages
m0,m1 along with the challenge receiver w′, challenge sender w̄′, and the challenge period τ ′, such
that the challenge receiver is not compromised in τ ′. If τ ′ = τ and w′ = w, then AGM outputs
the same messages m0,m1 and receives back c = gIRC.EncM

SK
[w̄]
τ

(mb) = S.E
p̂k

(mb) for unknown

b←R{0, 1}. AGM passes c to A, which returns its guess b̂; AGM in turn outputs b̂ as her own.

If τ ′ 6= τ or w′ 6= w, or A exposes SK
[w ]
τ , then AGM aborts the simulation and outputs a random

bit. Since AGM generates, and thus knows, all the channel secrets except for SK
[w ]
τ .sk [w |d〉, she can
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simulate all the interactions with A, except for the abortive case of exposing SK
[w ]
τ (which requires

no simulation).
Clearly, for all executions in which AGM correctly guesses the challenge period (with probability

1/qrefr ) AGM ’s advantage will be εfro(k). Thus the overall advantage of AGM is

Advind−cca
S,AGM

(k) =
εfro(k)

qrefr

.

The running time characteristics of AGM are straightforward from the above. ut

C.3 The To-Attack Case: Public-Key Encryption Chains and Their Security.

Consider the following extension to the security experiment Expind−cca−b
S,AGM

(Sec. A.1), in which the
CCA-adversary is now allowed to interact with successive elements of a “chain” consisting of pairs
of instances of S. Specifically, upon each “next” request to see a new element i in the chain, the

adversary receives (i) the new pair of public keys (pk
[d〉
i , pk

[ρ〉
i ) (data and refresh), and (ii) an

encryption ci (under the refresh public key of the previous instance) of a plaintext consisting of

the new corresponding pair of secret keys (sk
[d〉
i , sk

[ρ〉
i ) concatenated with an arbitrary suffix Xi

selected by AChain. That is, ci = E
pk

[ρ〉
i−1

(sk
[d〉
i , sk

[ρ〉
i , Xi)

18. Eventually AChain selects one element τ

in the chain against whose data secret key it attempts to distinguish ciphertexts.
Note that the adversary AChain retains CCA powers against every data stream instance of S in

the chain: if t is the current chain element, then for any τ ≤ t and any y not equal to the ciphertext
challenge, a query of (τ, y) to AChain’s Odect oracle returns D

sk
[d〉
τ

(y).

Let AChain be an adversary, and let S, b and k be as in Section A.1. We use si+1 to denote the
state of AChain after computing on element i in the chain. The chain experiment in detail is given
by:

Experiment Expchain−ind−b
S,AChain

(k)

t← 0; c←⊥; c0 ←⊥; s0 ←⊥; q ← “next”

(sk
[d〉
t , pk

[d〉
t )← S.G(1k) % initial data key pair

(sk
[ρ〉
t , pk

[ρ〉
t )← S.G(1k) % initial refresh key pair

while q == “next” do :

(q,Xt+1, st+1)← A
Odect

Chain(pk
[d〉
t , pk

[ρ〉
t , ct, st) % next request

CASE q
“next”:

(sk
[d〉
t+1 , pk

[d〉
t+1 )← G(1k) % next data key pair

(sk
[ρ〉
t+1 , pk

[ρ〉
t+1 )← G(1k) % next refresh key pair

ct+1 ← S.E
pk

[ρ〉
t

(sk
[d〉
t+1 , sk

[ρ〉
t+1 , Xt+1) % ciphertext of new secret keys plus suffix

t← t + 1
“test”:

if c 6= ⊥ then break % only one challenge allowed

18 Note that this ciphertext format matches that of a refresh message in the gIRC construction (Section 3); hence
the adversary AChain, by selecting a proper suffix Xi and querying for the next chain element, will be able to
obtain a good-looking crucial to-refresh even without knowing the prefix of its plaintext.
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(m0,m1, τ) ← AOdect

Chain(st+1) % request for ciphertext challenge for some instance τ ∈
[0, t]

c← S.E
pk

[d〉
τ

(mb) % ciphertext challenge

b̂← AOdect

Chain(c, st+1) % guess b

return (τ, b̂)

We say that AChain as above is a chain S-adversary and define the chain advantage of AChain

against S as:

Advchain−ind
S,AChain

(k) = Pr[(τ, b̂)← Expchain−ind−1
S,AChain

(k) : b̂ = 1]− Pr[(τ, b̂)← Expchain−ind−0
S,AChain

(k) : b̂ = 1].

C.4 The To-Attack Case: Proof of Lemma 7

Proof. Let chain S-adversary AChain attack an S-chain consisting of data keys (ŝk
[d〉
i , p̂k

[d〉
i ), re-

fresh keys (ŝk
[ρ〉
i , p̂k

[ρ〉
i ), and encryptions of secret key pairs ci = S.E d

pk
[ρ〉
i−1

(
ŝk

[d〉
i , ŝk

[ρ〉
i , Xi

)
, for

i = 1, . . . , qrefr−1. Recall that in period i AChain is given p̂k
[d〉
i , p̂k

[ρ〉
i , and ci, and its goal is to

output a pair of messages m0,m1 along with a chain challenge period λ such that it can distinguish
between their encryptions under the chain data key for chain period λ.

First, AChain guesses a channel challenge period τ ′ ∈ [0, qrefr−1], a period σ′ ∈ [0, τ ′], and a
challenge receiver u′ ∈ {0, 1}.

Next, AChain simulates the channel experiment for A up through period σ ′ − 1 with perfect
fidelity by using gIRC.GenR to generate all channel secrets and appropriate refresh messages.
Responses to A’s oracle queries for these periods are constructed accordingly.

Period σ′ is initiated with the refresh R
[]
σ′−1 requested by A. Assuming that all of the above

guesses of AChain lead to a useful simulation (defined below), then this refresh will either be a
fro-refresh or a non Qr-queried to-refresh with respect to the challenge receiver u′. Knowing this,
AChain uses period σ′ as the “graft point” for beginning the insertion of the chain keys into the
channel simulation, which it continues up through the challenge period τ ′. Assume without loss

of generality that u′ = 0. Then, for all periods t ∈ [σ′, τ ′], AChain sets SK
[1 ]
t .pk [0 |d〉 =

̂
pk

[d〉
t−σ′

and SK
[1 ]
t .pk [0 |ρ〉 =

̂
pk

[ρ〉
t−σ′ , while SK

[0 ]
t .sk [0 |d〉 =

̂
sk

[d〉
t−σ′ and SK

[0 ]
t .sk [0 |ρ〉 =

̂
sk

[ρ〉
t−σ′ are unknown.

