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ABSTRACT

A nonlinear theory of wave diffraction is presented and used to evaluate the forces exerted on a cylinder of
large diameter. A perturbation technique has been used to solve the problem with the inclusion of second-
order terms. Analytical solutions are expressed in the form of an integral, and a numerical technique is applied
to solve the resulting integral equation with satisfaction of all necessary hydrodynamic boundary conditions
including surface and radiation boundary conditions. Predictions of the present analysis are compared with
the experimental data. The comparison shows excellent agreement

1. Introduction

In recent years there has been considerable interest
in the study of the hydrodynamic forces that ocean
waves may exert on off-shore structures that have the
form of circular cylinders, piles, square caissons, and
so forth. One motivation for such studies has arisen
from the need to build solid off-shore structures in
connection with oil and gas recovery and production.
Accurate prediction of the wave loadings on the struc-
tures is extremely important for design purposes, but
the usual theory is deficient because it neglects the
effect of nonlinear terms.

The present data is concerned with the forces that
water waves may exert on vertical circular cylinders.
It is necessary to distinguish between small and large
diameter cylinders, the diameter being compared to
the characteristic wavelength and amplitude of the
wave. '

Morison et al. (1950) gave an empirical equation
for determination of the force on a circular cylinder
in terms of an inertia force and a viscous drag force
under the assumption that the incident wave field is
not significantly affected by the presence of the cylinder.
While this assumption may be satisfied approximately
in the instance of a cylinder of small diameter, it ceases
to be true as the diameter increases in relation to the
incident wavelength. The Morison equation is then no
longer applicable, and diffraction theory must be used.

In application of diffraction theory the cylinder is
assumed to be smooth. Thus the viscous drag forces
are negligible and the inertial forces are predominant.

A diffraction theory for calculation of wave loads
on a vertical cylinder was formulated by MacCamy
and Fuchs (1954). The cylinder was envisaged as ex-
tending from a horizontal sea bed to above the water
surface. This diffraction theory has been used by a
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number of investigators, including Mogridge and Ja-
mieson (1976), to predict the wave loads on large sub-
merged cylinders. However, in all instances the analyses
have been restricted to the inclusion of linear wave
theory only. This is a serious restriction since in practice
the character of ocean waves is generally a nonlinear
function of the disturbance.

It is to be expected that the correlation between
experimental measurements and theoretical predictions
will be poor unless the theory includes nonlinear effects.
Accordingly a number of investigators have directed
their attention toward consideration of a nonlinear
theory.

Chakrabarti (1975, 1977, 1978) used Stokes’ fifth-
order wave theory to derive an expression for the wave
forces on a circular cylinder, but the solution failed to
satisfy the kinematic free-surface boundary condition
in the vicinity of the cylinder. Yamaguchi and Tsuchiya
(1974) employed a perturbation theory to derive a ve-
locity potential that included second-order terms. They
expressed the wave force in the form of a series, and
obtained numerical results that appeared to be in rea-
sonable agreement with experimental results. However,
Chakrabarti (1977) concluded that on the basis of his
theory and a comparison with experimental results,
the solutions of Yamaguchi and Tsuchiya lead to con-
siderable overestimates of the forces involved.

Raman and Venkatanarasaiah (1976) and Raman
et al. (1975, 1977) also used a perturbation theory to
obtain a nonlinear analysis of the propagation of a
water wave. They derived an implicit solution by use
of generalized Fourier transforms of first- and second-
order perturbation equations. The final solutions were
obtained for a cylinder of relatively small diameter,
for which drag forces are likely to be significant. The
solutions did not satisfy the free-surface boundary con-
ditions (Chakrabarti, 1978).
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Garrison (1979) considered a second-order theory
for the interaction of a regular wave with a fixed object
in water of finite depth. The resulting boundary-value
problem was then solved numerically.

