An Unusual Way to Generate Conic Sections.
Related Euclidean Constructions

I.A. Sakmar

Abstract

It is shown that given two points and a circle, the basic conic sections, except
the parabola, can be generated as envelopes using an unusual construction.

M.S.C. 2000: 51A99.
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§1. Introduction

Given two points A and B and a circle with center C, conic sections, except the
parabola, can be generated as envelopes by the following construction: (Fig.1)

Take a point P on the circle. Draw the lines AP and BP. Find the second in-
tersections (Q and S of these lines with the circle.

The family of lines S@Q has envelopes which are ellipses, hyperbolas or circles.

I) We shall first present examples for various cases.

IT) Next we shall prove that the envelope is a conic section.

ITT) Finally we shall find the semi-minor and the semi-major axes by two Euclidean
constructions.
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§2. Examples for Various Cases

a) When the line AB is outside of the circle, the envelope of the lines SQ is an
ellipse inside of the circle and does not touch the circle. (Figs.2,3)

Fig.3

b) When the line AB touches the circle, the envelope ellipse inside of the circle
touches the circle at the same point. (Fig.4)
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c) When the line AB crosses the circle, with A and B still outside of the circle,
the envelope ellipse inside of the circle touches the circle at the points where AB
intersects the circle. (Fig.5)

d) When both A and B are inside of the circle, the envelope ellipse inside of the
circle touches the circle at two points. (Fig.6)

Fig.6

e) When A and B are inside of the circle and are symmetrically located around
the center C, the envelope ellipse also is symmetric around AB. (Fig.7)
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f) When in ) A — B the ellipse goes over to a circle.

g) When one of A or B is inside of the ellipse and the other outside, the envelope is
a hyperbola.

f“., r
/ {’?/’y

h) When A is outside of the circle, and B is at C, the hyperbola has AC as its
axis and is tangent to the circle. (Fig.9)

In all cases:

The magjor azis of the conic section is parallel to AB. The center of the conic section
is on the perpendicular line from the center C of the circle to AB.

Proof. The standard process for finding the envelope of a family of lines is to
express the lines as a function of a parameter, then to take the derivative with respect
to the parameter and eliminate the parameter between the two equations.

In this problem the simplicity of the geometric construction is deceiving. The
equation of the line S@Q in terms of the parameters we tried, turned out to be very
complicated; its derivative even more so. Eliminating the parameter between the two
equations is a near impossible task, even for the computer with symbolic operations.
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Instead we tried the following approach, which does not involve solving equations,
and it worked.
The basic idea is the following:
We write the equation of the envelope ellipse in terms of the three unknown
parameters A2, B2, and ¢:
(@' —20)® | (¥ —¢)?

(1) =t g =1

(We use z' and g, because z and y were used for the coordinates of P.)
This is the equation of an ellipse
a) with its axis parallel to x-axis, and
b) with its center at (xo, ).
%o is the x-coordinate of the center of the circle as well as of the ellipse. The y-
coordinate ¢ of the center of the ellipse is unknown.
These two features emerge from geometrical constructions as well as numerical calcu-
lations. They will be justified a posteriori by the general proof.
We write the line SQ as
(2) y' =ma'+b

Here m and b are found by first finding the coordinates of S and Q.
For this we use powers of the points A and B with respect to the circle:

K U
Kj =ujuy —L =2 =4y
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They give:
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Once the coordinates of S and @ are found in terms of z, the equation of 5@ is

Y —Y% _Ye—Us
T —z9 =TQ-—Ts

which can be brought into the form:

Yy =mz' +b
where Kan? — oo " "
v,” — Kpu
m= 2(A12 me )y 2 2b:—2y——2xm
Kav?’z — Kpu*(z — n) — nu®y, Uy Uy
Here

Ki=z+y, —-R uw’=2"+y°

Kp=(z-n)*+y,> — R? v? = (z —n)? +¢?
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y=yoE VR - (¢ —x0)?

In brief, both m and b are functions of the single parameter z.
To find the intersections of the line (2) with the ellipse (1) we insert (2) into (1)
and find a quadratic equation for .

A'z” —2B's’ +C' =0
where
A'=B*>+A’m B =B’zy-A’mbb-c) C' =Bz, - A%+ A%(b-c)?
For the line to be tangent to the ellipse the discriminant D should be zero.
D=DB?-4AC" =0
(3) A?m® + B® — (b—¢)? — 2zom(b — ¢) — m*z,° =0

This is the condition for the line to be tangent to the ellipse.
To determine A, B and ¢ we take three lines

Y =miz' + b

y' = mex’ + by

y' = max’ + b3
Writing the equation (3) for each pair m;, b; and subtracting side-by-side we find two
equations for A% and c.
(4) A’por +2¢qo1 — 11 =0 A’psi +2¢qs1 — 731 =0
with

pij = m? — mj2

gij = (bj + zom;) — (bi + Zorny)
rij = (bj +@omy)® — (b + zom;)®

(4) are two linear equations for A2 and c and are easily solved. Inserting A? and ¢
into the equation (3) gives B?. If the ellipse with A2, B?, and c is the envelope, then
for any line
y =mz’ +b;

the equations

A’por + cgor + 721 =0

A’ps1 +cgs1 + 731 =0

A2pij +cgij +1i; =0

should be satisfied. (Here j = 1, 2 or 3 or any other index.)
This means that

D21 g21 T21

Ps1 g1 T | =0

Pij dij Ty
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Of course here we could take for (21) and (31) any other pair.
This determinant does not involve solving equations or eliminating parameters. Its
calculation is straightforward and gives identically zero.

