Some Asymptotic Results on Extended Sequences Connected with the Regular Continued Fraction

Gabriela Ileana Sebe

Abstract

Using a two-dimensional Wirsing method, we give a solution to Gauss' problem related to the extended case of doubly infinite versions of $(s_n)_{n\in\mathbb{N}}$ and $(r_n)_{n\in\mathbb{N}}$ connected with the regular continued fraction.

M.S.C. 2000: 11K50, 60J10, 60G10.

Key words: Gauss' measure, Markov chain, regular continued fraction.

§1. Introduction

Let Ω denote the collection of irrational numbers in the unit interval I = [0, 1]. Consider the so-called continued fraction transformation τ of Ω defined as $\tau(\omega) = \omega^{-1} \pmod{1}$ = fractionary part of ω^{-1} , $\omega \in \Omega$. Define \mathbb{N}_+ -valued functions a_n on Ω by $a_{n+1}(\omega) = a_1(\tau^n(\omega))$, $n \in \mathbb{N}_+ = \{1, 2, \ldots\}$, where $a_1(\omega) = [\omega^{-1}] = \text{integer part of } \omega^{-1}$, $\omega \in \Omega$. Here τ^n denotes the n-th iterate of τ . For any $n \in \mathbb{N}_+$, writing

$$[x_1] = rac{1}{x_1}, [x_1, \ldots, x_n] = rac{1}{(x_1 + [x_2, \ldots, x_n])}, \; n \geq 2,$$

for arbitrary indeterminates x_i , $1 \le i \le n$, we have

$$\omega = \lim_{n \to \infty} [a_1(\omega), \dots, a_n(\omega)], \quad \omega \in \Omega,$$

and this explains the name of τ .

The metric point of view in studying the sequence $(a_n)_{n\in\mathbb{N}_+}$ is to consider that the $a_n, n\in\mathbb{N}_+$ are \mathbb{N}_+ -valued random variables on (I,\mathcal{B}_I) , which are defined almost everywhere with respect to any probability measu μ on \mathcal{B}_I assigning probability 0 to the set $I\setminus\Omega$ of rational numbers in I. (Such a μ is, clearly, Lebesgue measure λ). The probabilistic structure of the sequence $(a_n)_{n\in\mathbb{N}_+}$ under λ is described by the equations

$$\lambda(a_1=i)=\frac{1}{i(i+1)},$$

Applied Sciences, Vol.4, No.1, 2002, pp. 29-41.

© Balkan Society of Geometers, Geometry Balkan Press

Gabriela Ileana Sebe

$$\lambda(a_{n+1}=i|a_1,\ldots,a_n)=p_i(s_n),\quad n\in\mathbb{N}_+,$$

where

$$p_i(x) = \frac{x+1}{(x+i)(x+i+1)}, \ i \in \mathbb{N}_+, \ x \in I,$$

and $s_n = [a_n, \ldots, a_1]$. Thus, under λ , the sequence $(a_n)_{n \in \mathbb{N}_+}$ is neither independent nor Markovian. There is a probability measure γ on \mathcal{B}_I

$$\gamma(A) = \frac{1}{\log 2} \int_A \frac{dx}{x+1}, \quad A \in \mathcal{B}_I,$$

called Gauss' measure, which makes $(a_n)_{n\in\mathbb{N}_+}$ into a strictly stationary sequence. Moreover, γ is τ -invariant, i.e., $\gamma(\tau^{-1}(A)) = \gamma(A)$ for all $A \in \mathcal{B}_I$. Hence, by its very definition, $(a_n)_{n\in\mathbb{N}_+}$ is a strictly stationary sequence under γ .

Let us define some related random variables. For any $n \in \mathbb{N}_+$, put $r_n = a_n + [a_{n+1}, a_{n+2}, \ldots]$. Obviously, for any $n \in \mathbb{N}_+$, $r_n = \frac{1}{\tau^{n-1}}$ and $s_n = \frac{1}{a_n + s_{n-1}}$, with $\tau^0 =$ identity map and $s_0 = 0$.