Isaacson (1977) discussed the physical aspects of the
problem and concluded that a nonlinear theory does
not exist. However, his assertions appear to be lacking
in rigorous mathematical justification. Recently, Hunt
and Baddour (1980) have shown that Isaacson’s ap-
parent inconsistency follows from a non-analytic
property of the solution at the intersection of the cyl-
inder and the free surface, and concluded that this
does not invalidate the Stokes’ expansion method. Mi-
loh (1980) indicated that Wehausen (1980) has also
used a similar argument to refute the Isaacson assertion.

There appears to be a need for a nonlinear theory
that satisfies the appropriate boundary conditions and
for which numerical results may be obtained and com-
pared with measured values. The present study deals
with the nonlinear wave loads on large vertical cylinders
that extend from a horizontal sea bed to above the
free surface of the water. A perturbation technique is
used to solve the nonlinear diffraction problem with
inclusion of second-order terms. All solutions are ex-
pressed in terms of analytic functions of closed form.

Numerical results based on the predictions of the
present analysis are compared with experimental data.
It is found that there is excellent agreement between
the predicted and measured values.

2. Mathematical formulation

Consider a rigid vertical cylinder of radius a acted
on by a regular surface wave of height H that progresses
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in the direction of the positive x-axis as shown in Fig.
1. In the absence of the wave the water depth is 4 and
in the presence of the wave the free surface height is
n above the mean surface level. It is assumed that the
fluid is incompressible and that the motion is irrota-
tional. The governing equations of motion are well
known (Phillips, 1977; Longuet-Higgins and Cokelet,

1976).
The fluid motion satisfies the equations
do 1 3¢ ¢
= —— = e —— o — l
vr ar s UO r 60 ’ vz 62 ’ ( )
where
P 180 18 6%
2p = e b e e —t e = 2
Ve o2 rar rtae* ozt (2)

within the region

asr<o, —h<z<y -w<l<m

The boundary conditions that correspond to Fig. 1
are as follows: If the equation of the free surface is

z = n(ri 0’ t)’

then the dynamic and kinematic boundary conditions
are the following:

Dynamic boundary condition

For z = nand r = q,

) 1[(30Y | (109 a¢2]_
5“’”5[(5) +(7%) *(&') =0 G

in which g is the gravitational acceleration, and any
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FIG. 1. Definition sketch of wave forces on a vertical circular cylinder.
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arbitrary function of time in Eq. (3) is supposed to be
_included in ¢.

Kinematic boundary condition

Forz=nandr=a
dn  9¢dn 1949y 3¢
ot T oror T rages oz @
Boundary condition on the body surface
Forr=aand -h<z<n,
d¢/3r =0 (5)
Boundary condition on sea bed
For z = —h,
9¢/dz = 0 ©)
Radiation boundary condition
é]
Jim (kr)”z( * tk)(qb P = @)

where k (=2x/L) is the wavenumber of the wave of
wavelength L, and the velocity potential ¢ has been
expressed in the form ¢ = ¢ + ¢'® in which ¢ and
¢® denote incident and reflected potentials, respec-
tively.

It has been found in an earlier study (Rahman and
Moes, 1979) that the radiation condition can be sat-
isfied by the Hankel function of first and second kind
provided the negative sign in Eq. (7) is used for the
first kind and the positive sign for the second kind.

3. Series solution in terms of parameter ¢

Let ¢4(7, 6, z, ) and n(r, 0, f) denote the solution
of Egs. (2)—(7) subject to the neglect of second-order
terms such as (¢/dr)? and (3¢/3r)(9n/df). Then if €
denotes a constant, the quantities

€¢1(’, 0; z, t) and 5771(7, 0’ t)

are solutions of (2)-(7) subject to neglect of terms that
involve €. Furthermore, it may be seen that the general
solution of Egs. (2)—-(7) may be expressed in the form

=2 €bn,

n=1

®)

[vel

1= 2 €My,

n=1

®)

where ¢ is regarded as an additional independent vari-
able. By a nondimensional analysis of the govern-
ing equations, it can be easily shown that ¢ is of
O(kH/2), where H is the incident wave amplitude. In
a similar manner, the incident potential, ¢'°, and the
reflected potential, ¢®™), may also be expanded in a
formal perturbation series.
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For any given value of N the sums of only the first
N terms of the series in (8) and (9) may be regarded
as the Nth-order approximation to the solutions of
Egs. (2)~(7). The Nth-order approximation is the so-
lution subject to neglect of terms ¢” where m > N.

