Some Asymptotic Results on Extended Sequences
Connected with the Regular Continued Fraction

Gabriela lleana Sebe

Abstract

Using a two-dimensional Wirsing method, we give a solution to Gauss’ prob-
lem related to the extended case of doubly infinite versions of (s,),eNn and
(rn)nen , connected with the regular continued fraction.
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§1. Introduction

Let Q denote the collection of irrational numbers in the unit interval I = [0,1].
Consider the so-called continued fraction transformation 7 of Q defined as 7(w) =
w™! (mod 1) = fractionary part of w™!, w € . Define N -valued functions a,, on Q
by ani1(w) = a1 (7" (w)), n € Ny = {1,2,...}, where a; (w) = [w™!] = integer part of

w™l, w € Q. Here 7™ denotes the n-th iterate of 7. For any n € N, writing

1

, N> 2,
(21 + [22, -, Zn))

1
[.’L'l] = E,[.’L'l,...,.’l,'n] =

for arbitrary indeterminates z;, 1 < i < n, we have

w= lim [a; (w),...,an(w)], w €,
n—roo
and this explains the name of 7.
The metric point of view in studying the sequence (an)nen . is to consider that

the a,,, n € Ny are IN-valued random variables on (I, By), which are defined almost
everywhere with respect to any probability measu g on By assigning probability 0
to the set I\ Q of rational numbers in I. (Such a p is, clearly, Lebesgue measure
A). The probabilistic structure of the sequence (an)nen , under X is described by the

equations
1

Alar =1) = i+ 1)’
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Aant1 =dlar,...,an) =pi(sn), nE€N,,
where +1
z
() = - - ,1€NL, z €1,
pi(@) (z+i)(z+i+1) +
and s, = [an,...,a1]. Thus, under A, the sequence (an)nen , is neither independent
nor Markovian. There is a probability measure v on By
1 dz
A =—— | —, Ae€By,
() log2 J4z+1 T

called Gauss’ measure, which makes (an)nen , into a strictly stationary sequence.
Moreover, v is T-invariant, i.e., y(771(4)) = v(A) for all A € B;. Hence, by its very
definition, (an)nen . i8 a strictly stationary sequence under 7.

Let us define some related random variables. For any n € N, put

Tn = Qp + [@nt1,0ny2,...]. Obviously, for any n € N4, r, = and s, =
T

n—1
——, with 7° = identity map and sy = 0.
Qp + 8p—1

Let 4 be a probability measure on By absolutely continuous with respect to A. A
great deal of work was done on the asymptotic behaviour of u(s, < z, 7, +1 <y,
n — o, z,y € I. For a detailed account we refer the reader to [3]. Taking up a
problem raised in [5], in this paper we present a result related to the extended case
of doubly infinite versions of (sn)nen and (rp)nen |-

2 Extended Random Variables

Consider the so-called natural extension 7 of 7, which is defined as

1

T(w,0) = (T(w)a (@) 16

) , (w,8) € Q?

(see [4]). This is a one-to-one transformation of 22 with inverse

7_—_1(5‘)70) = (mﬂ—(e)) ’ (wae) € 92'

By Theorem 1.3.1 in [3] the transformation 7 preserves the extended Gauss measure

¥ on B? defined as
_ dzdy 2
B
(B 10g2// (zy +1)2 €br,

that is, ¥(771(B)) = ¥(B) for all B € B?. We have

YA xI) =4I x A) =~(4), VAeB.

Define random variables a;,l € Z = {...,—2,-1,0,1,2,...},0n Q2 by a1 (w, ) =
a1 (7' (w,9)), with 7° = identity map on Q2 and @ (w,8) = a;(w), (w,8) € Q2.
Clearly, an,(w,8) = an(Ww), ao(w,0) = a1(9), G_n(w,0) = any1(f) for all n € N4
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and (w,8) € Q*. The doubly infinite sequence (a;), 7 on (I*,B%,7) is a strictly sta-
tionary one; and clearly, it is a doubly infinite version of (an)nen , under ¥ (see [3],
Subsection 1.3.3.).