AChain generates the other half of these keys as before (using gIRC.GenR). In order to obtain
the to-refresh messages initiating the channel periods t ∈ [σ ′+1, τ ′], AChain sets suffix Xt−σ′ =(
SK

[0 ]
t .pk [1 |d〉,SK

[0 ]
t .pk [1 |ρ〉

)
and queries for the next chain element. This yields an encryption

ct−σ′ = E
pk

[ρ〉

t−σ′−1

( ̂
sk

[d〉
t−σ′ ,

̂
sk

[ρ〉
t−σ′ , Xt−σ′

)
, which AChain supplies upon request to A as to-refresh

message R
[u′]
t−1 . Note that AChain can still answer all of A’s Odec oracle queries: for one direction

of the channel AChain continues to generate all keys, and for the other direction AChain can query
its own Odec oracle for the appropriate chain period. Once the challenge period τ ′ passes, AChain

returns to simulating the experiment for A as prior to period σ ′.
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Eventually, in order to succeed in the simulated experiment, A must output a challenge message
pair, m0 and m1, along with the challenge receiver u, challenge sender ū, and the challenge period
τ , such that the challenge receiver is not compromised in period τ . A simulation is useful if τ ′ = τ ,

u′ = u, the refresh R
[]
σ′−1 is either a fro-refresh or a non Qr-queried to-refresh with respect to

u′, all refreshes initiating periods σ ′ + 1 up to and including period τ ′ are to-refreshes and are

all Qr-queried by A, and SK
[u′]
τ is not Q-exposed19. In a useful simulation, note that Q-exposure

of any key SK
[u′]
t , σ′ ≤ t ≤ τ ′ combined with the set of Qr-queried refreshes would result in the

Q-exposure of SK
[u′]
τ ′ itself via evolution. Thus in a useful simulation AChain knows all the secrets

necessary to answer A’s queries.
If the simulation is useful, AChain outputs the same challenge message pair, m0 and m1, as A,

along with chain period λ = τ ′ − σ′, and receives back c = gIRC.EncM
SK

[ū]

τ ′
(mb) = S.E d

pk
[d〉

τ ′−σ′

(mb)

for some unknown b ←R {0, 1}. AChain passes c to A, which returns its guess b̂; AChain in turn
outputs b̂ as her own.

For all simulations which are not useful, AChain aborts the simulation and outputs a random
bit.

Clearly, when AChain has a useful simulation her advantage will be εto(k). This occurs when
she correctly guesses the challenge receiver, challenge period, and graft point (with probabilities
1/2, 1/qrefr , and at least 1/qrefr ). Thus the overall advantage of AChain is

Advchain−ind
S,AChain

(k) ≥
εto(k)

2qrefr
2

.

The running time characteristics of AChain are straightforward from the above. ut

C.5 The To-Attack Case: Proof of Lemma 8

Proof. Given a chain S-adversary AChain, we describe below how to construct a pair of ordinary
S-adversaries, Arand

GM and Ahyb
GM , such that at least one of the pair will have ordinary advantage

against S comparable to the chain advantage of AChain.

The random adversary Arand
GM

Arand
GM , working inside of Expind−cca−b

S,Arand
GM

, uses AChain as an oracle

to distinguish against a single instance (ŝk , p̂k) of S. Arand
GM simulates for AChain a modified version

of the chain experiment, denoted by Expchain−ind−b
S,AChain

(k, qnext −1), in which upon every request to see
the next element in the chain, AChain receives a new pair of public keys (data and refresh, as in the
original chain experiment) together with an encryption of a plaintext whose format is different from
that in the original chain experiment: the data and refresh secret key portions are both replaced by
fresh random strings generated by Arand

GM . By substituting p̂k for the data public key of a randomly
selected element in the chain, Arand

GM is able to leverage whatever advantage AChain may retain in
this modified chain experiment. More details of how Arand

GM works are given below; see Appendix C.7
for precise pseudocode.

Arand
GM first uniformly selects τ ′ ∈ [0, qnext−1] as its guess of the data key instance (time period20)

of S against which AChain will eventually choose to distinguish. Arand
GM also selects a random “back-

19 The degenerate case σ′ = τ ′ covers a to-attack in which A does not expose the crucial refresh.
20 For convenience we will subsequently refer to the consecutive instances of S generated within the chain experiment

as if they corresponded to consecutive time periods.
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up” distinguishing guess g←R{0, 1} for use in case its guess τ ′ proves to be incorrect. Arand
GM then

simulates Expchain−ind−b
S,AChain

(k, qnext − 1) for AChain. As in the original chain experiment, for all time

periods 1 ≤ i ≤ qnext −1 (i.e. the entire chain21), AChain receives the new pair of public keys

(data and refresh): (pk
[d〉
i , pk

[ρ〉
i ), but the corresponding ciphertext ci is now constructed as: ci =

E
pk

[ρ〉
i−1

(R
[d〉
i ,R

[ρ〉
i , Xi). Specifically, in the plaintext corresponding to ci the data secret key sk

[d〉
i and

refresh secret key sk
[ρ〉
i are replaced by the fresh random strings R

[d〉
i and R

[ρ〉
i generated by Arand

GM

and of equal length as the secret keys. Furthermore, Arand
GM makes the data secret key substitution

pk
[d〉
τ ′ ← p̂k . Note that Arand

GM can answer all of AChain’s Odec queries, either by using the appropriate
data decryption secret (for all periods i 6= τ ′) or by querying its own Odec oracle (for i = τ ′).

When Arand
GM observes AChain’s ciphertext challenge request (m0,m1, τ), it queries its own oracle

to obtain the ciphertext challenge c = S.E
p̂k

(mb), which it hands toAChain.Arand
GM waits untilAChain

outputs its distinguishing guess (τ, b̂) to check whether τ = τ ′. If equality holds (i.e. Arand
GM correctly

guessed the distinguishing time period of AChain), then Arand
GM outputs the b̂ supplied by AChain as

its own distinguishing guess. Otherwise, if τ 6= τ ′, then Arand
GM outputs its back-up guess g.