Carrying out a Taylor-series expansion of the non-
linear boundary conditions (3) and (4) about z = 0,
and substitution of the series (8) and (9) into (2)—(7),
and comparison of terms that contain the first power
of ¢, leads to the following equations for a first-order
solution:

Oy 100 LFb T (10)
arr r ar rroee*  oazr 7
gm+6_£_,_0 for z=0, r=a, (11)
%‘%= , for z=0, r>a (12
9 _0. for r=a (13)
or
01 _ 0, for z=—h, (14)
dz
. 172 d . My | =
lim (k2| =% ik )¢ — ¢1) | = (15)
kr—oo or
where ¢ is the first-order term of incident poten-

tial, ¢,

Likewise, substitution of (8) and (9) into (2)—(7),
and comparison of terms that contain the second power
of ¢, leads to the following equations that express the
second-order terms ¢, and 7, as functions of ¢, and
M-

Po,  10¢, 1 &y ¢
v e T T2 % U6
a¢ g, En [<a¢.) (1 a¢.)2
gm + 8[82 0z T2 2 ar + r o6
0
+(——ﬂ)]=0 for z=0, r=a, (17)
az
0n2 , 9¢1 9m l%ﬂ’n_("‘i’z %)=0
ot or or ' rrog 98 \az " az?
for z=0, r=a, (18)
d¢p,/or =0, for r=a, (19)
0¢,/0z =0, for z= —h, (20)
with the radiation condition
Jim (en'™(2 « ik Jio: - 691 =0, @1
2r—a0

where k; is the wavenumber corresponding to second-
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order wave theory, and ¢S is the second-order term
of the incident potential ¢®.

Similar substitution, and comparison of terms in ¢",
leads to equations that express ¢, and 7, in terms of
¢, and 7, where m < n.

The quantity », may be eliminated from Eqgs. (11)
and (12) to yield

8¢, ¢,

ar T8,
Similarly 5, may be eliminated from Eqgs. (17) and
(18) to give

Po, 0, ('024;. ¢,
+ _ " =
£ Mo\ T8 az)

? az
9¢: 1061\ | (9’
at[( )+(r ao)+(az)]
z=0, (23)

The pressure P{r, 0, z, f) may be determined from
Bernoulli’s equation

£+ z+-(?-(-é
p g ot

1[(3Y (lﬁf)z (6_4’)2]_
+2|:(6r)+ ra8) T\az =0

and substitution for ¢ as a series in powers of ¢ indicates
that P may be expressed as
()
21\ or

3¢y 3¢,

ot ”"{at+
9\’ 3
(60)]}+0(e). 25)

P=—pgz—ep——
%)2 1
+ (62 + r’
2% n
F,= J; fh [Plr=u(—a cost)dzdb,

=0, for z=0, r=za (22

for r=a.

(24)

The total horizontal force is

26)

where 7 is given By the perturbation expansion,
Eq. (9).

Substituting Eq (25) 1nto Eq (26) and writing the
z-integral as the sum of [°, + [ we obtain

_ 27 ] % a¢2 l(%)Z
F"_apj; {f_ [gz+eat+_ {8t+2 az
L % J‘emﬂznz [ %
+2a2(80)}]_dz+ gz+eat
¢, ¢, 1 (3¢, }
+ € {é)t + = (az) +2 (80)}] dz¢ cosfdb.
27)

It may be noted that condition (13) is used to ob-
tain (27).
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It is clear from Eq. (27) that the integral of gz, the
hydrostatic term, up to z = 0 contains no cosf term
and may be ignored. Also, the upper limit of the z-
integral of the'second‘-order terms may be taken at
z = 0 instead of z = e, + e 12, which would only
introduce higher-order terms ¢, etc. Thus F, may be
written as