It has been proved in [1] that for any z € I and | € Z we have

(a+ 1)z
ar +1

(2.1) ([0, 2] x I|ay,G_1,...) = 7 — as.,

where a = [G;,G1—1,...]. Hence, for any i € Ny and [ € Z,
(2.2) Y(Gyy1 = é|ay, Gr—1,...) = pi(a), ¥ — as.
Define extended associated random variables 5; and 7; as

5 =@, -1,---], T1=20a+[G41,842,---, | € Z.

1
Clearly 35; = g0 7 and 7, = fgo 7,1l € Z. Since 5y = —————, | € Z, it follows
(Sl_1 + al)
from the above equations, Theorem 1.3.1 and Corollary 1.3.6 in [3] that (3;),.7 is a

strictly stationary Q-valued Markov process on (12, B%,%) with the following transition
mechanism: from state § € {2 the possible transitions are to any state 1/(5 + ) with

corresponding transition probability p;(5), ¢ € Ny. Clearly, for any I € Z we have
(& <z) =750 <z) =7 x [0,2]) =~([0,2]), z € I.

Motivated by (2.1), we shall consider the family of probability measures (v,)qer
on By defined by their distribution functions

(a+ 1)z

70.([07-75]) = az+1°

z€el,a€el
In particular, v = A. For any a € I put s§ = a and

1
a
s8=—— nel,.
Tost | +ag

By (2.2), (8%)nen , N =N U {0}, is an I-valued Markov chain on (I, Br,~,) which
starts at s§ = a and has the following transition mechanism: from state s € I the only

1
possible transition are those to states m,i € IN_, the transition probability from

s to being p;(s), i € N4. Clearly, (s2)nen under 7y, is a version of (3, )nen

s+
under ¥(+|5p = a) for any a € €.

Next, the process (71),.7 is a strictly stationary (¥'-valued Markov process on

(I?,B%,7), where ) = the set of irrational numbers in [1,00). The transition mech-

1
1)

anism of (7),.7 is as follows: from 7 € ' the only possible transition is to

Obviously, for any [ € Z,

Y7 <z)=7F1 <z)=7(r <z), =€, 00).
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Finally, the process (51,7, l)leZ is a strictly stationary Q2-valued Markov process
on (I?,B%,7) with the following transition mechanism: from (5,w) € Q? the only
possible trasition is to

1(5) = (HETl]’ wl - [w_l]) .

We have
(5o <z,7 ' <y) =F(8 < z,77 ' <y) =

_ 1 Y% dudv log(zy + 1)
= ([0 0 = = I
(0,91 x [0,2]) 10g2/0/0 (uv + 1)2 log 2 » Y €

3 A Two-Dimensional Wirsing Method

In the sequel we shall develop in the two-dimensional case a technique used by Wirsing
[6] to give a solution to Gauss’ problem.
Let ji be an arbitrary probability measure on B%. For k,l € Z put

Fra(e,y) = g(sk <z, 7 <y).

Since

1 1
Gr<z, 7' <y)=|—"—<z,- — <y
ap + 8k—1 i1+ 7

it follows that

11 1 1
Fk—l,l—i—l(xay) = Z (Fk’l (;’;) _Fk’l (.’L'+i,.;) -

i,JEN 4
1 1 1 1
- Fpy (—.,—.)+Fk,l( ,—))
1Y+ T+t y+y
. 9 . O*Fy,
Asguming that Fy,; € C*(I x I) and putting fr(z,y) = W(x, y), by the above

equation we obtain

1 11
3.1 — ) = B . -9 . ’
(3.1) frria(#:9) ij§+(x+z)2(y+1)2fk’l (x+z y+J)

i.e. fk—l,l+1 =T fk,l7 where

1 11
T f(z,y) = Z (x+i)2(y+j)2f(x+i’y+j)-

i,JEN 4

Let us consider for k,l € Z

gr-11(@y) = @+ D+ D fe—r,(z,y), z,y€l.
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Then it follows from (3.1) that

B (z+D(y+1) 1 1
G (@y) = Y @+i)@+i+ Dy +i)y+j+ 107 ($+i’y+j)’

i,jEN 4
i.e.
(32) gk—1,+1 = ng’l, k,l € Z,
where
z+1 y+1 1 1
Ug(z,y) = - - _ i -, ).
aay) z'j%\;Jr(x+’)(x+’+1)(y+J)(y+J+1)g(x+z y+J)

We assume that the domain of U is C%(I x I). We may write the operator U as
Ug(z,y) = Y. pij(@,9)g9(ui;(2,y)),
4,5EN 4
where
pij(%,y) = pi(z)p; (y)

with p; defined previously, and such that Z pij(z,y) =1, and
4L,JEN 4

uij(@,y) = (ui(@), u;(y)) = (95'1”, ﬁ) .