Let μ be a probability measure on \mathcal{B}_I absolutely continuous with respect to λ . A great deal of work was done on the asymptotic behaviour of $\mu(s_n \leq x, r_{n+1}^{-1} \leq y)$, $n \to \infty$, $x, y \in I$. For a detailed account we refer the reader to [3]. Taking up a problem raised in [5], in this paper we present a result related to the extended case of doubly infinite versions of $(s_n)_{n\in\mathbb{N}}$ and $(r_n)_{n\in\mathbb{N}}$.

2 Extended Random Variables

Consider the so-called natural extension $\bar{\tau}$ of τ , which is defined as

$$ar{ au}(\omega, heta) = \left(au(\omega), rac{1}{a_1(\omega) + heta}
ight), \; (\omega, heta) \in \Omega^2$$

(see [4]). This is a one-to-one transformation of Ω^2 with inverse

$$ar{ au}^{-1}(\omega, heta) = \left(rac{1}{a_1(heta) + \omega}, au(heta)
ight), \; (\omega, heta) \in \Omega^2.$$

By Theorem 1.3.1 in [3] the transformation $\bar{\tau}$ preserves the extended Gauss measure $\bar{\gamma}$ on \mathcal{B}_I^2 defined as

$$\bar{\gamma}(B) = \frac{1}{\log 2} \iint_B \frac{dxdy}{(xy+1)^2}, \quad B \in \mathcal{B}_I^2,$$

that is, $\bar{\gamma}(\bar{\tau}^{-1}(B)) = \bar{\gamma}(B)$ for all $B \in \mathcal{B}_I^2$. We have

$$\bar{\gamma}(A \times I) = \bar{\gamma}(I \times A) = \gamma(A), \quad \forall A \in \mathcal{B}_{I}$$

Define random variables \bar{a}_l , $l \in \mathbf{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$, on Ω^2 by $\bar{a}_{l+1}(\omega, \theta) = \bar{a}_1(\bar{\tau}^l(\omega, \theta))$, with $\bar{\tau}^0$ = identity map on Ω^2 and $\bar{a}_1(\omega, \theta) = a_1(\omega)$, $(\omega, \theta) \in \Omega^2$. Clearly, $\bar{a}_n(\omega, \theta) = a_n(\omega)$, $\bar{a}_0(\omega, \theta) = a_1(\theta)$, $\bar{a}_{-n}(\omega, \theta) = a_{n+1}(\theta)$ for all $n \in \mathbb{N}_+$

and $(\omega, \theta) \in \Omega^2$. The doubly infinite sequence $(\bar{a}_l)_{l \in \mathbb{Z}}$ on $(I^2, \mathcal{B}_I^2, \bar{\gamma})$ is a strictly stationary one; and clearly, it is a doubly infinite version of $(a_n)_{n \in \mathbb{N}_+}$ under $\bar{\gamma}$ (see [3], Subsection 1.3.3.).

It has been proved in [1] that for any $x \in I$ and $l \in \mathbf{Z}$ we have

(2.1)
$$\bar{\gamma}([0,x] \times I | \bar{a}_l, \bar{a}_{l-1}, \ldots) = \frac{(a+1)x}{ax+1}, \ \bar{\gamma} - \text{ a.s.},$$

where $a = [\bar{a}_l, \bar{a}_{l-1}, \ldots]$. Hence, for any $i \in \mathbb{N}_+$ and $l \in \mathbb{Z}$,

(2.2)
$$\bar{\gamma}(\bar{a}_{l+1} = i|\bar{a}_l, \bar{a}_{l-1}, \ldots) = p_i(a), \ \bar{\gamma} - \text{ a.s.}$$

Define extended associated random variables \bar{s}_l and \bar{r}_l as

$$\bar{s}_l = [\bar{a}_l, \bar{a}_{l-1}, \ldots], \quad \bar{r}_l = \bar{a}_l + [\bar{a}_{l+1}, \bar{a}_{l+2}, \ldots], \ l \in \mathbf{Z}.$$