Let Advchain−ind
S,AChain

(k, qnext−1) denote the advantage of AChain in the modified chain experiment.

Then it is straightforward to compute the advantage of Arand
GM as:

Advind−cca
S,Arand

GM

(k) =
1

qnext

Advchain−ind
S,AChain

(k, qnext − 1).

See Appendix C.8 for details of the calculation. The running time characteristics of Arand
GM are

straightforward from the above.

The hybrid adversary A
hyb
GM

Ahyb
GM , working inside of Expind−cca−b

S,Ahyb
GM

, likewise uses AChain as

an oracle to distinguish against a single instance (ŝk , p̂k ) of S. However, in order to leverage
the potential difference between the advantages of AChain in experiments Expchain−ind−b

S,AChain
(k) and

Expchain−ind−b
S,AChain

(k, qnext − 1), Ahyb
GM ’s strategy is “hybrid” in nature, complimenting that of Arand

GM

above.
Ahyb

GM first selects a random index j←R[0, qnext−2]22 and a bit d←R{0, 1}, and then simulates for

AChain a modified version of the chain experiment, denoted Expchain−ind−d
S,AChain

(k, j+b). This experiment

is a hybrid of the original chain experiment and the modified version simulated by Arand
GM described

above. More precisely, as in the original chain experiment AChain receives for all chain periods the

new pair of public keys (data and refresh): (pk
[d〉
i , pk

[ρ〉
i ), but the parameter j + b specifies that for

all time periods 1 ≤ i ≤ j + b the corresponding ciphertext ci is constructed as in the simulation of

Arand
GM : ci = E

pk
[ρ〉
i−1

(R
[d〉
i ,R

[ρ〉
i , Xi). That is, for the first j+b time periods in this hybrid experiment23,

in the plaintext corresponding to ci the data secret key sk
[d〉
i and refresh secret key sk

[ρ〉
i are replaced

by the fresh random strings R
[d〉
i and R

[ρ〉
i generated by Ahyb

GM and of equal length as the secret keys.

Ahyb
GM accomplishes this hybrid simulation with index j + b (where bit b is unknown to Ahyb

GM )

as follows. Ahyb
GM makes the refresh secret key substitution pk

[ρ〉
j ← p̂k . Then, when it comes time

21 Not counting period 0, for which AChain receives no ciphertext at all.
22 Note if the bound qnext < 2 then AChain reduces immediately to an ordinary S-adversary, so we assume qnext ≥ 2.
23 Not counting period 0, for which AChain receives no ciphertext at all.
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to construct the ciphertext cj+1 to be handed to AChain along with the new public keys pk
[d〉
j+1 and

pk
[ρ〉
j+1 , Ahyb

GM queries its own ciphertext challenge oracle on the message pair

(
M0 = (sk

[d〉
j+1 , sk

[ρ〉
j+1 , Xj+1),M1 = (R

[d〉
j+1 ,R

[ρ〉
j+1 , Xj+1)

)
,

obtaining ciphertext C. Ahyb
GM then substitutes this as the chain ciphertext: cj+1 ← C.

Then, for all i > j + 1, the simulation for AChain is identical to the original chain experiment:

for each time period i > j + 1, AChain again receives pk
[d〉
i , pk

[ρ〉
i and ci = E

pk
[ρ〉
i−1

(sk
[d〉
i , sk

[ρ〉
i , Xi).

Furthermore, using the bit d of its own choosing, Ahyb
GM constructs the ciphertext challenge on

whichAChain attempts to distinguish. WhenAhyb
GM observes the distinguishing guess (τ, d̂) output by

AChain, it checks to see whether or not d̂ = d (i.e. whether or not AChain distinguished successfully).

If equality holds, then Ahyb
GM outputs b̂ ← 0 as its distinguishing guess. Otherwise, if d̂ 6= d, then

Ahyb
GM outputs b̂ ← 1. Recall that if b = 0 AChain will see one fewer ciphertexts of random string

pairs in the simulation than if b = 1. Thus Ahyb
GM ’s strategy is an attempt to detect any cumulative

decay in the advantage of AChain resulting from the substitution of encryptions of randomness. See
Appendix C.9 for precise pseudocode.

It is straightforward to compute the advantage of Ahyb
GM as:

Advind−cca

S,Ahyb
GM

(k) =
1

2(qnext − 1)

(
Advchain−ind

S,AChain
(k)−Advchain−ind

S,AChain
(k, qnext − 1)

)
.

See Appendix C.10 for details of the calculation. The running time characteristics of Ahyb
GM are

straightforward from the above.

Maximum advantage of the pair (Arand
GM

, A
hyb
GM

) From the bounds given above for the advan-

tage of Arand
GM and Ahyb

GM , it is straightforward algebra to show that we will always have

max

{
Advind−cca

S,Arand
GM

(k), Advind−cca

S,Ahyb
GM

(k)

}
≥

(
1

3qnext − 2

)
·Advchain−ind

S,AChain
(k).

See Appendix C.11 for details. ut

C.6 The To-Attack Case: Proof of Corollary 1

Proof. Indeed, by Lemma 7, there exists an adversary AChain with chain advantage at least εto(k)
2qrefr

2

against S and which obtains at most qrefr chain elements. Consequently, by Lemma 8, there exists

a pair of adversaries (Arand
GM ,Ahyb

GM ) such that max{Advind−cca
S,Arand

GM

(k),Advind−cca

S,Ahyb
GM

(k)} ≥
(

1
3qrefr−2

)
·

Advchain−ind
S,AChain

(k) ≥
(

1
3qrefr−2

)
· εto(k)

2qrefr
2 = εto(k)

2qrefr
2(3qrefr−2) . ut

C.7 Supplemental Details: Description of Arand
GM

Recall that Arand
GM is an S-adversary attacking an instance with keys (ŝk , p̂k). Thus Arand

GM works
inside of Expind−cca−b

S,Arand
GM

(k) and seeks to distinguish the bit b. Arand
GM uses AChain as an oracle.
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τ ′←R[0, qnext−1]; g←R{0, 1} % Arand
GM guesses chain challenge period τ ′ and prepares “back-up”

distinguishing guess g

Experiment Expchain−ind−b
S,AChain

(k, qnext − 1) % as simulated for AChain by Arand
GM

t← 0; c←⊥; c0 ←⊥; s0 ←⊥; q ← “next”

