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ABSTRACT

A new mechanism is proposed for the generation of the annual-period baroclinic Rossby waves which have
been observed in the central North Pacific by Kang and Magaard. It is shown that annual north-south
fluctuations in the eastern boundary current off Vancouver Island can efficiently generate first baroclinic mode
Rossby waves throughout the central North Pacific. In particular, to the southwest of Vancouver Island }he
direction, wavelength and speed of phase propagation associated with the far field (asymptotic) wave solution
agree favorably with observations, Also, along any fixed latitude contained within the observed latitude band
(30-40°N), the amplitudes of the vertical displacement at 300 m and surface horizontal current speed both
monotonically increase to the west, in agreement with the observed trends for these quantities. However, the
existence of this monotonicity in the solution appears to be quite sensitive to the north-south spatial structure
of the fluctuating coastal current. For example, the oscillations of a point source (deita function) current excite
a wave field with a fairly uniform amplitude across most of the observation region. .

Within the context of a reduced gravity, quasi-geostrophic model, the theory presented here is quite
general. For example, baroclinic waves of other than annual period could be investigated, and the radiation
pattern due to a number of coastal sources could be determined.
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1. Introduction

In a notable paper by Kang and Magaard (1980)
(hereafter referred to as KM), convincing observa-
tional evidence was presented for annual-period baro-
clinic Rossby waves in the central North Pacific. In
particular, Kang and Magaard showed that in the
region 30-40°N, 130°W-160°E, these waves, as
manifested in temperature records from depths of
250-400 m, have a first baroclinic mode vertical
structure and travel northwestward with a typical
wavelength of 300 km and a typical phase speed of
1 cm s™'. Moreover, their group of velocity (direction
of energy propagation) is approximately toward the
southwest, To date, no comprehensive theory has
been put forth which explains the observed propa-
gation characteristics and generation mechanism of
these waves. The purpose of this paper is to describe
our attempt to provide such a theory.

From a consideration of Rossby wave kinematics
together with the observations of KM (see Section 2),
we infer that the source for the annual Rossby waves
in the central North Pacific is most likely located just
west of Vancouver Island. Recent current measure-
ments made in this region by Howard Freeland (In-
stitute of Ocean Sciences, Sidney, B.C.) indicate the
presence of a large annual signal in the subsurface
longshore flow. We hypothesize that these intense and
localized eastern boundary current fluctuations pro-
vide the main vorticity source for the waves observed
by KM. In so far as our wave source is located near
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the eastern coast, the theory presented here is similar
to that of White and Saur (1981) and Krauss and
Wuebber (1982) who investigated the generation of
extratropical annual Rossby waves by annual varia-
tions in the winds along the eastern part of an ocean
basin. However, in contrast to these studies, we as-
sume here that the amplitude of the wave source has
a relatively small north~south extent (a few hundred
kilometers). White and Saur assumed that off Cali-
fornia and Baja California (a north-south extent of
2000 km), the windstress curl has constant amplitude.
Krauss and Wuebber modeled the north-south struc-
ture of the longshore winds off west Africa and
Europe with a cospy function, where A = 27 5!
~ 6000 km.

Our model differs significantly from those used by
White and Saur (1981) and Krauss and Wuebber (1982)
in other ways as well. White and Saur used a one-
dimensional nondispersive long wave equation to
model first baroclinic mode Rossby wave propagation,
whereas we use the complete (dispersive) Rossby wave
equation. The inclusion of all the dispersion terms is
very essential if one is to obtain the northwestward
direction of phase propagation observed by KM.
Krauss and Wuebber used numerical methods to solve
the dispersive wave equation, but with all the vertical
modes taken into account. Nevertheless, they found
that away from the coast, the response is dominated
by the first baroclinic mode whose energy radiates
nearly westward in the form of a long Rossby wave
(wavelength ~ 1800 km). From these results it appears
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that a reduced gravity model, which is used in this
paper and which contains only the first baroclinic
mode, faithfully represents the physical situation ob-
served in the central North Pacific. Moreover, with
such a model routine analytical methods can be used
to find the solution.

Because the amplitude of the Rossby waves ob-
served by KM in the latitude band 30-40°N increase
monotonically west of 160°W, White and Saur (1981)
suggeted that local windstress forcing may be the gen-
erating mechanism for these waves. Although the
mid-ocean response to a variable windstress curl is
larger than that due to either atmospheric pressure
or buoyancy fluxes (Magaard, 1977), Krauss and
Wuebber (1982) showed that the direct windstress
generation of Rossby waves is not very efficient.
Rather, a line source of windstress along the eastern
coast is @ much more significant forcing mechanism.
Also, from the analysis of Gallegos—-Garcia et al.
(1981), there appears to be a large mismatch of at-
mospheric and oceanic wave scales at the annual pe-
riod. They found that in the North Pacific region 16—
40°N, 120-160°W the windstress curl spectrum was
dominated by the annual period at long wavelengths
(~2000-4000 km), which are about ten times the
observed Rossby wavelengths (~300 km). Thus it is
argued here that the waves observed by KM in the
region 30~40°N, 130°W-160°E are not likely to be
generated by the local winds. Remarkably enough,
in the latitudinal band 30-40°N the coastal genera-
tion model presented here does predict a monotonic
increase in wave amplitude west of 160°W, in agree-
ment with the trend found by KM.

A discussion of the proposed coastal generation
mechanism is given in Section 2, and the governing
equations and boundary conditions are presented in
Section 3. In Section 4 a Fourier integral solution of
the relevant Rossby wave equation is obtained, and
in Section 5 this solution is evaluated asymptotically
by the method of steepest descent. The theoretical
predictions are compared with the observations of
KM in Section 6. The effects of refraction due to a
variable Coriolis parameter are discussed qualita-
tively in Section 7. The conclusions are summarized
in Section 8, where further theoretical and observa-
tional work are also suggested.

2. The generation mechanism

From an extensive set of XBT data covering the
region 30-40°N, 130°W-160°E (TRANSPAC data),
KM showed that in the subsurface layer 250-400 m
the temperature fluctuations are composed of large-
scale fluctuations (termed “quasi-homogeneous”) with
horizontal space scales comparable to the size of the
North Pacific basin, and smaller scale fluctuations
(termed “wavelike”) with length scales of a few
hundred kilometers. The quasi-homogeneous fluc-
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tuations decrease monotonically with depth and are
related to large-scale and long-term temperature
anomalies at the sea surface (Kang, 1980). At the
annual period, the wavelike fluctuations consist
mainly of first baroclinic mode Rossby waves.

A cross-spectral wavenumber fit (see KM for de-
tails) was made to the wavelike part of the temper-
ature fluctuations at the annual frequency. However,
the best-fitting wavenumber vectors were determined
without assuming any dispersion relation. The results
are illustrated in Fig. 1, which shows the best-fitting
wavenumber vectors in 35 subareas of the total area
analyzed by KM. The consistent pattern of north-
westward phase propagation is most evident. The typ-
ical wavelength is about 300 km and the correspond-
ing (annual period) phase velocity is about 1 cm s~1.