We do not repeat the proof for the hyperbola, which only differs in the sign of the
equation (1).

§3. Two Euclidean Constructions

From the envelopes resulted two interesting geometrical problems. They serve to
box-in the envelope ellipse into a rectangle.

1) Find the semi-minor axis of the ellipse by constructing the top and the bottom
horizontal tangents of the ellipse.

Problem: (Figs.10,11)

Given a circle and two points A and B (say outside of the circle), find a point P
on the circle such that, when connected to A and B, the second intersections D and
E of AP and BP with the circle give a line DFE parallel to AB.

Solution:

PA _PB
PD  PE

is the condition for DE to be parallel to AB.

Thus A and B are on the homothetic of the given circle C; with the homothety
center at P. Hence C; and its homothetic circle are tangent at P.

The problem becomes: Construct a circle which goes through two given points A
and B and is tangent to a given circle C.

Construction:

The intersection point O of the tangent line at P, with the line AB has the same
power wrt both circles. To find O we draw an arbritrary circle Cy which goes through
A and B and intersects C; at F and G,

We connect F' with G and find O. We draw two tangent lines from O to the circle
C, and find the points P and P'.

When P (or P’) are connected to A and B they intersect the circle C; at points
D, E (or D', E") such that DE (or D'E'") is parallel to AB.

The envelope ellipse is between the lines DE and D'E’, touching them.

The distance between DE and D'E’ is 2b, where b is the semi-minor axis of the
ellipse.

The center of the ellipse can be found by dropping a perpendicular line from the
center of the circle onto the mid-parallel between DE and D'E’.

2) Find the semi-major axis of the ellipse by constructing the right and left vertical
tangents of the ellipse.

Problem: (Figs.12,13)
Given a circle and two points A and B (say outside of the circle), find a point P
on the circle such that, when connected to A and B, the second intersections P, and
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Q@ of AP and BP with the given circle give a line P,() perpendicular to AB.

Solution:

This problem turned out to be quite challenging. We did not know if a Euclidean
construction existed. It required the proof of the orthogonality of the given circle
with an auxiliary circle. It also required an inversion and a back-inversion.

Consider the problem solved, with Po@Q 1 AB. Take the auxiliary circle which
goes through A, B and P. We prove in the appendix that this circle with center M
is orthogonal to the given circle with center M.

The problem reduces to: Given a circle with center M and two points A, B outside
of it, find a circle with center M7, which goes through A and B and is orthogonal to
the given circle.

This problem doesn’t seem to be any easier than the original one. But then, we
remember that inversion inverts circles into circles, and in particular, circles into lines
if the inversion center is on the circle. Also, inversion does not change angles between
intersecting curves. This turned out to be the key to the solution of the problem.

Take an arbitrary point I on the given circle. Invert the given circle wrt I with an
arbitrary power k, obtaining the line £. Invert the auxiliary circle through A, B and
P wrt I and with the same power k, obtaining the circle with the center S, which
goes through A’ and B’ (images of A and B). Since the inversion does not change
angles between curves, the line £ is orthogonal to the circle with center S.

Now the problem is: Find a circle which goes through A’, B’ and is orthogonal to
£. Here A', B' and /£ are all known.

Construction:

We draw the mid-perpendicular to A’B’ and find its intersection S with the line
£. Next we back-invert the circle S, obtaining the auxiliary circle which goes through
A, B and P, thus finding the point P (and P’). Connecting P to A and B we find
the second intersections P, and () of AP and BP with the given circle.

QF. L AB

The second intersection P’ of the auxiliary circle with the given circle gives the
left perpendicular tangent P3Q’ to the ellipse. The envelope ellipse lies between P>Q
and Pj@Q’, touching them. The distance between Po@ and P;Q’ is 2a, where a is the
semi-major axis of the ellipse.

§4. Appendix

Take two perpendicular line segments AD and D@ (Figs.14,15).
Take B between A and D. Take P; between D and Q.
Draw AP, and B(@. Call their intersection P.
We prove that the circle which passes through A, B and P is orthogonal to the circle
which passes through Py, and P. The angles a = v+¢ at C, and 8 at A are defined in
Fig.15. It follows that /APB = /QPP; =~, /CPPs = (8—¢)+a = (f—a+y)+a=
B8+ v (as external angle of the triangle CAP). Hence /CPQ = 8 = /CP,Q. Further
/AP, D =90 — a + 8. This makes

/PP,C=180-8—-(90—a+7)=90+a—8—7,
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which is equal to half of the central angles at M. Then /M MC =90+a— 5 — ~.

On the other hand /CAP = § — a+ v is equal to half of the central angle at M,
LCMiM = — a+ «. Combining these we find

(M CM = 90°,

that is, the circles with the centers M and My are orthogonal.
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