(sk
[d〉
t , pk

[d〉
t )← S.G(1k) % initial data key pair

(sk
[ρ〉
t , pk

[ρ〉
t )← S.G(1k) % initial refresh key pair

if t = τ ′ then pk
[d〉
t ← p̂k % check for base case substitution of data public key

while q == “next” do :

(q,Xt+1, st+1)← A
Odect

Chain(pk
[d〉
t , pk

[ρ〉
t , ct, st) % next request

CASE q

“next”:

if t 6= τ ′ − 1 then do: % encrypt randomness

(sk
[d〉
t+1 , pk

[d〉
t+1 )← G(1k) % next data key pair

(sk
[ρ〉
t+1 , pk

[ρ〉
t+1 )← G(1k) % next refresh key pair

R
[d〉
t+1 ←R{0, 1}

l(k) % where l(k) = |sk |

R
[ρ〉
t+1 ←R{0, 1}

l(k)

ct+1 ← S.E
pk

[ρ〉
t

(R
[d〉
t+1 ,R

[ρ〉
t+1 , Xt+1) % ciphertext of random strings plus suffix

t← t + 1

else if t = τ ′ − 1 then do: % encrypt randomness; substitute data public key

pk
[d〉
t+1 ← p̂k % substitute data public key

(sk
[ρ〉
t+1 , pk

[ρ〉
t+1 )← G(1k) % next refresh key pair

R
[d〉
t+1 ←R{0, 1}

l(k) % where l(k) = |sk |

R
[ρ〉
t+1 ←R{0, 1}

l(k)

ct+1 ← S.E
pk

[ρ〉
t

(R
[d〉
t+1 ,R

[ρ〉
t+1 , Xt+1) % ciphertext of random strings plus suffix

t← t + 1

“test”:

if c 6= ⊥ then break % only one challenge allowed
let (m0,m1, τ) ← AOdect

Chain(st+1) % request for ciphertext challenge for some in-
stance τ ∈ [0, t]

c← S.E
pk

[d〉
τ

(mb) % Arand
GM obtains ciphertext challenge c from its oracle

b̂← AOdect

Chain(c, st+1) % guess b

return (τ, b̂) % observed by Arand
GM

Once Arand
GM observes the output (τ, b̂) of AChain, it checks to see whether τ ′ = τ . If equality holds,

then Arand
GM outputs b̂ as its own distinguishing guess. Otherwise, if τ ′ 6= τ , Arand

GM outputs its back-up
guess g.

C.8 Supplemental Details: Calculating Advantage of Arand
GM

We calculate the advantage of Arand
GM against S.
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By definition ( A.1) we have:

Advind−cca
S,Arand

GM

(k) = Pr[Expind−cca−1
S,Arand

GM

(k) = 1]− Pr[Expind−cca−0
S,Arand

GM

(k) = 1]. (3)

According to the above specification of Arand
GM , the LHS of this difference (3) is the same as:

Pr[(τ, b̂)← Expchain−ind−1
S,AChain

(k, qnext − 1); τ ′ ← [0, qnext−1]; g ← [0, 1] : τ = τ ′ ∧ b̂ = 1]

+Pr[(τ, b̂)← Expchain−ind−1
S,AChain

(k, qnext − 1); τ ′ ← [0, qnext−1]; g ← [0, 1] : τ 6= τ ′ ∧ g = 1]

Expanding over the independent parameter τ ′ and simplifying gives:

=
1

qnext

qnext−1∑

τ ′=0

Pr[(τ, b̂)← Expchain−ind−1
S,AChain

(k, qnext − 1); g ← [0, 1] : τ = τ ′ ∧ b̂ = 1]

+
1

qnext

qnext−1∑

τ ′=0

Pr[(τ, b̂)← Expchain−ind−1
S,AChain

(k, qnext − 1); g ← [0, 1] : τ 6= τ ′ ∧ g = 1]

=
1

qnext

Pr[(τ, b̂)← Expchain−ind−1
S,AChain

(k, qnext − 1) : b̂ = 1] +
qnext−1

2qnext

.

Likewise we find that the RHS of the same difference (3) from above is equivalent to:

1

qnext

Pr[(τ, b̂)← Expchain−ind−0
S,AChain

(k, qnext − 1) : b̂ = 1] +
qnext−1

2qnext

.

Thus we may write the original advantage as:

Advind−cca
S,Arand

GM

(k) =
1

qnext

(
Pr[(τ, b̂)← Expchain−ind−1

S,AChain
(k, qnext − 1) : b̂ = 1]

−Pr[(τ, b̂)← Expchain−ind−0
S,AChain

(k, qnext − 1) : b̂ = 1]
)

=
1

qnext

Advchain−ind
S,AChain

(k, qnext − 1) .

C.9 Supplemental Details: Description of A
hyb
GM

The precise rules of this experiment are given below:

Recall that Ahyb
GM is an S-adversary attacking an instance with keys (ŝk , p̂k ). Thus Ahyb

GM works

inside of Expind−cca−b

S,Ahyb
GM

(k) and seeks to distinguish the bit b. Ahyb
GM uses AChain as an oracle.

j←R[0, qnext−2]; d←R{0, 1} % Ahyb
GM picks index j and bit d for constructing AChain’s eventual

ciphertext challenge. Note in the simulation below that Ahyb
GM knows the bit d and is trying to

distinguish the bit b. Ahyb
GM uses AChain as an oracle.