Clearly $\bar{s}_l = \bar{s}_0 \circ \bar{\tau}^l$ and $\bar{r}_l = \bar{r}_0 \circ \bar{\tau}^l$, $l \in \mathbf{Z}$. Since $\bar{s}_l = \frac{1}{(\bar{s}_{l-1} + \bar{a}_l)}$, $l \in \mathbf{Z}$, it follows from the above equations, Theorem 1.3.1 and Corollary 1.3.6 in [3] that $(\bar{s}_l)_{l \in \mathbf{Z}}$ is a strictly stationary Ω -valued Markov process on $(I^2, \mathcal{B}_I^2, \bar{\gamma})$ with the following transition mechanism: from state $\bar{s} \in \Omega$ the possible transitions are to any state $1/(\bar{s}+i)$ with corresponding transition probability $p_i(\bar{s})$, $i \in \mathbb{N}_+$. Clearly, for any $l \in \mathbf{Z}$ we have

$$\bar{\gamma}(\bar{s}_l < x) = \bar{\gamma}(\bar{s}_0 < x) = \bar{\gamma}(I \times [0, x]) = \gamma([0, x]), \ x \in I.$$

Motivated by (2.1), we shall consider the family of probability measures $(\gamma_a)_{a\in I}$ on \mathcal{B}_I defined by their distribution functions

$$\gamma_a([0,x]) = \frac{(a+1)x}{ax+1}, \ x \in I, \ a \in I.$$

In particular, $\gamma_0 = \lambda$. For any $a \in I$ put $s_0^a = a$ and

$$s_n^a = \frac{1}{s_{n-1}^a + a_n}, \quad n \in \mathbb{N}_+.$$

By (2.2), $(s_n^a)_{n\in\mathbb{N}}$, $\mathbb{N}=\mathbb{N}_+\cup\{0\}$, is an I-valued Markov chain on $(I,\mathcal{B}_I,\gamma_a)$ which starts at $s_0^a=a$ and has the following transition mechanism: from state $s\in I$ the only possible transition are those to states $\frac{1}{s+i}, i\in\mathbb{N}_+$, the transition probability from

s to $\frac{1}{s+i}$ being $p_i(s)$, $i \in \mathbb{N}_+$. Clearly, $(s_n^a)_{n \in \mathbb{N}}$ under γ_a is a version of $(\bar{s}_n)_{n \in \mathbb{N}}$ under $\bar{\gamma}(\cdot|\bar{s}_0=a)$ for any $a \in \Omega$.

Next, the process $(\bar{r}_l)_{l\in\mathbf{Z}}$ is a strictly stationary Ω' -valued Markov process on $(I^2, \mathcal{B}_I^2, \bar{\gamma})$, where Ω' = the set of irrational numbers in $[1, \infty)$. The transition mechanism of $(\bar{r}_l)_{l\in\mathbf{Z}}$ is as follows: from $\bar{r}\in\Omega'$ the only possible transition is to $\frac{1}{\tau(\bar{r}^{-1})}$. Obviously, for any $l\in\mathbf{Z}$,

$$\bar{\gamma}(\bar{r}_1 < x) = \bar{\gamma}(\bar{r}_1 < x) = \gamma(r_1 < x), \quad x \in [1, \infty).$$

Finally, the process $(\bar{s}_{l-1}, \bar{r}_l^{-1})_{l \in \mathbb{Z}}$ is a strictly stationary Ω^2 -valued Markov process on $(I^2, \mathcal{B}_I^2, \bar{\gamma})$ with the following transition mechanism: from $(\bar{s}, \omega) \in \Omega^2$ the only possible trasition is to

$$ar{ au}^{-1}(ar{s},\omega)=\left(rac{1}{ar{s}+[\omega^{-1}]},\;\omega^{-1}-[\omega^{-1}]
ight).$$

We have

$$ar{\gamma}(ar{s}_{l-1} < x, ar{r}_l^{-1} < y) = ar{\gamma}(ar{s}_0 < x, ar{r}_1^{-1} < y) =$$

$$= ar{\gamma}([0, y] \times [0, x]) = rac{1}{\log 2} \int_0^y \!\! \int_0^x rac{du dv}{(uv + 1)^2} = rac{\log(xy + 1)}{\log 2}, \; x, y \in I.$$

3 A Two-Dimensional Wirsing Method

In the sequel we shall develop in the two-dimensional case a technique used by Wirsing [6] to give a solution to Gauss' problem.