Then
Uglz,y) = Y. pi(@)pi@)g(ui(@),ui(y)) =
3,5€EN 4
= Y pi) Y pi@gui(@),ui@) = Y pi)Uig(x,y),
jEN 4 ieN 4 JEN 4

where

Uig(z,y) = > pi(@)g(us(@),u;(y)) =

1EN 4

=2 (x+2+1 - i:-li)g(“i(x),uj(y))-

1EN 4

We have U SU
v — (. 9YVig
o @y) = D piy) 5 (@),

JEN 4+

where

; 7 1—1
o (x,y) = —iezN:Jr [((x+i+1)2 - (x+i)2)y(ui(x),uj(y))+
z+1 Og
T GriPe+itD) ou
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since the series of derivatives is uniformly convergent. Then

ot = 3 [0 % e+ G5 e

JEN 4+
Since ) .
7 _ J _ J—
7 = ((y+j+1)2 (y+j)2)

and

9?U;g B i—1 Og

Oy0z (2,9) _ZGXN: [( x+z+1) h (x+i)2) au]( (@), (W) +

z+1 g Ju;

+

IO e @) - 520)

it follows that

S @) = X o @), 05 (0) — gl (o), @)

Oyox ) r+i+1)2 (y+j5+1)°2
Y T T 1) = i (o), )]~
z+1 J 9g 99
- Z (z+i)(z+i+1) ) (y+j+1)2 [%(Uz(@auj(y)) - %(Ui(m)auﬂl (y))] -

_ y+1 . i Oy
L GGt GriT [ay

7 @ride+itl) (y+i)y+j+1) Oydx
. 0°Ug
We can write %(x, y) as
8%Ug
Oyozx
wl® 19 9
=S i) [ |32 w1 — 20002 ()] s

i+1(z)

(x,y) =

ui(z) g

+ ip; (y)u; / (— U, Uj ) du+
Linia® | gy gyt @)

uwi(y) g
+Z.7pl ]+1 / (

Ujt+1

w) 0V

2

2P )50y w525 0).
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Since g € C%(I x I) we have
9(u,u; (1)) = 9w, uj1(y)) = 7 (u,0) (uj(y) — uja(y)

where ¢; € (uj+1(y),u;(y)). Thus, we can write

8*Ug o?

g 2
) = IxI
(3.3) amay(w,y) Vamay(w,y), geC (I xI),

where V : C%(I x I) — C°(I x I) is defined as

ui (z)
Vowy) = Y ijuh @@ | 0@ ly=es(35(6) ~ 2 @)+
irj uit1(e
u;(z)
+ Zzp] i @) [ 9@z
Ui41\Z
u;(y)
+ Zm wiyq (y / g(ui(z), y)dy+
wit1(y)
+ Zpi(w)pj(y)y(ui(w),uj(y))-
Clearly,
U g n 0%g

forallm € Ny and g € C?(I x I).

We are going to show that V™ takes certain functions into functions with very
small values when n € N, is large.

Proposition 3.1. There are positive constants v > 0.02036 and w < 0.17319,
and a real-valued function 1 € C°(I x I) such that

v <V <wih.
Proof. Let us write

Uglz,y) = > pil@)p;@)g(ui(z),u;(y)) =

iL,jEN 4

= Y pi@)pers@)e(ui(@), uik (®) = Y, Urg(w,y),

keEN
N,
j=itk,keN

where

Urg(z,y) = Z pi(2)Pitr (¥)g(ui (@), witrr (y))-

1EN 4
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Let hy : Ry x Ry - R, k€N, be a C?(R, x R, )-function such that

im hk(il»', y)
oo (p4+ 1)(y+1)

y— o0

We look for a function g : (0,1] x (0,1] = R such that U,g = hy, assuming that the
equation