A comparison between the best-fitting wavenums-
bers and the slowness curve for free annual-frequency
first baroclinic mode Rossby waves is given in Fig.
2 for subarea 4: 30-40°N, 150-170°W. For this sub-
area and subarea 3 immediately to the west (30-
40°N, 170°W-170°E), the dispersion curves which
take into account the observed mean stratification
and mean shear have been computed by Kang and
Magaard (1979). We note that the shear slowness
curve (solid line) fits the data only marginally better
than the shear free curve (dashed line). Indeed, be-
cause in the wavenumber region of interest (the clus-
ter of seven dots) the two slowness curves are close
together, it appears that the inclusion of shear in a
Rossby wave model is not essential. Hence in the
theoretical development contained in the subsequent
section, we shall neglect the mean flow. This ap-
proximation was also made by White and Saur
(1981).
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F1G. 1. The best-fit wavenumber vectors with error ellipses in
the 35 subareas. Each square in this figure represents a wavenumber
vector space of size 2 X 107> m™! by 2 X 10~° m™', with the origin
of the wavenumber coordinates at the lower right corner (Kang
and Magaard, 1980).
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FI1G. 2. The slowness curves [w(x, 1) = constant, where w(x, 1)
is the dispersion relation for free Rossby waves] of the first baro-
clinic shear mode (solid line) and the ordinary shear free mode at
the annual frequency for subarea 4 (30-40°N, 150-170°W). For
the shear free mode the slowness curve is a circle (LeBlond and
Mysak, 1978). The tips of the best-fit wavenumber vectors for the
plane wave model of KM from the eight subareas contained in
subarea 4 are shown by dots (Kang and Magaard, 1980).

Figure 3 shows the superposition of Fig. 2 on a map
of the central North Pacific with subarea 4 at the center.
The group velocity vector ¢, which is representative
of the wavenumber data from subarea 4 is directed
towards the center of the shear free slowness circle, in
a southwestward direction. Since the energy of Rossby
waves propagates along c,, it is quite conceivable that

170°E 170°W
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the source for the free (unforced) waves observed by
KM is located in the northeast Pacific, just off Van-
couver Island. Although in this region there is evidence
(R. E. Thomson, personal communication, 1982) of
a small annual signal in the alongshore wind with 5
m s~! amplitude, a more pronounced feature which
could generate annual Rossby waves is the strong an-
nual cycle in the subsurface eastern boundary current.
This cycle has, for example, been recently observed
by Howard Freeland (personal communication, 1982)
at the continental slope station CZ4, located at
48°10.6'N, 125°56.2’W (see Fig. 3)!. Figure 4 shows
the low pass currents observed during the two year
period | June 1979-29 May 1981 at 4 depths (50,
100, 250, 500 m) at station CZ4. A fairly regular coast-
ally aligned annual signal is seen in the top three current
records, with northwestward flow during the fall and
winter (September to February) and southwestward
flow during the spring and summer (March to August).
Recent measurements at 50 and 100 m from LPB, a
station near CZ4 indicate that this annual variation
persisted until spring 1981 (T. Yao, personal com-
munication, 1982). A representative amplitude for the
current fluctuations at 50 and 100 m is about 23 cm
s~!; for the 250 m fluctuations, a value of about 14
cm s™! is appropriate. Thus over the upper 300 m (the
depth we use for the upper layer of our model in Section
3), an average value for the amplitude of the current
fluctuations is 20 cm s~ !,

We emphasize that the annual signal illustrated in
Fig. 4 appears to be quite localized in the north-south
direction and to be confined to the continental slope
or continental shelf regions. Inspection of data from

! We shall later see that this station is located just south of the
cutoff latitude for the annual Rossby wave in our model.
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FIG. 3. Central North Pacific Ocean showing the area studied by KM (the rectangle ABCD)
and the superposition of the subarea 4 data and slowness curves from Fig. 2. The group velocity
vector of the annual waves observed by KM is shown to emanate from the Institute of Ocean
Sciences’ mooring Coastal Zone 4 (CZ4) located at 48°10.6'N, 125°56.2'W. Data from subarea
3 and 5 (dashed rectangles) will be presented later and also compared with theory (e.g., see

Fig. 10).
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CURRENT VECTORS AT CZ4 (48°N, 126°W)
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FIG. 4. Two year record of horizontal current velocity vectors at Institute of Ocean Sciences’ mooring CZ4 (48°10.6'N,
125°56.2’W), where the water depth is 800 m. North is toward the top of the figure. (Data courtesy of Dr. Howard

Freeland).

simultaneous slope and shelf moorings off Estevan
point (about 150 km north of CZ4) revealed a less
pronounced annual cycle there in the currents (R. E.
Thomson, personal communication, 1982). Further
south, off Oregon, there appears to be a regular annual
signal in the alongshore current only on the shelf
(Huyer et al., 1979). And off California, the longshore
geostrophic flow of the California current at the sur-
face and at 200 m (relative to 500 m) has a notable
semi-annual cycle instead (D. Chelton, personal com-
munication, 1982). The cause of the annual cycle
near CZ4 is unknown. One hypothesis which deserves
further study is that it may be due to the seasonal
shift of the east-west axis of the west-wind drift in
the North Pacific®. If during part of the fall and winter
the axis is located at around 40-45°N, then when the
flow hits the California-Oregon coast it must bifur-
cate, with northward flow occurring at CZ4 and
southward flow occurring off southern California. On
the other hand, if the axis is located at around 50-
55°N during part of the spring and summer, then this
will produce a southward flow off CZ4 and a north-
ward flow along the Alaskan panhandie.

Let x, y denote eastward and northward Cartesian
coordinates on a midlatitude S-plane centered at lat-
itude ¢¢. To model the region studied by KM, i.e. the
latitude band 30-40°N, we shall later take ¢y = 35°.
Since the annual current oscillations over the upper
250 m at CZ4 are coastally aligned and do not extend
far offshore, we model them in this layer by an oscil-
lating vortex sheet at x = 0:

(0, y, 1) = vy — yo)e ™, (2.1)
where v(0, y, 1) is the northward velocity component
2 Some evidence of such a seasonal shift can be seen in the paths

taken by satellite tracked drogues west of British Columbia and
Washington (Kirwan et al., 1978).

at the coast, w > 0 is the annual frequency and vy
— Jo) is an amplitude function with argument y — y,
which has a maximum at y = y; (i.e., at CZ4) and
which falls off as |y — y,| — oo0. The two models for
v, that we shall consider in this paper are

model (a):
v. = QoY — o) (22)
model (b):

v, = vy exp(—|y — yol/L). (2.3)

Model (2.2) represents a point source velocity of total
strength Q, and model (2.3) is a “tent-shaped” current
with maximum speed v, at y = ), and an e-folding
decay scale away from y, of L. From the observations
of Freeland (Fig. 4) and R. E. Thomson, we choose
vo = 02 m s! and L = 100 km as representative
values. Note that in the limit L — 0 and vy — o
such that Lvy, — 2Q model (2.3) reduces to (2.2). In
the application of the theory to the North Pacific we
shall find that the far field solutions are quite sensi-
tive to the form of the amplitude function v{y — ).