Let $\bar{\mu}$ be an arbitrary probability measure on \mathcal{B}_{l}^{2} . For $k, l \in \mathbf{Z}$ put

$$F_{k,l}(x,y) = \bar{\mu}(\bar{s}_k < x, \ \bar{r}_l^{-1} < y).$$

Since

$$(ar{s}_k < x, \ ar{r}_l^{-1} < y) = \left(rac{1}{ar{a}_k + ar{s}_{k-1}} < x, rac{1}{ar{a}_{l+1} + ar{r}_{l+1}^{-1}} < y
ight)$$

it follows that

$$egin{array}{lll} F_{k-1,l+1}(x,y) & = & \sum_{i,j\in\mathbb{N}_+} \left(F_{k,l} \left(rac{1}{i},rac{1}{j}
ight) - F_{k,l} \left(rac{1}{x+i},rac{1}{j}
ight) - \\ & - & F_{k,l} \left(rac{1}{i},rac{1}{y+j}
ight) + F_{k,l} \left(rac{1}{x+i},rac{1}{y+j}
ight)
ight). \end{array}$$

Assuming that $F_{k,l} \in C^2(I \times I)$ and putting $f_{k,l}(x,y) = \frac{\partial^2 F_{k,l}}{\partial x \partial y}(x,y)$, by the above equation we obtain

$$(3.1) f_{k-1,l+1}(x,y) = \sum_{i,j \in \mathbb{N}_+} \frac{1}{(x+i)^2 (y+j)^2} f_{k,l}\left(\frac{1}{x+i},\frac{1}{y+j}\right),$$

i.e. $f_{k-1,l+1} = T f_{k,l}$, where

$$T f(x, y) = \sum_{i, j \in \mathbb{N}_+} \frac{1}{(x+i)^2 (y+j)^2} f\left(\frac{1}{x+i}, \frac{1}{y+j}\right).$$

Let us consider for $k, l \in \mathbf{Z}$

$$q_{k-1,l+1}(x,y) = (x+1)(y+1)f_{k-1,l+1}(x,y), \quad x,y \in I.$$

Then it follows from (3.1) that

$$g_{k-1,l+1}(x,y) = \sum_{i,j \in \mathbb{N}_+} \frac{(x+1)(y+1)}{(x+i)(x+i+1)(y+j)(y+j+1)} g_{k,l}\left(\frac{1}{x+i},\frac{1}{y+j}\right),$$

i.e.

$$(3.2) g_{k-1,l+1} = Ug_{k,l}, k, l \in \mathbf{Z},$$

where

$$Ug(x,y) = \sum_{i,j \in \mathbb{N}_+} \frac{x+1}{(x+i)(x+i+1)} \frac{y+1}{(y+j)(y+j+1)} g\left(\frac{1}{x+i}, \frac{1}{y+j}\right).$$