F, = ¢Fy, + €’Fy,,

where the first-order contribution is

. 2 0 9 ¢l .
eFy, = ap e—| dz;cosbdd (29)
o —h at ).,

r=a

(28)

and the second-order contribution is

27 1 a
&F,, = ap f {f (gz + ¢ ——@—) dz
0 0 ot ).,

0 8¢2 1(a¢l)2
re| [ (22
he f—h l: at * 2\ 9z
. 2 h
+ -2.‘1;5 (%) :' dz} cosfds. (30)

4. First-order wave theory -

The linear diffraction theory potential for an in-
coming wave train in the presence of a vertical cylinder
was given by Havelock (1940) for deep-water waves,
and so the solution of Eqgs. (10)-(15), applicable for
arbitrary depth s, may be expressed in the following
complex form (MacCamy and Fuchs, 1954)

UCM et 2 Omi™ A (kr) cosm8, (31)

l =
2 sinhkh 0
e—iat o
m =7 > 8™ A, (kr) cosmd, 32)
m=0
where
' - _ k@)
Apkr) = Jn(kr) H(ka) H, k), (33)
o = 1, if m=0 (34)
"2, if m#0
and ¢ is given by the dispersion relation
= gk tanhkh. (35)

Here, H'? is the mth-order Hankel function of the
first kind, defined by

HO(kr) = J(kr) + iY,(kr), (36)

in which J,,(kr) and Y, (kr) are Bessel functions of the
first and second kind, respectively. The expression
J'.(ka) denotes the derivative of J,(ka) with respect
to ka.

The expression (32) represents the complex form of
a plane wave of amplitude k™! travelling in the x di-
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rection, and represented by the terms whose radial
dependence is described by J,,(kr), together with a re-
flected component represented by the terms whose ra-
dial dependence is described by H)(kr). The first order
term ¢¢, will include the complex form of an incident
plane wave of amplitude e.

5. Second-order theory

With ¢, and 5, expressed in the forms (31) and (32),
Eq. (23) takes the following form for z = 0 and
r=a

& ¢, +

%‘gae—zm %)
ot 89z T 2k

> B, (kr) cosmb,

m=0

(37)
where

> B, (kr)cosmb = > X 8,0, 4,,,

m=0 m=0 n=0

X [cos(m + n)6 + cos(m — n)f]

2cothkh 2 2
S D D 8™ A )

m=0 n=0

X [cos(m — n)8 — cos(m + n)d}, (38)

in which A4,,, is defined as
A = (3 tanhkh — cothkh)A,, A,
+ 2 cothkhA,4,. (39)

In Eq. (39) a prime denotes differentiation with respect
to the argument kr.

The form of (37) suggests that the general solution
of Egs. (16), (19), and (20) may be expressed in the
form

o e—Ziat ©

w="r T [ fo Dol Antla?)

X coshky(z + h)dkz:l cosmf. (40)

In the above equation k; is the wavenumber of a sec-
ond-order wave. It is to be noted that k, does not
assume discrete values but is a continuous variable.
Thus the function D depends on both the discrete
variable m and the continuous wave number k, which
can assume any real value in the range (0, o).

Substitution of (40) into (37) leads to the following
relation between D, and B,,:

1 ]
e J; [k, sinhk,h — 4k tanhkh coshk,h]

X Aplka)D(kr)dky = By(kr), (41)

where B,,(r) may be obtained by equating similar terms
of the Fourier series in (38).
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The expression for the second-order surface-cleva-
tion term 7, may be found by writing (17) in the form

=-1[@_z+ fﬁ+l{(i@)z
=T ar T Mawz T2 \or

31\ , (9¢1)

* (réﬁ) " (82) }] (42)
for r = a, and substituting the previously determined
expressions for %,, ¢;, and ¢, when z = 0.

In order to compute the total horizontal force on
the cylinder as given by (28), with use of (29) and (30),
it is necessary to solve (41) for the case of m = 1.

A tedious, but straightforward, algebraic calculation
yields

B(n=8 X (™!

m=0

X [Am,mH i 2—“,("2‘& m(m + 1)AmAm+.] . @
It is to be noted that B,(r) is a complex quantity.