We note that the coastal current (2.1) effectively
produces an infinitely large oscillating shear (dv/dx)
near the coast. Since Rossby waves are vorticity
waves, this oscillating eastern boundary current be-
haves as a large vorticity source for the waves. An
analogous concept was introduced recently by Mysak
and Willmott (1981) who studied the generation of
trench waves by oscillations in a western boundary
current. It could be argued that the infinite shear in
our model is unrealistic and that it would be better
to use an oscillating boundary current with finite off-
shore extent and hence a finite lateral shear. Such a
model, though worthwhile for study, is much more
difficult to handle analytically, and its analysis is be-
yond the scope of this paper. In defence of our source
model (2.1), we note that in tidal theory an oscillating
current located at the boundary is commonly used
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as a mechanism for the generation of long waves in
the open ocean (e.g., see LeBlond and Mysak, 1978,
Chapter 8).

3. Governing equations

Following other recent theoretical models of an-
nual baroclinic Rossby waves in the North Pacific
(e.g., White and Saur, 1981), we shall use the *“1V2-
layer” or “reduced gravity” long wave equations for
a mid-latitude B-plane:

w—f+gd, = —ru, (3.1a)
v+ fu+g'd,=—rv, (3.1b)
Hyu,+v,)+d =0, 3.2)

where X, y are the eastward and northward coordi-
nates, d the depth of the upper layer which overlies
a deep motionless lower layer, # and v are the x and
y components of velocity in the upper layer, ry > 0
is a Rayleigh damping friction coefficient, f the Co-
riolis parameter (with df/dy = 8, but otherwise treated
as constant), g’ the reduced gravity (=gAp/p where
p is the lower layer density, p — Ap is the upper layer
density and g is the gravitational acceleration) and
H, is the mean depth of the upper layer, i.e.
d=Hy+ ¢—h, 3.3)
where { is the free surface elevation and 4 is the in-
terfacial displacement. To a high degree of approxi-

mation,
d ~ Ho - h

for baroclinic motions.

(3.4)

We shall assume that 0 < ry, < w, where w is a

characteristic frequency. That is, the damping is as-
sumed to be small. We shall eventually take the limit
ro — 0; however by retaining the damping terms on
the right sides of (3.1a, b) in our analysis, we shall
ensure that the radiation condition is satisfied.

Equations (3.1a, b) and (3.2) can be combined into
a.lengthy equation for d [e.g., see Eq. (20.13a) in
LeBlond and Mysak, 1978). Under the assumptions
that the x and y scales are comparable and that |(,
+ ro)d| < | fd), this equation reduces to the standard
Rossby wave equation

3, + o) (V2 — 1/RY)d + Bd, = 0, (3.5)

where V2 = 9,, + d,, and R = (g'Hp)"*/fis the internal
Rossby radius. We shall assume (3.5) holds in the
semi-infinite domain x < 0, |y| < 0. At x = 0 we
require ¥ = 0, which, when substituted into (3.1a),
gives®

3 Note that (3.6) implies the existence of annual fluctuations in
the isopycnal slope near the coast. Such fluctuations have recently
been observed over the continental slope region near CZ4, but not
further offshore along line P which extends to the WNW from CZ4
(S. Tabata, personal communication). These observations thus
strengthen our hypothesis that the generation source is coastally
confined.
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d.=(f1gWw0,y,0 at x=0, (3.6)

where v(0, y, ©) = v{y — yo)e ™ is the prescribed
velocity along the coast [see (2.1)]. For large x and
y we require the solution to be bounded.

In view of the periodic form of v(0, y, #), we let d
= D(x, y)e_*“‘. Then (3.5) and the boundary conditions
reduce to

(—iw + ro)(V2 = 1/R®)D + 8D, = 0,

x<0 and [y < oo, 3.7
D, =(flgwdy—y) at x=0, (3.8
D<o as (x4 yH'V?— wo. (3.9)

For free plane wave solutions D oc &™), (3.7)
with ry = O yields the dispersion relation

CT K+ R

where k% = x?* + 7°. For the cluster of seven points
shown in Fig. 2, an average value of kis 2.12 X 107
m~! (this was obtained from the data given in Table
1 of KM). Thus k% = 4.49 X 107'° m™2, For H,
=300m, g =10 ms2, Ap/p = 3 X 1073 [values used
by White and Saur (1981)], and f = 0.837 X 107* s™!
(corresponding to a latitude of ¢y = 35°), we find R
= 35.83 km and hence 1/R? = 7.79 X 107" m~2. Thus
k? ~ 1/R? for the Rossby waves observed by KM,
and it is not permissible to use the long wave dispersion
relation w = —BxR?, or equivalently, the one-dimen-
sional wave equation obtained from (3.7) by neglecting,
the operator V2.
From (3.10) we obtain the slowness curve

k+7)+ 7 =7 - /R =K},

(3.10)

(3.11)

where ¥ = /2w > 0, which is a circle of radius K,
centered at (x, n) = (—v, 0). The critical or cut-off
latitude beyond which a wave of fixed frequency can-
not propagate is given by K, = 0, or

tang, = (g'Ho)'*/2R. v, (3.12)
where R, is the radius of the Earth. For the annual
frequency, we have w = 1.99 X 1077 57, and Eq.
(3.12) thus yields

tangy = 1.128

for R, = 6.4 X 10° m and the g, H, values given
above. Thus ¢y = 49.67° for our model, which is
about one and a half degrees north of CZ4, our pro-
posed source for the waves observed by KM. Hence
we conclude that it is physically possible for annual
Rossby wave energy to propagate from CZ4 to the
more southerly observational region of KM.

Far from the source region of the waves, we expect
our solution to have a free wave character. Accordingly,
the slowness circle (3.11) should be a close approxi-
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mation to KM’s slowness circle shown in Fig. 2. Ata
latitude of 35° and at the annual frequency, ¥ = 4.70
X 1075 m~! and thus the radius of our cirlce (3.11) is
K, = 3.78 X 1073 m™!. Fig. 5 shows that our circle is
just slightly larger than KM’s and is also a good fit to
the observed data.

4. Integral representation of solution

We define the Fourier transform D(x, /) of D(x, )
by

ﬁmn=fm“wmw@57w} (4.1)

Applying (4.1) to (3.7) yields
(—iw + r)[Dye — (12 + 1/R)D) + 8D, = 0,
x<0. 4.2)

For 0 < ¢ = ry/w < 1, the solution of (4.2) which
satisfies (3.9) is given by

D(x, 1) = A(De ™ exp[x(I> — [.2)'?], (4.3)

where [, = K (1 — iey*/K,?) and A(]) is a constant of
integration to be determined from (3.8). The branches
of (I> — 12)' are chosen so that arg(/? — [»)"/? — 0
as / — +oo. Thus from the branch point / = /, located
in the fourth quadrant, we extend the branch cut
downward, and from the branch point / = —/, in the
second quadrant, we extend the branch cut upward.
When ¢ # 0, the Fourier inversion path is along the
Re(/) axis. In the limit ¢ — 0(ry — 0), corresponding
to no friction, /. — K, and the branch points are
located at / = +K,. The inversion path T is then
indented around these points in the manner shown
in Fig. 6.