We assume that the domain of U is $C^2(I \times I)$. We may write the operator U as

$$Ug(x,y) = \sum_{i,j \in \mathbb{N}_+} p_{ij}(x,y)g(u_{ij}(x,y)),$$

where

$$p_{ij}(x,y) = p_i(x)p_j(y)$$

with p_i defined previously, and such that $\sum_{i,j\in\mathbb{N}_+} p_{ij}(x,y) = 1$, and

$$u_{ij}(x,y)=(u_i(x),u_j(y))=\left(rac{1}{x+i},rac{1}{y+j}
ight).$$

Then

$$egin{array}{lll} Ug(x,y) & = & \sum_{i,j\in \mathrm{N}_+} p_i(x) p_j(y) g(u_i(x),u_j(y)) = \ & = & \sum_{j\in \mathrm{N}_+} p_j(y) \sum_{i\in \mathrm{N}_+} p_i(x) g(u_i(x),u_j(y)) = \sum_{j\in \mathrm{N}_+} p_j(y) U_j g(x,y), \end{array}$$

where

$$egin{align} U_j g(x,y) &= \sum_{i \in \mathrm{N}_+} p_i(x) g(u_i(x), u_j(y)) = \ &= \sum_{i \in \mathrm{N}_+} \left(rac{i}{x+i+1} - rac{i-1}{x+i}
ight) g(u_i(x), u_j(y)). \end{split}$$

We have

$$rac{\partial Ug}{\partial x}(x,y) = \sum_{j \in \mathbb{N}_+} p_j(y) \cdot rac{\partial U_j g}{\partial x}(x,y),$$

where

$$\begin{array}{lcl} \frac{\partial U_{j}g}{\partial x}(x,y) & = & -\sum_{i\in \mathcal{N}_{+}}\left[\left(\frac{i}{(x+i+1)^{2}}-\frac{i-1}{(x+i)^{2}}\right)g(u_{i}(x),u_{j}(y))+\right.\\ \\ & + & \left.\frac{x+1}{(x+i)^{3}(x+i+1)}\cdot\frac{\partial g}{\partial u_{i}}(u_{i}(x),u_{j}(y))\right], \end{array}$$

since the series of derivatives is uniformly convergent. Then

$$\frac{\partial^2 Ug}{\partial y\partial x}(x,y) = \sum_{j\in \mathbf{N}_+} \left[p_j'(y) \frac{\partial U_jg}{\partial x}(x,y) + p_j(y) \frac{\partial^2 U_jg}{\partial y\partial x}(x,y) \right].$$

Since

$$p_j'(y) = -\left(rac{j}{(y+j+1)^2} - rac{j-1}{(y+j)^2}
ight)$$

and

$$\begin{array}{lcl} \frac{\partial^2 U_j g}{\partial y \partial x}(x,y) & = & -\sum_{i \in \mathcal{N}_+} \left[\left(\frac{i}{(x+i+1)^2} - \frac{i-1}{(x+i)^2} \right) \frac{\partial g}{\partial u_j}(u_i(x),u_j(y)) + \right. \\ & & + & \left. \frac{x+1}{(x+i)^3(x+i+1)} \cdot \frac{\partial^2 g}{\partial u_i \partial u_i}(u_i(x),u_j(y)) \right] \cdot \frac{\partial u_j}{\partial y}(y) \end{array}$$

it follows that

$$\begin{split} &\frac{\partial^{2}Ug}{\partial y\partial x}(x,y) = \sum_{i,j} \frac{i}{(x+i+1)^{2}} \cdot \frac{j}{(y+j+1)^{2}} [g(u_{i}(x),u_{j}(y)) - g(u_{i+1}(x),u_{j}(y))] - \\ &- \sum_{i,j} \frac{i}{(x+i+1)^{2}} \cdot \frac{j}{(y+j+1)^{2}} [g(u_{i}(x),u_{j+1}(y)) - g(u_{i+1}(x),u_{j+1}(y))] - \\ &- \sum_{i,j} \frac{x+1}{(x+i)(x+i+1)} \cdot \frac{j}{(y+j+1)^{2}} \left[\frac{\partial g}{\partial x} (u_{i}(x),u_{j}(y)) - \frac{\partial g}{\partial x} (u_{i}(x),u_{j+1}(y)) \right] - \\ &- \sum_{i,j} \frac{y+1}{(y+j)(y+j+1)} \cdot \frac{i}{(x+i+1)^{2}} \left[\frac{\partial g}{\partial y} (u_{i}(x),u_{j}(y)) - \frac{\partial g}{\partial y} (u_{i+1}(x),u_{j}(y)) \right] + \\ &+ \sum_{i,j} \frac{x+1}{(x+i)(x+i+1)} \cdot \frac{y+1}{(y+j)(y+j+1)} \cdot \frac{\partial^{2}g}{\partial y\partial x} (u_{i}(x),u_{j}(y)). \end{split}$$