Experiment Expchain−ind−d
S,AChain

(k, j + b) % as simulated for AChain by Ahyb
GM

t← 0; c←⊥; c0 ←⊥; s0 ←⊥; q ← “next”
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(sk
[d〉
t , pk

[d〉
t )← S.G(1k) % initial data key pair

(sk
[ρ〉
t , pk

[ρ〉
t )← S.G(1k) % initial refresh key pair

if t = j then pk t ← p̂k % check for base case substitution of refresh public key

while q == “next” do :

(q,Xt+1, st+1)← A
Odect

Chain(pk
[d〉
t , pk

[ρ〉
t , ct, st) % next request

CASE q

“next”:

if t < j − 1 then do: % encrypt randomness

(sk
[d〉
t+1 , pk

[d〉
t+1 )← G(1k) % next data key pair

(sk
[ρ〉
t+1 , pk

[ρ〉
t+1 )← G(1k) % next refresh key pair

R
[d〉
t+1 ←R{0, 1}

l(k) % where l(k) = |sk |

R
[ρ〉
t+1 ←R{0, 1}

l(k)

ct+1 ← S.E
pk

[ρ〉
t

(R
[d〉
t+1 ,R

[ρ〉
t+1 , Xt+1) % ciphertext of random strings plus suffix

t← t + 1

else if t = j − 1 then do: % encrypt randomness; substitute refresh public key

(sk
[d〉
t+1 , pk

[d〉
t+1 )← G(1k) % next data key pair

pk
[ρ〉
t+1 ← p̂k % substitute refresh public key

R
[d〉
t+1 ←R{0, 1}

l(k) % where l(k) = |sk |

R
[ρ〉
t+1 ←R{0, 1}

l(k)

ct+1 ← S.E
pk

[ρ〉
t

(R
[d〉
t+1 ,R

[ρ〉
t+1 , Xt+1) % ciphertext of random strings plus suffix

t← t + 1

else if t = j then do: % substitute ciphertext challenge (secret keys?/randomness?)

(sk
[d〉
t+1 , pk

[d〉
t+1 )← G(1k) % next data key pair

(sk
[ρ〉
t+1 , pk

[ρ〉
t+1 )← G(1k) % next refresh key pair

R
[d〉
t+1 ←R{0, 1}

l(k) % where l(k) = |sk |

R
[ρ〉
t+1 ←R{0, 1}

l(k)

(M0,M1)←
(
(sk

[d〉
t+1 , sk

[ρ〉
t+1 , Xt+1), (R

[d〉
t+1 ,R

[ρ〉
t+1 , Xt+1)

)
% challenge message pair

C ← S.E
p̂k

(Mb) % Ahyb
GM obtains ciphertext challenge C from its oracle

ct+1 ← C % substitute challenge
t← t + 1

else if t > j then do: % encrypt secret keys

(sk
[d〉
t+1 , pk

[d〉
t+1 )← G(1k) % next data key pair

(sk
[ρ〉
t+1 , pk

[ρ〉
t+1 )← G(1k) % next refresh key pair

ct+1 ← S.E
pk

[ρ〉
t

(sk
[d〉
t+1 , sk

[ρ〉
t+1 , Xt+1) % ciphertext of new secret keys plus suffix

t← t + 1

“test”:

if c 6= ⊥ then break % only one challenge allowed
let (m0,m1, τ) ← AOdect

Chain(st+1) % request for ciphertext challenge for some
instance τ ∈ [0, t]

c← S.E
pk

[d〉
τ

(md) % Ahyb
GM generates ciphertext challenge c
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d̂← AOdect

Chain(c, st+1) % guess d

return (τ, d̂) % observed by Ahyb
GM

Once Ahyb
GM observes the output (τ, d̂) of AChain, it checks to see whether d̂ = d (i.e. whether or not

AChain distinguished correctly). If equality holds, then Ahyb
GM outputs b̂ ← 0 as its distinguishing

guess. Otherwise, if d̂ 6= d, Ahyb
GM outputs b̂← 1.

C.10 Supplemental Details: Calculating Advantage of A
hyb
GM

Generalizing previous notation, let Expchain−ind−d
S,AChain

(k, l) denote the modified chain experiment in
which AChain receives encryptions of l fresh random values R1, . . . , Rl in place of encryptions of the
first l secret keys sk 1, . . . , sk l in the chain24. For l = 0 this reduces to the original chain experiment:
Expchain−ind−d

S,AChain
(k, 0) = Expchain−ind−d

S,AChain
(k). Likewise let the advantage of AChain in this modified

experiment be denoted as Advchain−ind
S,AChain

(k, l).

We now calculate the advantage of Ahyb
GM against S. By definition ( A.1) we have:

Advind−cca

S,Ahyb
GM

(k) = Pr[Expind−cca−1

S,Ahyb
GM

(k) = 1]− Pr[Expind−cca−0

S,Ahyb
GM

(k) = 1]. (4)

By the above specification of Ahyb
GM this difference (4) is the same as:

Pr[(τ, d̂)← Expchain−ind−d
S,AChain

(k, j + 1); j ← [0, qnext − 2]; d← [0, 1] : d̂ 6= d]

−Pr[(τ, d̂)← Expchain−ind−d
S,AChain

(k, j); j ← [0, qnext − 2]; d← [0, 1] : d̂ 6= d].

Expanding over the independent parameters j and d gives:

=
1

qnext − 1

qnext−2∑

j=0

1

2

1∑

d=0

Pr[(τ, d̂)← Expchain−ind−d
S,AChain

(k, j + 1) : d̂ 6= d] (5)

−
1

qnext − 1

qnext−2∑

j=0

1

2

1∑

d=0

Pr[(τ, d̂)← Expchain−ind−d
S,AChain

(k, j) : d̂ 6= d]. (6)

To simplify this expression, let Yl denote the chain adversary’s probability of correct guessing in
the experiment Expchain−ind−d

S,AChain
(k, l) for d←R{0, 1}:

Yl
def
=

1

2

1∑

d=0

Pr[(τ, d̂)← Expchain−ind−d
S,AChain

(k, l) : d̂ = d].

Using this notation we may rewrite the above (5) and (6) as

=
1

qnext − 1

qnext−2∑

j=0

(1− Yj+1)−
1

qnext − 1

qnext−2∑

j=0

(1− Yj) =
1

qnext − 1
(Y0 − Y(qnext−1)).

24 Not counting period 0, for which AChain receives no ciphertext at all.
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Thus for the advantage we have:

Advind−cca

S,Ahyb
GM

(k) =
1

qnext − 1
(Y0 − Y(qnext−1))

=
1

2(qnext − 1)

(
Advchain−ind

S,AChain
(k, 0) −Advchain−ind

S,AChain
(k, qnext − 1)

)
,

where the last equality follows from the relation between the probability of correct guessing and

advantage: ∀l, Yl = 1
2 +

Adv
chain−ind
S,AChain

(k,l)

2 . Finally, since by definition

Advchain−ind
S,AChain

(k, 0) = Advchain−ind
S,AChain

(k) ,

the result follows.