Since Egs. (10)-(15) are linear in ¢, they are also
satisfied by ¥¢; + ¢¥) where ¢F is the complex con-
jugate of ¢,. Then ¥¢, + ¢T) is real and represents a
physical solution of Egs. (10)-(15). Unfortunately,
since Eq. (23) is nonlinear in ¢,, the expression X¢-,
+ ¢%), with ¢, according to (40), does not satisfy Eq.
(23) with ¢, replaced by ¢, + ¢¥). However, the
procedure of the previous section may be modified as
described in the following section in order to obtain
areal solution for ¢, that corresponds to the first order
solution ¥¢, + ¢¥). The following section is thus con-
cerned with finding a real solution to the physical
problem.

6. Physical solution of second-order theory

After determining a complex solution ¢, in the form
(31), a real solution ¢, + ¢¥) may be expressed in
the form

_ o coshk(z + h)

' 2k? sinhkh
X Y buimeomidq, (kr) cosmf, (44)

where 9,, is defined by (34), and

g, if m?o_‘_
Om =

45
if m<O_. 43)

The function A4,(kr) is defined by (33) for positive
values of m, and by the relation

A_lkr) = A,

for negative values of m where A% is the complex

-0,
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conjugate of 4,,,. The summation in (44) includes both
m =0, and m = O_ in order to include terms e~"*'Ay(kr)
and e’”A}(kr). The corresponding real solution for 7,
is given by

1 2 ;
M=oz 3 sl ontd, (k) cosmd,  (46)
where
1, if m>= 0,
-1, if m<0._.

Eq. (23)-then assumes the following form which is
analogous to (37):

¢, Odr g0\ i <
99 ¢992_89 (2 5 B (kr) cosmb
a2 T8 e 2 Bulkn) cosm

+ e¥ 3 B(kr) cosmf}, (48)

" m=0

where

e 2t > B, (kr) cosmf + e Y BX(kr) cosmf

m=0 m=0

M8

o0
> 8,udni™ A, e [ cos(m + n)d
o .

TN

m=—oo

1 cothkh 2 2 N
+ cos(m — n)8] + 2 kP _é zjo OOyl

")mne"""”‘*""”AmA,,

X(om+a
o

X [cos(m — n)8 — cos(m + n)d], (49)

and in which 4,,, denotes

Ay = [sm(tanhkh — cothkh) + (%i) tanhkh]

m + n
X A, A, + (1—") cothkhd,, A,. (50)
ag

It may be noted that for m, n = 0 the expression (50)
is identical to (39) and so the definition of 4,,, is con-
sistent with the previous definition. It may also be
noted that

— %*
A—m,—n - Am,n .

Gh

It may be verified that the double summations in
(49) contain terms that are independent of time ¢ and
hence correspond to standing waves. However, it may
be verified that these terms add to zero and hence no
standing waves appear.

The right-hand side of (48) is real. A solution for
¢», that also satisfies the required boundary conditions,
may be written in the form
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a,e—Zivl OZO: [~ k k
¢ = o I:I D, (k2)An(kar)
4k’2 m=0 0

+2iot

X coshky(z + h)dkz] cosmb + %kT

> [ fo * DAkt i)

m=0

X coshky(z + h)dkz] cosmf. (52)

The above equation is analogous to (40), and the func-
tion D, (k) is the solution of the Eq. (41) with B,,(kr)
defined by (49) which is also analogous to (3§).

7. Resultant horizontal forces on cylinder

For a diffracted wave whose first-order potential is
of the form (44), the hydrodynamic pressure evaluated
at the cylinder r = a depends on ¢,, ¢, etc. The first-
order, or linear wave theory, yields the following
expression for the horizontal force on the cylinder after
integrating according to (29):

_ 4pg tanhkh _
F,= o _|H(1W(ka)| cos(otf — ay), (53)
where
et ’n(ka)]
N L. 4
o = G [ \(ka) &9

The expression (53) has been obtained by many re-
searchers, including MacCamy and Fuchs (1954), .
Lighthill (1979), and Rahman (1981). Lighthill (1979)
obtained this result for deep-water waves only by use
of the linear diffraction theory of Havelock (1940).