Substituting (4.3) with ¢ = 0 into the Fourier trans-
form of (3.8) yields

1(1075m™")

FIG. 5. Reduced gravity model slowness circle (3.11) (solid line)
compared with KM’s slowness circle (dashed line) and the observed
best-fit wavenumber tips in subarea 4.
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(f1884)
~iy + (2~ K, )

_ (1gLDliy + (2 - K, '3
>+ 1/R? ’

where d{/) = F{v{y — »o)}. Hence for ¢ = 0,
d = De ™ is given by

Al =

4.4

e i(yx+wl)
dex, 0= — [ 4w
™ r

X exp[x(* — K;)V? — ily)dl, (4.5)

where A(]) is given by (4.4) and T is illustrated in Fig.
6, a contour which is consistent with that used by
Mysak and LeBlond (1972). Note that the integrand
in (4.5) has the following singularities: branch points
at / = =K, simple poles at / = +i/R and simple poles
at [ = xi/L if v, is given by (2.3), since in this case,

model (b): .
. _ (uo/L)e™°

o, = Pt (4.6)
For the point source velocity (2.2),
model (a): _
D, = Qe™, 4.7

which is regular for all /.

Using the second form for A(/) given in (4.4), we
can write d as the sum of two related integrals. Letting
Fx, 1) = (f]ghe ™ we find

d/F = iyl + (8/0x)],, (4.8)

where

I =LIL1)
' 2ndi 2+ 1R?

X exp[x(I* — K;)'V* — ilyldl. (4.9)
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Let }(l)
v
A = R =F{/10)}, (4.10)
A, D)= exp[)C(l2 - K)" = F{filx, y)}. (4.11)

Then by the convolution theorem for Fourier trans-
forms,

I = f L@ = WA Y)Y, (4.12)
Using the inverse Fourier transform relation
1 [ o .
s =5 [" hoera, @1y
TJ_o ‘

f; can be readily found for 0(/) given by (4.6) or (4.7).
Inspection of the transform pair Number 867 in
Campbell and Foster (1948) together with,(4.11) re-

veals that
_ K HPIK(x? + )17
ﬁ(xa y) - 2(x2 + y2)l/2 ;
thus from (4.8), (4.12) and (4.14) it follows that

K\ fe 0 2 fi(y = y)
2g’ o (X2 + Y2

(4.14)

d=

X {(1 + iy)HPIK(x? + y?)'2)

XK o 2 4 v g

o T 7 H3(K(x? + y?) )}dy. “4.15)
Hence for any coastal velocity profile v, for which f;
can be found by inverting (4.10), we can compute d
from (4.15) by numerical integration. Since the Han-
kel function H{ and HY are oscillatory, it follows
from (4.15) that d has an oscillatory spatial profile
which propagates westward and which generally de-
creases in amplitude as x — —oco. Thus to get the
actual thickness of the upper layer we must add H,
to the solution (4.15). This of course is permissible
since the solution of the original problem (3.5), (3.6)
with 7, = 0 is unique up to an additive constant. The
solution (4.15) [or equivalently (4.5)] therefore rep-
resents the negative of the interfacial dlsplacement
h [see (3.4)].

Instead of evaluating (4.15) numerically for all x
and y, we shall find in Section 5 the far-field solution
from the 1ntegra1 representation (4.5), which we re-
write here in the form

=f‘e—i('yx+wt)f f)c(l)
2ng’ Jr—iy + (P — KH)'?
X exp[x(I> — K\»)'? — ilyldl. (4.16)

Invoking the geostrophic relations, u = —(g'/f)d,, v
= (&'/f)dx, Eq. (4.16) yields
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"y = e—i(-yx+wt) f il c( l)
2r r —iy + (l2 - Klz)”2
X exp[x(/* — K52 — ibyldl, (4.17)
e—:‘(‘yx+wt) ‘
v= f vl explx (I — K%' — ily)dl.
27 r
(4.18)

Before evaluating the integrals in (4.16)-(4.18)
asymptotically, it is instructive to note that for the
point source velocity model (a) an explicit form for v
can be found. In this case ¥, = Qe [see (4.7)], and
Eq. (4.18) yields

_ ixK\Qe O HP{K [x* + (v — ¥}
2[x* + (v = »oy1"”

upon using Number 867 in Campbell and Foster
(1948). Introducing polar coordinates centered at
X = 07 Y = Yo, Viz-y

(4.19)

X =rcos, y—y,=rsind, (4.20)
where 7/2 < 0 < 37/2, Eq. (4.19) gives
v = V1K, Q|cosBle XTI HID(K F).  (4.21)

Using the asymptotic form of H{? for large argument
[Abramow1tz and Stegun, 1965, Eq. (9.2. 4)] in (4.21),
we arrive at the far-field solution

Kl—Qlco_SHI —i(yx+wt+Kir—=/4)
@rkin”°

as Kyr— oo. (4.22)
For y < y, (i.e., to the south and west of the wave
source), (4.22) represents a travelling wave with a
westward component and a radial component di-
rected toward the source (i.e., to the northeast). The
resultant of these two components at any fixed point
is a wave whose phase travels to the northwest, which
is in qualitative agreement with the observations of
KM. Similarly, for y = y, or y > 3y, (4.22) represents
respectively a westward or southwestward travelling
wave. In the next section we shall show that the far-
field solutions for d and u also have these propagation |
characteristics. Further, for more general forms of
v{y — yo) which decay as |y — yo| — o0, we shall find
that only the amplitude of the waves is altered; the
direction of propagation remains unchanged.

5. Asymptotic solution

We now determine the far-field behavior of d, u
and v by applying the method of steepest descent to
the integrals (4.16)—(4.18). Since we have assumed
v, = v{y — o), it follows that ¥(/) has the form

1) = VA)e™». : (5.1)/
For velocity models (a) and (b),
Vah = Q, (5.2)
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and N 5
_ _2v/L
Vdh = 2+ 1/1%°

respectively [see (4.6) and (4.7)]. The presence of the
factor e in (5.1) motivates introducing the source-
centered polar coordinates (r, 6) defined in (4.20).
Thus letting / = K\, we find (4.16)-(4.18) take the
form

(5.3

—i(yx-+wt) VAK, NeK7™
a=-" f VRN T\, (54
2ng c—iv/IKi+(\—1)
(K, e~ rxten AVAK N\ Kirf(\)
= 2€ f AVdENe Sd\, (5.5
27 c—iv/Ky+ (N - 1)
e—-i(-yx+wt) .
v= oy fc VAK N)eXT Vg, (5.6)

where
S\ = —|cosfl(A2 — 1)/ — jAsing@  (5.7)

and C is analogous to T', but with indentations below
A = —1 and above A = 1. For velocity model (a) the
integrands of d and u have simple poles at A = i/
RK;; for velocity model (b), the integrands of d, u
and v also have poles at A = +i/LK,.