(3.5) Urg(z,y) = hi(z,y)
holds for z,y € R4. Then (3.5) yields

hi(z,y) h(z+1ly+1)
(x+1Dy+1) (=+2y+2)

_ 1 1 1
B (x+1)(x+2)(y+k+1)(y+k+2)g(x+1’y+k+1)

1
for z,y € Ry. Si
or x,y +- Since ———

u v 1+ kv 1+kv_’_1 .
g "1+kv)  w v
1
i) )n ()26-)]
U v U u v/ u 1+v
1 1 1-kv 1 1
g(u,v) = (;+1) [hk (E—l, ” —1) (E+1) T

_h 1 1-kv\1 1
Plu v ul—(k— 1w

for u,v € (0,1] and we indeed have Upg = hy, since

1
=u € (0,1] and —— = v € (0, 1] it follows that
y+1

Hence

Usg(e,y) = @+ +1) 3 (@ +9)(y +9) @+i+1)(y+i+l)

[hk(x+i—1,y+i—1) he(z+i,y+1) ]_
’iEN+

hk(x,y) g hk(x+1,y+1)
@+ 1)y+1) ivo(@+itDy+itl)

@+ D+ | | = tate,

for z,y € Ry.
In particular, for any fixed a € I we consider the function A} : Ry xRy = - R

defined as . . .
y+
ho — - )
#(@:9) x+a+1(y+k+2 y+k+3)
By the above, the function g* : (0,1] x (0,1] = R defined as

y+1

z+1 1 1 1
az+1 y+1 (a+Dz+1 3y+1
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satisfies
Ug*(z,y) = > Urg*(z,y) = Y hi(x,y) = h(z,y), z,y €1,
REN keN
where +1
Y
h*(z,y) = , £,y € 1.
@9 = erarngra Y
We come to V' via (3.3). Setting
o a2ga
¢'(z,y) = amay(m,y) =
B 1 l-a 1 a+l 1 ] ~
2y +1)? [(az+1)2y+1  ((a+1)z+1)23y+1
_y+1 1-a 1 + a+1 3 ]
2y+1|(az+ 12 y+1)2 ((a+Dz+1)23y+1)2
we have
*Ug®) 1
@ e =— I
Ve (z,y) B2y (z,9) Gratigror VY €

Let us choose a by asking that

QOa
Vo

QOa
Vo

(07 1) =

(1,1).
This amounts to
16(a — 1)(a® + a — 1)(a® + 3a + 3) = 11a(a + 1)*(a + 2)

or
5a° — 7a* — 83a® — 157a® — 70a + 48 = 0,
which yields as unique acceptable solution

a = 0.352972898... .

a

®
Vo

For this value of a, the function attains its maximum equal to

M(a) = 8(a+ 1)*(a + 3) = 49.10189173 . ..
at (z,y) = (0,0), and has a minimum equal to
m(a) = 5.774226917 . ..

at (z,y) = (0,1) and at (z,y) = (1,1).

37

Since ¢%(z,y) < 0 and V*(z,y) < 0 for all z,y € I, it follows that for i) = —p®

with a = 0.352972898.. .. we have
(4




38 Gabriela Ileana Sebe

that is,
v <V <wh,
where 1 1
= —— >0.02036, w = —— < 0.17319.
v M(a) > v m(a)
O
0%g

Corollary 3.2. Let g € C*(I x I) such that > 0. Put

Ozdy
V@Y i B max —2®Y)

@= (w,qr;r)lg}xI 82 ( ) (z,y)eIxI (92 ( )
Oxdy Y Ozdy Y
Then
o , 0% 8% B ., 0%
. —" <yn < Sw"—.
(36) BU Ozdy — v Ozdy — a” Oz0y

Proof. Since V is a positive operator (that is, takes non-negative functions into
non-negative functions) we have

vy <V <w™p, neN,.

Noting that
2g

6 6 s¥< Baxa
we then can write
a . 0% <1 0%g 1
5V fzoy S VS BV‘[’ Viwoy Sal VS
1 8 , 0%
_ n < = n
Saw ¢_aw B2y’ nelN,,

which shows that (3.6) holds.