To evaluate the second-order contribution to the
total force the calculation is as summarized below.

Substitution of ¢, and », from (44) and (46), and
carrying out the z-integrations, the coefficient of cosf
in (30), apart from the d¢,/dt term, may be expressed
in the form

g62 © _ 2kh )
16k2 m§=:0 n§) 6m6anRn[{(3 sinh2kh

" X cos[—20t + a,;, + a, + % x(m + n)}

~(1+
mn

X {cos(m + n)8 + cos(m — n)f} — pETE

kh 1
Sinh2 kh) cos(a,,, — o, + 3 w(m n))}

k
(1 + sinhzkh){cos[—Zat + a,, + a,
+ % x(m + n)] + cos[am — an + % a(m — n)]}

X {cos(m + n)8 — cos(m — n)B}] , (55)



DECEMBER 1983

where the Wronskian property of Bessel functions gives
2i

A = R

Re'm, (56)

in which

Ry = (;i—a)[f,,.(ka)z +Yoka, (57)

_ [ Jilka)
om = tan '[Y'm(ka)] :

(58)

In view of the subsequent f#-integration described in
(30), we require only the coefficient of cosf in the
double summation in (55), and this yields to the fol-

lowing;:
2% L)Z 2 {( e+ 1))( 2kh )
k? (1rka EO : a’k? 1+sinh2kh Ei
2kh K+ 1) 2kh
—1¥ —
o 1)[(3 sinh2kh) ey (1 +sinh2kh)]

X [Cycos2at — S, sin2¢rt]} , (59)

where
JiYi — S Y]

= , 60
T U+ YAUR + YR (60)
i+ Vi, 6

U7+ YR + YD)
V¥~ U, .

SR+ YDUR + YR’

the Bessel function arguments being ka. The part of
d¢,/3¢t proportional to cos#, given by (52), contributes
to the z integral in (30) the term

g tanhkh
kra o

© Dl(kz) Sinhkzh
k> HY (k)

e 2ot dky + cc., (63)

where D,(k,) is connected with B,(ka) by the relation
(41). Combining (59) and (63), integrating with respect
to 6, the result may be expressed as the sum of steady
and oscillatory parts:

F,=F$+ F3, (64)
in which
2
FSS=— 2‘1_‘? (i)
nk? \ka

° (. K+ 2k
Xz {[1 e ](l+sinh2kh)E’} (65)

FOS — {pg tanhkh v D,(k,) sinhkyh
= k =0 k2H\"(k,a)

dk,.
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_ 2apg L)”’ 3 ,{( __2kh )
+c.c.} wk? (ka EO( M3 sinh2kh

£ (1 + 2kh )l(l+ 1)}
sinh2kh) a’k?

X (C; cos2at — S;sin2o?).

(66)

The expressions for FSS and FO correspond to Eqs.
(61), (62) and (63), as obtained by Hunt and Williams
(1982) for the shallow water case.

8. Evaluation of D,(k,)

The complex form of D,(k,) must be evaluated from
the integral Eq. (41) corresponding to m = 1 and in
conjunction with (43). As pointed out by Hunt and
Baddour (1980), and Hunt and Williams (1982), it is
necessary to employ a modification of Weber’s integral
theorem. Titchmarsh (1924), and subsequently Watson
(1952), have discussed the modification of Weber’s
integral theorem, and reference may be made to their
work. Using the 4, function as defined in Eq. (33),
the integral theorem states that an arbitrary function
g(r) may be represented in the form of Hankel’s re-
peated integral

g(r) = J:o A(k2r)kadkcr L ) A,(k;R)Rg(R)dR,  (67)

provided that V;g(r) is integrable over the range
(a, o). Fortunately, the g(r) function in the present
instance is Hankel’s function and has asymptotic form
O(r™"/), which confirms that r'/>g(r) is absolutely con-
vergent in the range (a, o). Application of this result
to Eq. (41) yields

Bl(r) = J:o Al(kzr)kgdkz fwAl(sz)RBl(R)dR. (68)