The integrals in (5.4)-(5.6) are now in a convenient
form to evaluate asymptotically for K,r > 1 by the
method of steepest descent. Since K, ~ 4 X 10> m™!
for the annual Rossby wave (see Fig. 5), the asymp-
totic expansions will be valid for r > 25 km, i.e. a few
hundred or more kilometers from the source region.
The saddle point A, is that point for which f'(},)
= 0. Thus A; = sinf, and hence (5.7) gives f(A,)
= —jandf"(\;) = i/cos®6. The path of steepest descent
C, is the locus on which Im[ f(\) — f(A)] = 0. Letting
A = A, + i)\, it follows that C; is given by

_ (A, — sinf)(1 — A, sind)
27 |cosB(A2 — 2, sind + 1)2°

(5.8)

which is illustrated in Fig. 7 for various ranges of siné.
For |tand| < 1/RK, the inversion path C can be de-
formed into C; without crossing the poles at A = *i/
RK,, and the asymptotic representation of d say, is
given by the saddle point contribution alone, provided
of course V(K;\) is regular. Since the latter is true
only for the point source velocity it is important to
distinguish between velocity profiles (a) and (b), for
which

model (a):
VAK\) = Q, (5.9)
del (b):
model (b) 200/
VLK) = m . (5.10)

For model (a) the asymptotic representation of
(5.4) is given by
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A2zImQ\)
(o) sin8<0 /
i1RK,
iltan 81
c\‘lsina / ! i
Ce
-iIRK,
[ U —
{b) sin8= 0 il RK,
1
c N\
ﬂ_'/ Asz0
C, -iIRK,
—_—— e -i
{c)sin®>0
i1RKy
c Aesing/ L 1/sin@
~iltan @1
c / -iIRK,
FiG. 7. The path of steepest descent C;, as given
by (5.8), for different ranges of siné.
d ~fQK,Icos€| exp[—i(yx + Kir + wt — 37/4)]
g'(y — Klcost|)2xK;r)'"?
=d,,, for [tanf| < l/RK,, (5.11)

d ~ dy, + (fOYR/g") expl—|y — yol/R — i(wt — 7/2)]
=d, + dg,, for |[tand|> 1/RK], (5.12)

where the second term in (5.12) represents the con-
tribution from the pole at i/RK, when sinf < 0 and
—siné/|cosf| > 1/RK; or from the pole at (—i/RK))
when sinf > 0 and sinf|cosf| > 1/RK;. In (5.11) and
(5.12) the branch of tané used is that for which n/2
< # < 3x/2. Similarly, the asymptotic representation
of (5.5) and (5.6) for model (a) are given by

y K2Q sinb|cosf| exp[—i(yx + Kir + wt — 57/4)]
(v — Kjlcos8)2nK,r)'
[tanf| < 1/RK,,

= u,, for (5.13)

U~ g + sgn(y — yo)vQ
X exp[—|y — yol/R — i(wt — 7/2)] = Uy, + Ug,,
for |tand| > 1/RK,, (5.14)

o~ K, Q|cost| exp[—i(yx + Kir + wt — 7/4)]
(21!'K1r)1/2
for #/2 <6 < 3%/2.

= Vsq,

(5.15)
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Note that (5.15) agrees with (4.22), which was ob-
tained after first integrating (4.18) (or equivalently
(5.6)) explicitly.

Inside the sector [tanf| < 1/RK, (see Fig. 8), only
the saddle point contributions arise in the solutions
for d, u and v. On the line 6 = x(y = ), Uy, = 0
whereas d,, and v,, fall off monotonically like r !/2.
Also, along this line the wave form in (5.11) and
(5.15) is locally plane and travels westward with speed
w/(y — K,) (see Fig. 9a). For other values of 6 the
saddle point contributions consist of a cylindrical
wave travelling radially inward toward x = 0, y = y
together with a westward travelling component. The
resultant is a wave whose phase travels to the south-
west if y > yo(0 < 7), and to the northwest if y < yo(8
> w). Since the wavenumbers in the exponent are
independent of the excitation parameters the resul-
tant-wavenumber vector always lies on the slowness
circle for free Rossby waves (see Fig. 9). Hence the
wave energy propagates toward the center of this cir-
cle. From these arguments it follows that westward
travelling waves have the longest wavelength [=2«/
(v — K;)]. This result qualitatively explains why the
annual waves travelling westward from southern Cal-
ifornia toward Hawaii (White and Saur, 1981) tend
to be longer than those travelling northwestward in
the region north of Hawaii (KM) (see Fig. 9a, c).

Outside the sector [tanf| < 1/RK, (i.e., the shaded
region in Fig. 8), the pole contributions in d and u
consist of non-propagating disturbances which die
out exponentially as‘|y — 3| — co. Since their e-
folding scale is the Rossby radius R (~35 km) and

Y=Yo

FIG. 8. The Stokes lines § = 7 £ tan™'(1/RK,) (where tan™' denotes
principle branch) which emanate from the wave source S. Inside the
undashed sector only the saddle point contributions arise in the far-
field solutions. In the cross-hatched regions there are additional ex-
ponentially decaying contributions due to the poles.
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FIG. 9. The resultant wavenumber vectors k. for different values
of latitude y. y = y, is the latitude of the wave source S (see

Fig. 8).

our solutions are valid for r > 25 km, these contri-
butions are negligible.

For model (b) the 6-dependence of the saddle point
contributions is now different because V(K \) de-
pends on A [see (5.10)]. Also, because of the addi-
tional poles at A = +i/LK,, there will be further con-
tribution for d, u and v when |tanf] > 1/LK,. Hence
under the realistic assumption that L > R, we find
that
2v,L/Q

“TF (LK, singy %
ltand] < 1/LK;,

d~d,

bs

for (5.16)

d~ dy+ T8 explly — ylfL = il x + ot = 7/2)]
1

=d, + d;,, for 1/LK, < |tanf| < 1/RK,, (5.17)
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(v L/Q)R?
R2 _ LZ ’
|tanf| > 1/RK,, (5.18)

where k; = v — (K;? + 1/L?'? and d,,, dr, are defined
in (5.11), (5.12) respectively. If we set Q = 2v, L, then
inspection of (5.16) reveals that a spatially distributed
coastal velocity such as model (b) tends to decrease
the amplitude of the saddle point contribution since
the factor [1 + (LK, sin6)’]™! < | for #/2 < 6 < 3«/
2. Also, such a profile produces a westward propa-
gating (if k;, > 0) plane wave d;, in the region
above and below the Stokes lines § = = *+ tan™!
(1/LK,). However, as this decays exponentially as
ly — yo| — oo with an e-folding scale of L, this con-
tribution will be small in the far-field unless L is un-
realistically large (1000 km). Finally, we note that
the non-propagating pole contribution in (5.18) is
smaller than that in the point source solution by a
factor of order R?/L? < 1 and hence is again negli-
gible. Thus we conclude that in the far-field region
r= 1000 km, 7/2 < 6 < 3w/2, the asymptotic solution
for d will be dominated by the saddle point contri-
bution d,;,. The same also applies for # and v, though,
for completeness we give below both the saddle point
and pole contributions for K,r > 1:

d~ dsb + dLb+ dRa

for

U~ Us, ———M—— = Ugp,
1 + (LK, sinf)?
for |tané| < 1/LK,, (5.19)
U~ ug+ v—o%——&) exp[—|y — yol/L
— ik x + wt — 7/2)] = ugy, + ugy,
for 1/LK, < |tanf| < 1/RK,, (5.20)
U~ ugptupt uRa(_Z_%)E_L_/_QI;_RZ’
for [tanf| > 1/RK;, (5.21)
and 20,L/Q
vV~ Uy T+ LK, sindp Vg,
for |[tanf| < 1/LK;, (5.22)
v ~ Vg + Vg exp[—ly — Wl/L — i(k;x + wi)],
for [tand| > 1/LK,,  (5.23)

where u,,, ug, and v,, are defined in (5.13), (5.14)
and (5.15) respectively.