4 A Solution to Gauss’ Problem

Let & be a probability measure on B2, absolutely continuous with respect to A =
Lebesgue measure on BZ. Now, using the notation in Section 3, let us fixed k,l € Z

such that

i) = (2 + D0+ D2 0,)

62
satisfies (x y)>0,z,y€l.

Ozdy
It follows from (3.2) that

gk—nl4n = Ungk,l, k,l € Z, n € IN.
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Then

L __ Ulgr,
(4.1) Fk—n,l-‘rn(xa Y) = f(8k—n < .’L',T'H_n // (w+ D+ 1)d udv,

0Fy;  dji
with k,1 € Z, n € N and z,y € I, where =14 = 2

dzdy ~ d\’
Putting G(z) = ([0, ]), we obtain the following solution to Gauss problem.
o?
Theorem 4.1. Let gp, € C*(I x I), k,l € Z, such that 3 ‘(gcyl > 0. For any

n €Ny and z,y € I we have

3% gr,i
2
(log2)* a(w,g)lg}xl Oz0y (2,9)

46

< |a(Bron < 2,73}, <y) — G(2)G(y)| <

v"G(2)G(Y)(G(2)Gy) —1) <

0% gk
(log2)*f max ;@)
P (z.y)elxI OxOy w"G(z)G(y)(G(z)G(y) — 1),

[0

where a, 3,v and w are defined in Proposition 8.1 and Corollary 3.2.
In particular, for any n € Ny and z,y € I we have
0.000118302v"G (z)G(y)(G(z)G(y) — 1) <

< |B(Bhon < z,7}, <y) — G(2)G(y
< 0.142502939w"G ()G (y)(G(x)G(y)

~—
v

Proof. For alln €N, z,y € I and k,l € Z fixed, set
dn(G(@)G () = a(Bk—n < 2,77}, <y) — G(2)G(y).

Then by (4.1) we have

U"gg.1(u,v)
dn(G / Wt 1) v+1)d udv — G(z)G(y)-
Differentiating with respect to z and y yields

d,(G(2)GY)G(2)G(y) +d,(G@)GWY) _ rpn 1
(log 2)*

Differentiating again with respect to z and y we get

di (G(2)G(y))G* ()G (y) + 4d;) (G(2)G(y))G ()G (y) + 2d,, (G(z)G(y))
(log2)*(z+ 1)(y + 1)

(4.2)
_ 0*U"gky (2,9)
- Oz0y Y
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n €N, z,y € I. Since d,,(0) = d,,(1) = 0, it follows from a well-known interpolation

formula that
u(u — 1)

2
for a suitable 8 = 8(n,u) € I. Therefore, from (3.3), (4.2) becomes

dn(u) = dr@),neN, uel,

log 2)* 02
82 o 4 1y + V2 T ),

d,(G(x),G(y)) = dxdy

which implies

dn(G(2)G(y)) =

4 2
(D (0 + 1)(0" + 1)V 54,0 )G ) CIC) - 1)

for any n € N and z,y € I, and for suitable 8’ = 8'(n,z) € I and 8" = 8" (n,y) € I.
The result stated follows now from Corollary 3.2.

In the special case i = A we have g (z,y) = (z+ 1)(y + 1), ,y € I. Then, with
a = 0.352972898 ... we have

= i # = —(1,1) = 0.386433943 ...,
Fady =Y
R 5 # = —*(0,0) = 6.705945796.....,
Fzdy =Y
so that
% ~ 0.000118302... ., W —0.142502939 ... .

The proof is complete.

5 Concluding Remarks

Theorem 4.1 points out to a kind of asymptotic stochastic independence of 5;_,, and
Fljrln under f.

It is interesting to compare this result with Corollary 3 in [2] which shows that
for any probability measure g on By, absolutely continuous with respect to A

_ log(z +1)

/J/(Sn < 1;,7'0 S) — G($)M([07y]) 10g2

([0, ),

as n — 00. Moreover, Corollary 2’ in [2] shows that

Ya(sn < 2,7 < y) = C@)ra(0,5]) = %%([o,yb,
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as n — 00. Again, we have a kind of asymptotic stochastic independence of s% and
70 under 1, for any given a € I, while the following relation in [1]

_ log(zy + 1
(st < 27" S 3) = 7([0,0] x 0,) = PELLED

as n — 00, does not allow for such an interpretation.
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