Using the expression for B,(r) from (43), and after
necessary integration, one obtains

kk, fw Ai(kor)rB (ndr

Pl = k, sinhk,h — 4k tanhkh coshkyh (69)
The expression (69) may also be written as
k fmA k-P\rB.(r)dr
D\(k,) sinhk,h _ ; 1(k2r)rBy(r) -
k2 HV (kya) 4k tanhkk| oy ,
kZ[kZ tanhkzh ]Hl (kza)

which may be rewritten in nondimensional form as
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_ Dy(kya) sinhk,h
6kat) = s a P H P )
f: AueaP\By(kr)kr)d(er)
= . (71

_ 4katanhkh] .,
(kza)[(kza) “anhioh ]H 1 (kaa)

The function G(k,a) is a regular function near, and
at, k, = 0. However, it is singular when k; is the root
of the equation

k, tanhk,h = 4k tanhkh. (72)

Griffith (1956) has demonstrated the singular behaviour
of certain Hankel transforms by asymptotic analysis
of their integrands, and similar consideration of (71)
shows that the integrand in f o G(ky)dk, is singular at

k, = 4k for a particular deep water wave, and at
k, = 2k for a particular shallow water wave. The so-
lution k, of Eq. (72) lies between 2k and 4k and so
may be regarded as corresponding to an ocean of in-
termediate depth.

The nondimensional forms of the first- and second-
order components of the total horizontal forces may
now be written as

Fo [tanhkh][cos(ot - a,)] 73)
pgD® L 2(ka)* L |H{"(ka)l
F, {tanhkhe’z‘”‘ f w }
= G(ky)dk, + c.c.
pgD3 8(ka) o (k2)dk; + c.c
2kh K+ 1)
FEPTRY) Z (— ){( ) 212
4n (ka) sinh2kh a’k
Experiment R
Linear Theory
Second-Order Theory _— — -
! T
0207 h/L = 0,057 ;
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0,15}~ . - 7
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e P
0.05(— _1
o) | |
0 0.01 0.02
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FiG. 2. Comparison of linear and second-order wave forces with
experimental data of Mogridge and Jamieson (1976).
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FIG. 3. Comparison of linear and second-order wave forces with
experimental data of Mogridge and Jamieson (1976).
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A second-order diffraction theory has been devel-
oped and tested by comparison with the results of
experimental data. Closed form integral solutions sat-
isfying all necessary hydrodynamic boundary condi-
tions were obtained by using the perturbation method.
The maximum horizontal force was expressed as the
average of the absolute values of the maximum positive
force and the maximum negative force.

The total horizontal force in nondimensional form
may be expressed as

F = Fl + Fz, (75)
where
' H/L
F,=Cy @%I_l)/_) tanhkh cos(ot — «;), (76)
(x/8)(H/LY i }
F; = { /L) ————— tanhkhe f G(ky)dk; + c.c.
_(HL}? 2 ,{( __ 2kh )
4(D/L)(k )3 Z M3 sinh2kh
+&'+ l)( 4 2kh )}
a’k? sinh2kh
2
X {C, cos2at — S, sin2at} — ng/i{—f(;u?
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FIG. 4. Comparison of linear and second-order wave forces with
experimental data of Mogridge and Jamieson (1976).
2kh

i+ _2kh
X Eo {I:l a’k? ](1 + sinh2kh)El} > (7

in which D is the diameter of the cylinder, H is the
wave amplitude and C,, is defined to be the coefficient
of added mass due to linear theory and is equal to
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Car = 4/{m(ka)’|H  (ka)|}. (78)

By dimensional analysis it has been observed that
wave forces on structures depend on three dimen-
sionless parameters H/L, D/L, and h/L. The impor-
tance of these parameters is well recognized by ocean
engineers concerned with the design of structures. As
correctly enumerated by Hunt and Williams (1982),
many experimental studies of wave forces have been
published with such a variation of parameters that a
concise experimental verification is not possible. In
the present paper, however, the predictions of the pres-
ent analysis are compared with some experimental data
collected by the Division of Mechanical Engineering
of the National Research Council of Canada. Figs. 2-
4 show a comparison of the predicted results with the
experimental data. It may be noted that the second-
order theory leads to results in excellent agreement
with measured values. A remark may be made con-
cerning the substantial discrepancy between the results
presented in Fig. 3 of this paper and the Fig. 3 of
Rahman and Chehil (1982). This discrepancy may be
attributed to two different theoretical developments.
It is worth mentioning here that the present theory
gives better correlation with the measured values. An-
other comparison is made in Fig. 5 with the experi-