6. Comparison of theory with observations of KM

There are two separate aspects of the KM obser-
vations that we now compare with the theory devel-
oped in this paper: 1) the propagation properties of
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the waves (Figs. 1 and 2); and 2) the amplitude dis-
tribution of the wave fields (see Figs. 11 and 12). In
making the comparison of the theory with these two
aspects, only the saddle point contributions of the
asymptotic solutions were used. This is because the
distance from the source S to the nearest corner of
the observation region of KM (point B in Fig. 3) is
over 1000 km; for r = 1000 km the pole contributions
are insignificant for all /2 < 6 < 3w/2.

In the expression for the saddle point contributions
dsa, dgp, Usa, . . . , the following parameter values have
been used in the computations:

g=10ms™? )
Hy =300 m
Ap/p =3 X 1073
£=0.837 X 10™* 57! (latitude ¢, =
35°)
R = (gHoAp/p)"*f ™' = 358 X 10° m

v =B/20 = 4.70 X 107> m™~! (latitude
¢o = 35% w =199 X 1077 57!
for a 1 year period)

Ki=(*—R?Y)"72=378X10°m!
1

6.1)

1,=02ms"
L = (50-150) km
0=04X10°m?s™".

Precise information of the e-folding scale L is lacking
and thus a range of L values has been used. Our
middle estimate of L = 100 km given in Section 2
is based on the fact that at a mooring 150 km north
of CZ4 only a weak annual current signal was ob-
served. To estimate Q, which appears only as a mul-
tiplicative factor in the model (a) solution, we set

Q=20,L=2X02ms'X10°m
=0.4 X 10° m?s™!

since the total strength of the point source velocity
model is Q and

f vo exp(—|y — yol/L)dy = 2vo L for model (b).

—0o0

Figure 10 shows, for the three subareas identified
in Fig. 3, the theoretical wavenumber vector k as-
sociated with a wave located at the center of each
region. To determine k for each case the polar co-
ordinates of the subarea center were first found from
Fig. 3. The centers of subareas 3, 4 and 5 have co-
ordinates (r, §) = (5000 km, 197°), (3400 km, 206°),
and (2000 km, 230°) respectively. From these 6 val-
ues, 6 (=6 — =) and hence the ray along ¢, for each
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subarea were determined. The tip of the vector k was
then located at the intersection of this ray and the
slowness circle. The angle « for each subarea was
measured from Fig. 10. The theoretical and observed
values of |k| and « are given in Table 1, along with
the computed values of wavelength and plane speed.
For each subarea the theoretical direction of propa-
gation agrees very well with the observed value. How-
ever, only for subarea 4 is the theoretical wavelength
. (299 km) in excellent agreement with the observed
value (295 km). The discrepancy in subarea 3 (theo-
retical A too long) may be due to refraction, which
is discussed in Section 7. The shortness of the theo-
retical A in subarea 5, which is just west of California,
suggests generation of annual waves by a source off
California (e.g., the coastal winds—see White and
Saur, 1981) may also be important. The combined
effect of the two sources would be a smaller group
velocity angle 6 (see Fig. 10) and hence a smaller value
of |k| (i.e., a larger A), which would agree better with
the observed value of A. _

The observed amplitude distributions of the wave
field variables are illustrated in Figs. 11 and 12. The
vertical displacement at 300 m (Fig. 11) corresponds
to |d| as found in our theory, and the surface current
speed (Fig. 12) corresponds to ju] = (Jul> + |[v|)'2. A
notable feature common to both of these contour plots
in the region west of 160°W is the pronounced mono-
tonic increase of wave amplitude as one moves west-
ward along any fixed latitude. To see whether either
model (a) or model (b) solution could reproduce such
abehavior, we completed |d,,|, |d,sl, luls; and julg along
the middle latitude 35°N (y = 0) at the three longitudes
passing through the center of subareas 3, 4 and 5 (Table
2). Surprisingly, model (b) solution yields amplitude
levels for |d| and |u| that agree reasonably well with
the observed values, with both quantities increasing
- to the west. (The reason for this unexpected behavior
will be discussed later.) In contrast, the point source
model (a) amplitudes tend to be much larger than the
observed values and show little variation with longi-
tude. Encouraged by the results for model (b) velocity
profile, the zonal variation of |d,,| and |ul,, for several
points along 35°N was then found for different values
of L (Figs. 13 and 14). Figure 13 shows that for all L
in the range 50 < L < 150 km, |d;| increases mono-
tonically to the west, although the curves tend to flatten
out west of 170°W for small values of L (L = 50, 75
km). For larger values of L (100-150 km), the theory
compares favorably with the data. Figure 14 shows
that |ul;;, monotonically increases to the west for all L
values considered only up to 170°W. West of 170°W
the monotonicity decreases as L decreases until L
< 75 km, in which case the current speed actually
decreases to the west. Moreover the theory compares
favourably with the data only between 140-170°W;
west of 170°W the theoretical values are about half
those observed.
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FIG. 10. Comparison between observed and theoretical wave-
number vectors for subareas 3, 4 and 5 (see Fig. 3). The data for
subareas 3 and 4 were taken from KM'’s Fig. 7 and 6 respectively;
the subarea 5 data were taken from KM’s Table 1. The angle &
between ¢, and the horizontal axis for each subarea is defined by
the equation § = = + §, where 0 is the polar angle of the ray from
the source S in Fig. 8 (i.e., CZ4) to the center of that subarea.

To understand the surprising growing behavior of
our solutions along y = 0 (35°N), contour plots of
|d] and |u| for r > 500 km were then computed. Figure
15 shows the model (b) vertical displacement at 300
m. Due west of the source (along y = y, or latitude
48°N), the solution falls off like /2 as expected since
for y = 3, § = 7 and thus |d,| is independent of ¢
[see (5.16)]. However, south of this latitude the con-
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TABLE 1. Comparison between observed and theoretical wavenumber vectors for subareas 3, 4 and 5 (see Fig. 3). For subarea 3 the
observed value of |k| is the average of eight values of (x* + )2, where the («, n) pairs come from the eight locations (38°N, 175°E),

(38°N, 175°W), ...

, (32°N, 175°E), (32°N, 175°W) given in Table 1 of KM. The observed value of « was estimated from Fig. 10a. The

observed errors for |k| and « in subarea 3 were estimated from the Fig. 1 data in the eight vector space subareas contained in subarea 3.
Similar remarks apply to the data for subareas 4 and 5; except in subarea 4, the lone data point with |«|, 7 < 1 X 107 m™' (see Fig. 10b)
was excluded. The prescription for finding the theoretical values of & and |k| are given in the text.

o k| Wavelength, A = 27/]k| Phase speed (¢)
Subarea (deg) (1073 m™) (km) (cms™)
3 Observation 1305 2.30 +0.30 273 (242-314) 0.87 (0.77-1.00)
Theory 135 1.60 393 1.25
4 Observation 126 £ 7 2.13 £0.35 295 (253-353) 0.94 (0.80—1.12)
Theory 129 2.10 299 0.95
5 Observation 133+ 10 1.98 = 0.30 317 (275-324) 1.00 (0.87-1.19)
Theory 128 3.55 177 0.56

tours, for all three L values, tend to slant upward
toward the source and their values increase mono-
tonically to the west. Thus, westward along a fixed
southerly latitude, the #-dependence increases more
rapidly than the decreasing '/ behavior, the net
result being a monotonically increasing |d,;|. Unfor-
tunately, the general slant (or slope) of the theoretical
contours in the observation region tends to be less
than that observed by KM (Fig. 16).* This may be
partly due to the fact that near CZ4 the coastline is
oriented along a NNW-SSE axis, whereas in the the-
ory a N-S alignment for the coastline is used. If the
beam emanating out of CZ4 was downward toward
the WSW, steeper contours would occur in the lati-
tude band 30-40°N. In any event, the distributed
coastal velocity model (b) appears to be more rep-
resentative of nature than the point source velocity
model (a). In the latitude band 30-40°N this latter
model produces a fairly uniform |d| west of 150°W
(Fig. 17), in contrast to the observed pattern.