We can write $\frac{\partial^2 Ug}{\partial y \partial x}(x, y)$ as

$$\begin{split} &\frac{\partial^2 Ug}{\partial y\partial x}(x,y) = \\ &= \sum_{i,j} iju'_{i+1}(x)u'_{j+1}(y) \int_{u_{i+1}(x)}^{u_i(x)} \left[\frac{\partial g}{\partial u}(u,u_j(y)) - \frac{\partial g}{\partial u}(u,u_{j+1}(y)) \right] du + \\ &+ \sum_{i,j} ip_j(y)u'_{i+1}(x) \int_{u_{i+1}(x)}^{u_i(x)} \frac{\partial}{\partial u} \left(\frac{\partial g}{\partial y}(u,u_j(y)) \right) du + \\ &+ \sum_{i,j} jp_i(x)u'_{j+1}(y) \int_{u_{j+1}(y)}^{u_j(y)} \frac{\partial}{\partial v} \left(\frac{\partial g}{\partial x}(u_i(x),v) \right) dv + \\ &+ \sum_{i,j} p_i(x)p_j(y) \frac{\partial^2 g}{\partial x\partial y}(u_i(x),u_j(y)). \end{split}$$

Since $g \in C^2(I \times I)$ we have

$$\left. g(u,u_j(y)) - g(u,u_{j+1}(y)) = \left. rac{\partial g}{\partial v}(u,v)
ight|_{(u,c_j)} (u_j(y) - u_{j+1}(y))$$

where $c_j \in (u_{j+1}(y), u_j(y))$. Thus, we can write

(3.3)
$$\frac{\partial^2 Ug}{\partial x \partial y}(x,y) = V \frac{\partial^2 g}{\partial x \partial y}(x,y), \quad g \in C^2(I \times I),$$

where $V: C^0(I \times I) \to C^0(I \times I)$ is defined as

$$egin{array}{lll} Vg(x,y) &=& \displaystyle\sum_{i,j}iju_{i+1}'(x)u_{j+1}'(y)\int_{u_{i+1}(x)}^{u_i(x)}g(x,y)|_{y=c_j}(u_j(y)-u_{j+1}(y))dx+ \ &+& \displaystyle\sum_{i,j}ip_j(y)u_{i+1}'(x)\int_{u_{i+1}(x)}^{u_i(x)}g(x,u_j(y))dx+ \ &+& \displaystyle\sum_{i,j}jp_i(x)u_{j+1}'(y)\int_{u_{j+1}(y)}^{u_j(y)}g(u_i(x),y)dy+ \ &+& \displaystyle\sum_{i,j}p_i(x)p_j(y)g(u_i(x),u_j(y)). \end{array}$$

Clearly,

(3.4)
$$\frac{\partial^2 U^n g}{\partial x \partial y}(x, y) = V^n \frac{\partial^2 g}{\partial x \partial y}(x, y),$$

for all $n \in \mathbb{N}_+$ and $g \in C^2(I \times I)$.

We are going to show that V^n takes certain functions into functions with very small values when $n \in \mathbb{N}_+$ is large.

Proposition 3.1. There are positive constants v > 0.02036 and w < 0.17319, and a real-valued function $\psi \in C^0(I \times I)$ such that

$$v\psi < V\psi < w\psi$$
.