C.11 Supplemental Details: Maximum advantage of the pair (Arand
GM

, A
hyb
GM

)

As convenient shorthand let a0 denote the advantage Advchain−ind
S,AChain

(k, 0) = Advchain−ind
S,AChain

(k) and

let aq−1 denote the advantage Advchain−ind
S,AChain

(k, qnext − 1). Then by the above lower-bounds on the

advantages of Arand
GM and Ahyb

GM we have:

max

{
Advind−cca

S,Arand
GM

(k), Advind−cca

S,Ahyb
GM

(k)

}
≥ max

{
aq−1

qnext

,
a0 − aq−1

2(qnext − 1)

}
.

Consider the two cases below.

Case I: aq−1 ≥
(

qnext

3qnext−2

)
· a0. This yields

max

{
aq−1

qnext

,
a0 − aq−1

2(qnext − 1)

}
≥

aq−1

qnext

≥

(
1

3qnext − 2

)
· a0.

Case II: aq−1 <
(

qnext

3qnext−2

)
· a0. This yields

max

{
aq−1

qnext

,
a0 − aq−1

2(qnext − 1)

}
≥

a0 − aq−1

2(qnext − 1)
>

(
1

3qnext − 2

)
· a0.

Thus we will always have

max

{
Advind−cca

S,Arand
GM

(k), Advind−cca

S,Ahyb
GM

(k)

}
≥

(
1

3qnext − 2

)
· a0 =

(
1

3qnext − 2

)
·Advchain−ind

S,AChain
(k).

ut

D Channel Security: Proof of Theorem 2 (gIRC is Spliceable)

Below we argue a series of claims which collectively suffice to prove Theorem 2. These claims connect
incremental security notions which we formulate to bridge the gap between the previously studied
notion of key indistinguishability for public key encryption schemes and our notion of channel
spliceability. First we recall the key indistinguishability security experiment from [BBDP01].

36



PKE Key Indistinguishability [BBDP01]

Experiment Expik−cca−b
S,Acca

(k)

I
R
← G(1k) % generate key information common to both key pairs

(pk0, sk0)
R
← K(I) % generate two key pairs using common information

(pk1, sk1)
R
← K(I)

(m, s)← A
Odecsk0

(·),Odecsk1
(·)

cca (find, pk 0, pk 1) % output challenge message m

c← Epkb
(m)

b̂← A
Odecsk0

(·),Odecsk1
(·)

cca (guess, c, s) % guess which key used to encrypt challenge

return b̂

Note that Odecsk0(·) and Odecsk1(·) on input c return ⊥.
The encryption scheme S is said to be IK − CCA secure if any PPT adversary Acca has only

negligible distinguishing advantage on bit b in the above experiment.
Define a multi-challenge version of IK − CCA security by altering the above experiment to

allow the adversary to specify multiple challenges. Thus, m and c become the vectors ~m and ~c.
Again, as is the case in the single challenge experiment, on input any component of ~c, Odec sk0 and
Odecsk1 return ⊥.

Claim. Any public-key encryption scheme S which is IK − CCA secure for a single challenge is
also secure for multiple challenges.

Proof. By a straightforward hybrid argument. The single challenge adversary encrypts the first
k−1 challenges with pk 0, uses kth challenge as its own, and encrypts all other challenges with pk 1.
Loss in advantage factor is just one over the total number of challenge messages.

The following security experiment is used to define an intermediate security property on public-
key encryption schemes as another step towards establishing channel spliceability.

Weak Multi-Challenge PKE Key Indistinguishability

Oracle Odecb(c)
if b = 1 and Oencpk0

does not contain (·, c)
then return Odecsk1(c) % gave alt. key and enc. oracle not used; decrypt using alt. key

else return Odecsk0(c) % use usual decryption oracle

Experiment Expik−weakM−cca−b
S,Acca

(k)

INIT:

I
R
← G(1k) % generate key information common to both key pairs

(pk0, sk0)
R
← K(I) % generate two key pairs using common information

(pk1, sk1)
R
← K(I)

PROBE:

s← A
Oencpk0

(·),Odecb(·)
cca (find, pk b)

DIST:

b̂← A
Oencpk0

(·),Odecb(·)
cca (guess, s) % guess whether oracle encryption key same as given public key

return b̂
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Claim. Any scheme S which is IK − CCA secure for multiple challenges is also weak IK − CCA
secure for multiple challenges.

Proof. Given a weak key distinguisher A, build a strong key distinguisher A ′. A′ emulates the
experiment for A using its two public keys and flipping a coin to decide which key to give to A.
Queries made to the encryption oracle by A become the challenge messages for A ′. If A notices no
discrepancy between encryptions by the oracle, i.e. A′ challenge ciphertexts, and the encryptions
under the key given to it, it outputs 0 and A′ outputs the bit for the key it gave to A. Otherwise,
if A outputs 1, A′ outputs the bit for the key it did not give to A.

The final intermediate public-key encryption security property is given below. As shown be-
low, this is the last step needed in the bridge linking ordinary key indistinguishability to channel
spliceability.

Weak PKE Key Indistinguishability Chain

Oracle Odecb,t,τ (α, c)
if b = 1 and α = τ and Oenct does not contain (α, ·, c)

then return Odec dsk [d〉
(c) % gave alt. key and enc. oracle not used; decrypt using alt. key

else return Odect(α, c) % use usual decryption oracle

Oracle Oenc
sk

[d〉
τ

(m)

if τ =⊥ then return ⊥ % challenge period τ still undefined

else return E
pk

[d〉
τ

(m)

Experiment Expchain−weakM−ik−cca−b
S,AKIChain

(k)

INIT:

t← 0; τ ←⊥; c0 ←⊥; s←⊥; q ← “ref”

(sk
[d〉
t , pk

[d〉
t )← S.G(1k) % generate initial data key pair

(sk
[ρ〉
t , pk

[ρ〉
t )← S.G(1k) % initial refresh key pair

PROBE:

(q,Xt+1, s)← A
Oenc

pk
[d〉
τ

(·),Odecb,t,τ (·,·)