Experiment * v ox
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Second-Order Theory — — —
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1 |
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3.0 —
el
]
o
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0.02 0.03
H/L
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F1G. 5. Comparison of linear and second-order wave forces with experimental data
of Raman and Venkatanarasaiah (1976).
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FIG. 6. Comparison of linear and second-order wave forces with experimental data of Chakrabarti (1975).

mental data of Raman and Venkatanarasaiah (1976).
The present second-order theory appears to compare
well with these experimental data. In Fig. 6, both the
first-order and second-order solutions are compared
with force measurements of Chakrabarti (1975), which
are generally seen to be closer to the second-order
predictions.

A further comment regarding the integrand G(k;)
may be made. It is clear that for a cylindrical structure
the wave number k, of the second-order wave theory
must not coincide with the root of k, tanhk,h = 4k
X tanhkh unless the corresponding integral in (71)
vanishes. Otherwise the structure is, in effect, being
driven at a condition of resonance. This type of res-
onance behavior is predicted by the second-order wave
solution but not by linear wave theory. However, in
real situations involving oceanic waves, the resonance
phenomenon is observed frequently. Thus the linear
theory must be extended by incorporation of second-
order theory in order to predict correctly the forces
on off-shore structures. The present diffracted theory
predicts that the cylinder will be driven to a condition
of resonance when k; = 2k in the instance of shallow-
water waves and when k, = 4k in the instance of deep-
water waves. For these instances the present mathe-
matical model must be modified. A partial answer to

the first case (shallow water) was reported by Rahman
(1981).

Considerable difficulties have been encountered in
evaluating the integrals in Eq. (74). The numerical
procedure is summarized below. The r-integration in
the G function is evaluated by a Simpson’s integration
scheme from the surface of the cylinder to a certain
distance \;, where )\, is large but finite. Because of
oscillatory behaviour of the r-integrand, contribution
beyond this limiting distance is very small and may
be neglected. In the second integral with respect to &,
the integration is performed in two parts: first the in-
tegration is carried out from k, = 0 to a small neigh-
borhood of the left hand side of the singular point
of the G function and then the integration is continued
from a small neighborhood of the right hand side of
the singular point to a certain distance A,, which de-
pends on k;; the G function is found to be a highly
oscillatory function of distance. However, Lighthill
(1979) has indicated that beyond this limiting distance
the contribution of this infinite integral is insignificant.
In the present study, we have verified that this is also
true.

The solution method for the integral equation was
programmed in Fortran V for the CDC Cyber 170
digital computer at the Technical University of Nova
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Scotia. The commercially available IMSL routine for
computation of Bessel functions was used to obtain
the forces on the structure. A Simpson’s integration
scheme has been formulated and used to integrate the
complex integrands with a very fine grid size.

10. Conclusions

Second-order solutions of nonlinear wave diffraction
in the presence of a vertical cylinder in water of finite
depth have been derived and compared with available
experimental data. Maximum horizontal forces on the
cylinder have been predicted by the theory, and the
predictions have been compared with the experimental
data to show excellent agreement. A close examination
of the mathematical solutions predicts that the structure
will be driven to resonance for k; = 4k in the case of
deep water waves and k, = 2k in the case of shallow
water waves.

Note added in revision. Since submission of this work two
papers have been published (Hunt and Baddour (1981), and
Hunt and Williams (1982)) with almost identical methods
except that we have followed the complex variable analysis
where the analysis of the other papers has been performed
in terms of real variables. It is to be noted that both these
analyses led to the same result which confirms the correctness
of the second-order contribution presented in this paper.
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