It is interesting to note here that some evidence of

VERTICAL DISPLACEMENT AT 300m:(M)
40°

w-\m(//
[ 11/

IR
/]
135°W

32° T T T T
165°E  175° 175° 165° 155° 145°

FIG. 11. Amplitudes of the vertical displacement associated with
the analyzed annual baroclinic Rossby waves at 300 m depth (Kang

and Magaard, 1980).

4 Just before this paper went to press, Dr. Magaard informed me
that in his latest analysis, the observed contours in the band 36—
39°N were found to be more slanted toward CZ4 than those in
KM (see Fig. 3 in Magaard, 1983). Thus the agreement between
theory and observation is actually better than that shown in our
Fig. 16.

an 7~ /2 behavior for a Rossby wave field west of Van-

couver Island has been reported by Roden (1977). He
observed 400-600 km wave disturbances in the North
Pacific dynamic heights from the latitude band 20-
50°N. Moreover, in the northerly band 43-47°N the
amplitude of these waves at 158°W (see his Fig. 3)
is larger than that at 177°W (his Fig. 2).

Figure 18 shows the current field for the model
(b) coastal current, with L as a parameter. For small
L the current field is dominated by a double-lobed
pattern, whereas for large L the field consists of a
single narrow beam. For southerly latitudes the con-
tours tend to slant upward toward the source (as in
the case for |d]), again giving a westward increase of
lu| along a fixed latitude. However, the theoretical
values tend to be less than those observed and the
theoretical contours are almost orthogonal to those
of KM (see Fig. 19). Moreover, in this case a down-
ward tilting of the beam emanating from CZ4 does
not improve matters significantly. However, com-
parison of Fig. 20 (point source coastal current) with
the observations shown in Fig. 19 suggests that in-
corporating some aspects of a point source coastal
current into a theory with a distributed coastal cur-
rent could be fruitful. Indeed, our contour results
forcefully indicate how important it is to have a de-
tailed knowledge of the source. In effect we have here
an “inverse problem” to solve: “Given the observed

a0 HORIZONTAL VELOCITY AT SURFACE:{cm/sec)

N ([
36-\/“\177‘1 —

T T
185°  145°

1

32° 4
165°E  175°

T T
175° 165° 135°W

FIG. 12. Amplitudes of the horizontal particle velocity associated
with the analyzed baroclinic Rossby waves at the sea surface (Kang

and Magaard, 1980).
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TaBLE 2. Comparison between observed and theoretical vertical displacements and horizontal current speeds at three points along
latitude 35°N (y = 0). The observed values were estimated by interpolation of the data in Figs. 11 and 12. The center of subareas 3, 4
and 5 (marked by crosses in Fig. 3) have polar coordinates (r, §) = (5000 km, 197°), (3400 km, 206°) and (2000 km, 230°) respectively,
where r, 6 are measured from CZ4 (= point S in Fig. 8). Letters a) and b) refer to model (a) and (b) coastal current profiles in which Q
= 0.4 X 10° m? s™' for model (a) and v, = 0.2 m s~!, L = 100 km for model (b).

Vertical displacement

|d} at 300 m, ful o} Current speed (lul> + {v[})?

Center of subarea (m) (cm s™") (cm s7™") (cm s7Y

3 Observation 3.8 —_ —_ 5
Theory a) 10.8 43 42 6.0
Theory 5) 49 1.9 1.9 2.7

4 Observation ~1.75 — —_ 19
Theory a) 10.2 6.1 4.8 7.8
Theory b) 2.7 1.6 1.3 2.1

5 Observation ~1.25 — — ~1.6
Theory a) 5.5 5.7 4.5 7.3
Theory b) 0.6 0.6 0.5 0.8

far-field data shown in Figs. 11 and 12, what is the
nature of the source?”

7. Discussion

In the above theory we have neglected the presence
of a mean flow. Sufficiently strong lateral or vertical
shears in a mean flow could lead to barotropic or
baroclinic instabilities. Weak shears could result in
wave refraction and critical layer absorption (Schoff
et al., 1981). The incorporation of mean flow effects
into the forced problem considered here is certainly
of interest, but beyond the scope of the present paper.

Instead we shall briefly discuss the refraction of the
waves due to a variable Coriolis parameter f (), with
particular emphasis on trying to explain the wave-
length discrepancy (Aueor t00 long) found for subarea
3 (see Fig. 10a). As mentioned in Section 6, the wave-
length discrepancy (Aueor too short) found for subarea
5 (see Fig. 10c) is probably due to interference be-
tween the longer annual waves generated off the Cal-
ifornia coast, which have a westward group velocity,
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FI1G. 13. Comparison between observed (x) and theoretical ver-
tical displacements at 300 m depth along the latitude 35°N
(y = 0). The theoretical curves, for different values of L, were
computed from the model (b) asymptotic solution (5.16). The data
was taken from Fig. 11. The circled crosses are rough estimates
only, obtained by extrapolation of the data in Fig. 11.

and the shorter waves generated near CZ4. The re-
sultant group velocity vector for the two wave fields
in subarea 5 would be inclined to the horizontal at
an angle of about 6 = 25°. A ray with this angle would
pass through the middle of the data cluster in Fig.
10c and would yield a theoretical k very close to that
observed.

From the dispersion relation (3.10), rewritten in
the form

—Bx

TR+ +fYgHy

(7.1)

we find

(2)
Ce ok’ I
B

= 5 Y Hy (k2 — (n* + f?/g'Hy), 2«7}, (1.2)

g o
5 o7y
g:s- x L=50km
2 75
oY -
_E 100
5“3-4 X 125
z 150
=) Zﬂ
N
x 1
g
T 1 A 1 T 1
170°E 180 170 160 150 140°wW
Longitude

FIG. 14. Comparison between observed (x) and theoretical hori-
zontal current speeds along the latitude 35°N (y = 0). The theoretical
curves for different values of L, were computed from model (b)
asymptotic solution ful,s = (lug? + 3)"2, where u,, and vy, are
given by (5.19) and (5.22) respectively. The data were taken from
Fig. 13. The circled crosses are rough estimates only, obtained by
extrapolation of the data in Fig. 12.
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where & = x> + 5% For fa slowly varying function
of y, it follows that along wave rays (group velocity
trajectories) w and « are invariant whereas n = n9(y)
(¢.g., see Schoff e al,, 1981). Thus according to (7.1),
7° increases as f2 decreases (and vice-versa), in a
manner such that »> + f2/g’H, remains constant.
Hence (7.2) implies that the ratio |dw/dn|/0w/dx] in-
creases as f decreases. Therefore a WSW directed
group velocity vector at high latitudes say, will be
refracted toward the equator (as in Fig. 21). With this
information in hand we now propose the following
scenario for the energy propagation from CZ4 to the
center of subarea 3.
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FIG.16. Comparison of the observed (dashed) and theoretical
(solid) contours of vertical displacements at 300 m depth using
model (b) with L = 100 km.