KIChain (pk
[d〉
t , pk

[ρ〉
t , ct, s)

while q in (ref, test) do

(sk
[d〉
t+1 , pk

[d〉
t+1 )← G(1k) % generate next data key pair

(sk
[ρ〉
t+1 , pk

[ρ〉
t+1 )← G(1k) % generate next refresh key pair

ct+1 ← S.E
pk

[ρ〉
t

(sk
[d〉
t+1 , sk

[ρ〉
t+1 , Xt+1) % ciphertext of new secret keys plus suffix

t← t + 1
if b = 1 and q = test and τ = ⊥ then % only one key change period allowed

τ ← t

(ŝk [d〉, p̂k [d〉)← S.G(1k) % generate alternate data key pair

(q,Xt+1, s)← A
Oenc

pk
[d〉
τ

(·),Odecb,t,τ (·,·)

KIChain (p̂k [d〉, pk
[ρ〉
t , ct, s)
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else (q,Xt+1, s)← A
Oenc

pk
[d〉
τ

(·),Odecb,t,τ (·,·)

KIChain (pk
[d〉
t , pk

[ρ〉
t , ct, s)

DIST:

b̂← A
Oenc

pk
[d〉
τ (·)

,Odecb,t,τ (·,·)

KIChain (s) % guess b

return b̂

We say that AKIChain as above is a KI chain S-adversary and define the KI chain advantage of
AKIChain against S as:

Advchain−weakM−ik−cca
S,AKIChain

(k) = Pr[(τ, b̂)← Expchain−weakM−ik−cca−1
S,AKIChain

(k) : b̂ = 1]

−Pr[(τ, b̂)← Expchain−weakM−ik−cca−0
S,AKIChain

(k) : b̂ = 1] .

Claim. Any scheme S which is CCA semantically-secure and weak IK −CCA secure for multiple
challenges is also weak IK − CCA chain secure.

Proof. This claim is similar to Lemma 8 and the proof has a similar structure to the proof in

Section C.5. Generate all keys and key refreshes as in the experiment. Instead of giving pk
[d〉
t to

AKIChain give key from key indistinguishability. experiment. If AKIChain detects inconsistency
between key and cτ , then use it to build a GM adversary against S. Otherwise, use oracles to
answer AKIChain’s period τ encryption and decryption oracle queries. All other decryption oracle
queries are handled with generated keys. Answer AKIChain’s guess as own in key indistinguishability
experiment. Loss of advantage is one over number of chain periods.

Now using the claims above we complete the proof of Theorem 2. Indeed, since the public-key
encryption scheme S used to implement gIRC is assumed to be both CCA semantically-secure
and IK − CCA (key indistinguishable) secure, the claims above collectively guarantee that S is
also weak IK − CCA chain secure. Assume then that there exists a successful splice adversary A
against gIRC. Using such an A, we describe below how to build a successful weak IK−CCA chain
adversary AKIChain against S, which is a contradiction.

This reduction is quite similar to the one for proving Lemma 7 found in Appendix C.4, in which
an intrusion-resilient channel adversary is converted into a chain adversary. HereAKIChain simulates
a channel for the splice adversary A. As does the chain adversary in the proof of Lemma 7, AKIChain

guesses the challenge receiver u′, the challenge period τ ′, and the graft point σ′ for inserting the
chain instance it is attacking into the simulated channel. AKIChain likewise sets its chain challenge
period λ = τ ′ − σ′. The only significant difference here is that AKIChain answers any encryption
queries made by A of the form (·, τ ′, ū′) by querying its own encryption oracle.

E Two-Party Protocol Security: Proof of Lemma 3

Proof. Let T = T (k) be the maximum number of time periods within a single execution of the
channel IRC for security parameter k. For t = 0, . . . T , let {Dist}t denote the set of all distinguishers
which do not query for any forbidden messages for periods < t. By the assumption that Sim is
a Q-restricted, ε-good Q′ \ Q′

FM -simulator for P it follows that Sim′ is a Q-restricted, ε-good
Q′\Q′

FM -simulator for P ′. Hence, ∀DT ∈ {Dist}T , the distinguishing advantage of DT is negligible.
Suppose for the sake of contradiction that there exists a distinguisher D0 ∈ {Dist}0 for Sim′ and
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P ′ with noticeable advantage δ. Then there must exist some 0 ≤ t ≤ T −1 such that ∃Dt ∈ {Dist}t
with noticeable advantage δ1 ≤ δ, but all Dt+1 ∈ {Dist}t+1 have negligible advantage.

We now describe how to use Dt to construct a Dt+1 ∈ {Dist}t+1 with noticeable advantage
which is a contradiction. Since the restrictions on Dt+1 and Dt are identical except for period t,
Dt+1 answers all non period t queries of Dt by using its own oracles. To answer Dt queries for
period t, Dt+1 does the following.

If Dt queries to expose some message sent by the refresh receiver, Dt+1 simply queries its own
oracle for this message.

If at some point Dt queries to expose some message sent by the refresh sender:

1. if Dt+1 has previously exposed the refresh receiver, then it queries its own oracle for this
exposure, since is not a forbidden message.

2. if Dt+1 has previously exposed the refresh sender but not the refresh receiver, then it answers
the query by selecting a message uniformly at random and querying its own channel oracle to
obtain an encryption of this random message. Although this alters the view of Dk, the alteration
is undetectable; see note below.

3. if Dt+1 has not yet exposed the keys of either party, for the first such message query Dt+1 guesses
whether the refresh receiver will or will not in the end remain unexposed, that is whether such
messages will or will not be forbidden. If Dt+1 guesses the refresh receiver will later be exposed,
it behaves as in case 1 above, for this and all subsequent such message queries. Otherwise, if
Dt+1 guesses the refresh receiver will remain unexposed, it encrypts randomness just as in case 2
above, for this and all subsequent such message queries.

If Dt queries to expose the refresh sender key, Dt+1 likewise queries its own oracle to expose
that party and passes the returned key on to Dt.

If Dt queries to expose the refresh receiver key, and has not previously exposed any messages
sent to the refresh receiver, or has guessed (in case 3 above) that this key would become exposed,
then Dt+1 again queries its own oracle to expose this key. Otherwise, Dt+1 aborts, since revealing
the key would reveal all junk ciphertexts created by encrypting randomness.