If we put f= f; + By in the dispersion relation (7.1),
then the radius of the slowness circle, K;(3), decreases
as f'increases (i.e., the latitude y increases). Therefore
near the high-latitude station CZ4, the coastally gen-
erated waves will have a k nearly pointed westward
since the slowness circle has a relatively small radius
compared to . Now, since the local topography is
aligned NNW-SSE and Rossby waves are transverse,
the oscillating boundary current near CZ4 will likely
produce waves with k pointing in the WSW direction,
as shown in Fig. 21. But such waves will have a ¢,
pointing toward the north and therefore will soon en-
counter the critical latitude for the annual wave. At
the critical latitude the wave rays will be reflected, as
shown in Fig. 21. Now the wave rays will be refracted
towards the equator as the Rossby wave energy travels
toward subarea 3, a region of smaller f. At the center
of this subarea, ¢, would be inclined to the horizontal
at an angle of about 6 = 30°. For such a §, ¢, would
lie along a ray passing through the data cluster in Fig.
10a, yielding a k which agrees very favorably with the
average wavenumber vector for subarea 3.

meE 0w 150°W 130°w
T I, 50290
1dgal G 204x105m? 57" - \|
50°N o
czé
\ Nans |
N R
w0 wN
100 | /
e~ 4 3
0% & 2w
| 1
75— 50,
o 073830252015 10 fos
2N s 2008
7ovE ocw o'W 20°W
0 00 %00 2000km

FiG. 17. Contours (in meters) of model (a) asymptotic solution
|dsa| for r > 500 km obtained from (5.11) with Q = 0.4 X 10° m?
s (=2vL withv, =02 m s and L = 100 km),
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8. Summary and future work

We have shown that a fluctuating eastern boundary
current of limited N-S extent can efficiently generate
(annual-period) first baroclinic mode Rossby waves.
West of the generating region centered at (x, ))
= (0, ), the far-field wave amplitude falls off like
r~'2 where r is the radial distance from (0, y,). How-
ever, along a fixed latitude south of the source (i.e.,
along a fixed y < 3y), the wave amplitude increases
to the west provided the N-S profile of the boundary
current has a decaying character as |y — y| — oo.
The far-field wave energy travels radially outward

from the source. The phase, however, travels south-

170°€ 170°W 150° W 130°w

Iyl L = S0 km | M
L = SOkm
20 2 25 30 s 0 §{\
o C 1 \ N
) . cze
o A —C - ey N
[ '4_//'/
/\ \
0% 20°8
15 — 16 0s
200 ] 20°N
170°€ 0°w "o*w 120°W
(VYU TV L W W |
0 0 1000 2000km
10°E 170°w 150° W 130°W
\
| 40 — 40 -
soow A S0°N
Q tlys. L =100 km % s CZéi
!
3'5\ \\

@ = wen

S ey S s
T ‘
28 — ] /l ]
0N P —— -
20 /‘ //
15 10 0s
2008 ] — 20°N
70°€E mo*w 50w 120°w
el
0 S0 w00 2000%m
170°€
SooN 50°N
Ighse L = 150 km
50—

w |-<o ~
s——— | “
o— |
I g

X% 75— N

/
15—
10

20N L

170°€ 0w 50w 120°W
o S0 weo 2000km

FIG. 18. Contours (in centimeters/second) of model (b) asymp-
totic solution |u| for r > 500 km, with different values of L.
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westward in the region y > ),, westward along
¥y = ¥, and northwestward in the region y < yj.
The theory reasonably well explains many of the
properties of the annual Rossby waves observed by
KM. In the latitude band 30-40°N the theory ac-
curately .predicts the observed direction of phase

_propagation, and, to a lesser extent, the observed

wavelength. Also, the westward increase observed in
both the vertical displacement at 300 m (|d|) and the
surface current speed (lu) is qualitatively predicted
by the theory for model (b) boundary current profile.
However, the finer details of KM’s two-dimensional
maps of |d| and |u| are not accurately reproduced,
especially in the case of |u|. Also, west of 170°W, the
theoretical values of [u] are only about half of those
observed.

Although the theory was developed primarily to
explain the observations of KM, its formulation,
within the frame work of a reduced gravity model,
is quite general. For example, the generation of first
baroclinic mode waves of periods other than the an-
nual could be investigated. Also, other forms of the
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FiG. 20. Contours (in centimeters/second) of model (a) asymp-
totic solution |uls, = (Jusl® + |v.l?)'7 for r > 500 km, where u,
and v,, are given by (5.13) and (5.15), respectively. Q is the same
as in Fig. 17.
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FIG. 21. Rossby wave refraction due to a
variable Coriolis parameter f(y).

boundary current profile v, could be treated (e.g., a
pair of point sources would be an interesting case).
The only restriction on v, is that its Fourier transform
must exist.

We regard the theory presented in this paper as a
first approximation to what may be needed to fully
explain all the details of KM’s observations. In this
spirit, we suggest here several ways in which the the-
ory could be extended and hopefully improved:

1) Determination of the ray paths emanating from
CZ4 using the WKB method (or method of multiple
scales) for a slowly varying f.

2) Investigation of the effect of source orientation
and structure on the far field behavior. Also, deter-
mination of the response due to both a fluctuating
coastal current and a variable coastally-confined
windstress (e.g., as used in White and Saur, 1981).

3) Determination of mean flow effects, such as
refraction and critical layer absorption.

4) Extension of model to include aegeostrophic
phenomena such as Kelvin waves and mid-ocean sur-
face and subsurface fronts.

In closing we also recommend that the proposed
theory be tested with further field measurements of
both temperature and current. Also, determination
of the wind field would be of interest. One significant
outcome of the theory is that a detailed knowledge
of the structure of the coastal velocity profile is im-
portant. Thus, several moorings near CZ4 are nec-
essary. Beyond this region, the moorings could be
arranged?’ to test the following theoretical predictions:

1) The r'/2 behavior of the far field (r = 200 km)
along latitude 48°N (through CZ4).

2) The existence of the critical latitude near S0°N
for the annual wave.

3) The structure of the far-field radiation pattern

% Since the annual waves travel so slowly (~0.5-1 km/day for c),
some of the measurements could be done in a “leapfrog” manner.
For example, sensors placed at CZ4 for a two year period to study
the generation process could then be moved to a location 700 km
west or southwest of CZ4 to detect the incoming wave energy which
would take several years to travel this distance.
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as per Figs. 15 and 18 on two or three circles centered
at CZ4 and with radii of 250, 500 and 1000 km.

4) The existence of an annual oscillation of the
axis of the surface west-wind drift west of the British
Columbia-Washington coast.
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