Whenever Dt+1 aborts it outputs a random bit b̂
R
← {0, 1}. If Dt+1 does not abort its simulation

for Dt, it waits and outputs whatever bit Dt outputs.
Conditioned on the event that Dt+1 does not abort and provided that Dt can not detect the

alteration in its view resulting from case 2 above, the distinguishing advantage of Dt+1 will be
within negligible of that of Dt. Since in a given execution Dt+1 will not abort with probability at
least 1/2, overall we have that the advantage of Dt+1 is at least one-half of Dt’s advantage, thus
contradicting the original assumption on {Dist}t+1.

It remains to be argued that no Dt can detect the alteration in its view resulting from case 2
above. Note that conditioned on the event that Dt+1 does not abort its simulation, the view of
Dt will be altered only in cases where Dt never exposes the refresh receiver for period t. Thus,
it sufficient to show that no Dt can distinguish with noticeable advantage whether its view for
period t contains encryptions of randomness under the revealed refresh sender key or encryptions
of the requested messages under a random unrevealed key. The proof of this fact relies upon the
assumption that the channel IRC is both spliceable and intrusion-resilient. Thus by Lemma 5 IRC
is Key-Message-Splice-Indistinguishable. If Dk could distinguish between these two cases, then Dk

could be used to build a Key-Message-Splice adversary D, which is a contradiction.
D works as follows. First, D generates an instance of protocol P. Then, using its own channel

oracles, D converts the P instance into a P ′ instance. Since by assumption Dk distinguishes without
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exposing the refresh receiver for period k, D will always be able to answer key exposure queries
of Dk for periods ≤ k simply by querying its own channel oracles and adding any corresponding
protocol P secrets. For refresh sender key exposure queries asked by Dk for periods > k, D gets the
channel key from his own oracle. If the refresh receiver has not yet been exposed, D first applies
ChangeFMKey (see Appendix A.2) to this key. Then D hands the resulting alternate sender key
to Dk together with the corresponding protocol P secret, and stores the alternate receiver key in
order to consistently handle subsequent decryption queries of Dk, just as is done in the multi-splice
version of Experiment Expind−chan−splice−b

KEC,A (k) (see Appendix A.2).

F Two-Party Protocol Security: Proof of Theorem 4 (SiBIR2)

Proof. Suppose to the contrary there exists a Q′-restricted adversary A′ with noticeable forgery
success probability δ(k) against SiBIR2. Let Q be the class of all query sets Q ∈ Q ′ such that:

– The only exposure queries in Q are Signer key exposures and at most one Base exposure.
– There is at least one time period for which the Signer key is not Q-exposed25.

Let T = T (k) be the maximum number of time periods within a single execution of SiBIR1 or
SiBIR2 for security parameter k. Plugging the simulator Sim for SiBIR1 from Lemma 10 (below)
into Theorem 3 (Section 4.2) yields a Q-restricted, 1/T -good, Q′ simulator Sim′ for SiBIR2. Using
Sim′ and A′ we build a Q-restricted SiBIR1 adversary A as follows, contradicting Lemma 9 (below).
A uses Sim′ to simulate for A′ and outputs the forgery attempt of A′ as its own. Note as long as
Sim′ does not abort, A′ maintains its δ success probability. Moreover, whenever Sim ′ picks the
forgery period of A′ as the period not to expose the Signer, Sim′ does not abort, and if A′ forges
successfully so does A. Thus with noticeable probability δ/T , A forges on SiBIR1.

Lemma 9. SiBIR1 is intrusion-resilient against all Q-restricted adversaries A.

Proof. Suppose there exists a Q-restricted SiBIR1 adversary A with not negligible advantage. Let
ASRSA be the strong-RSA adversary which gets input of a remainder and modulus (α, n) as in the
original SiBIR1 proof from [IR02]. Note that ASRSA can simulate for any Q-restricted asynchronous
A in an even simpler manner than the simulation described in [IR02] for any partially-synchronous
adversary. This is because A here is Q-restricted, and so is not allowed to query for any message
exposures. In particular this assumption on A removes the requirement from [IR02] that the adver-
sary be partially-synchronous in its query sequence. This assumption was needed on the adversary
in [IR02] only due to the challenge of consistently answering message exposure queries for time pe-
riods prior to the forgery period. However, since A here is Q-restricted, there is no need to simulate
any messages. The rest of the proof follows just as in [IR02]: the advantage of ASRSA is related to
the advantage of A precisely as shown in [IR02], thus contradicting the strong-RSA assumption.

Lemma 10 (SiBIR1 is simulatable). There exists a Q-restricted, 1/T -good Q ′ \ Q′
FM simulator

for SiBIR1.

Proof. Simulator Sim is defined as follows. Recall Sim gets the same interface with an instance of
SiBIR1 as would a Q-restricted forger.

1. Guess j ∈ [1, T ], the period for which the Q′-restricted adversary will not expose the Signer.

25 Of course this time period must precede any simultaneous exposure.
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2. Exposes all Signer secrets up to and including (j − 1). (RN (j − 1) + 1).
3. Computes refresh and update messages for periods 1.1 through (j − 1). (RN (j − 1)) using the

Signer secrets and public key.
4. Computes b[1,T ].0 = 1/s[1,T ].0 and applies Base update (discarding update messages generated)

and refresh algorithms using refresh messages previously computed from Signer long term secrets
to compute Base long term secrets up to and including b[j.(RN (j)+1)].

5. Simultaneously exposes both Signer and Base secrets for period (j + 1).1.
6. Runs SiBIR1 faithfully from this point (period (j + 1).1) on to generate all subsequent secrets

and messages.
7. forwards all Osub (hash) and Ofunc (signature) queries to his own oracles and returns the

answers unchanged
8. Aborts if Signer becomes exposed for period j, or if a forbidden refresh/update is queried (Sim

guessed incorrectly).

Note that Sim is Q restricted, exposing only Signer keys and one Base key (period j). By
the same bijection argument found in [IR02] (unpublished appendix), if Sim does not abort, the
distribution of views produced by Sim is identical to the distribution of views obtained from an
honest instance of SiBIR1. Since the Q′-restricted adversary must not Q-expose the signer key for
at least one period, with probability 1/T period j is such a period and Sim simulates successfully.
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