Proof. Let us write

$$egin{aligned} Ug(x,y) &= \sum_{i,j\in \mathrm{N}_+} p_i(x) p_j(y) g(u_i(x),u_j(y)) = \ &= \sum_{\substack{i\in \mathbf{N}_+ \ j=i+k,k\in \mathrm{N}}} p_i(x) p_{i+k}(y) g(u_i(x),u_{i+k}(y)) = \sum_{k\in \mathrm{N}} U_k g(x,y), \end{aligned}$$

where

$$U_k g(x,y) = \sum_{i \in \mathrm{N}_+} p_i(x) p_{i+k}(y) g(u_i(x), u_{i+k}(y)).$$

Let $h_k: \mathbf{R}_+ \times \mathbf{R}_+ \to \mathbf{R}, k \in \mathbb{N}$, be a $C^2(\mathbf{R}_+ \times \mathbf{R}_+)$ -function such that

$$\lim_{\substack{x\to\infty\\y\to\infty}}\frac{h_k(x,y)}{(x+1)(y+1)}=0.$$

We look for a function $g:(0,1]\times(0,1]\to\mathbf{R}$ such that $U_kg=h_k$, assuming that the equation

$$(3.5) U_k q(x,y) = h_k(x,y)$$

holds for $x, y \in \mathbf{R}_+$. Then (3.5) yields

$$\frac{h_k(x,y)}{(x+1)(y+1)} - \frac{h_k(x+1,y+1)}{(x+2)(y+2)} =$$

$$= \frac{1}{(x+1)(x+2)(y+k+1)(y+k+2)} g\left(\frac{1}{x+1}, \frac{1}{y+k+1}\right)$$

for $x, y \in \mathbf{R}_+$. Since $\frac{1}{x+1} = u \in (0,1]$ and $\frac{1}{y+1} = v \in (0,1]$ it follows that

$$g\left(u, \frac{v}{1+kv}\right) = \frac{1+kv}{v}\left(\frac{1+kv}{v}+1\right).$$

$$\cdot \left[h_k\left(\frac{1}{u}-1, \frac{1}{v}-1\right)\left(\frac{1}{u}+1\right)v - h_k\left(\frac{1}{u}, \frac{1}{v}\right)\frac{1}{u}\left(1-\frac{1}{1+v}\right)\right].$$

Hence

$$g(u,v) = \left(\frac{1}{v} + 1\right) \left[h_k\left(\frac{1}{u} - 1, \frac{1 - kv}{v} - 1\right) \left(\frac{1}{u} + 1\right) \frac{1}{1 - kv} - h_k\left(\frac{1}{u}, \frac{1 - kv}{v}\right) \frac{1}{u} \frac{1}{1 - (k-1)v}\right]$$

for $u, v \in (0, 1]$ and we indeed have $U_k g = h_k$ since

$$U_k g(x,y) = (x+1)(y+1) \sum_{i \in \mathcal{N}_+} \left[\frac{h_k(x+i-1,y+i-1)}{(x+i)(y+i)} - \frac{h_k(x+i,y+i)}{(x+i+1)(y+i+1)} \right] =$$

$$= (x+1)(y+1) \left[\frac{h_k(x,y)}{(x+1)(y+1)} - \lim_{i \to \infty} \frac{h_k(x+1,y+1)}{(x+i+1)(y+i+1)} \right] = h_k(x,y),$$

for $x, y \in \mathbf{R}_+$.

In particular, for any fixed $a \in I$ we consider the function $h_k^a: \mathbf{R}_+ \times \mathbf{R}_+ \to \mathbf{R}$ defined as

$$h_k^a(x,y) = \frac{y+1}{x+a+1} \left(\frac{1}{y+k+2} - \frac{1}{y+k+3} \right).$$

By the above, the function $g^a:(0,1]\times(0,1]\to\mathbf{R}$ defined as

$$g^a(x,y) = rac{y+1}{2y+1} \left[rac{x+1}{ax+1} \cdot rac{1}{y+1} - rac{1}{(a+1)x+1} \cdot rac{1}{3y+1}
ight]$$

satisfies

$$Ug^{a}(x,y) = \sum_{k \in \mathbb{N}} U_{k}g^{a}(x,y) = \sum_{k \in \mathbb{N}} h_{k}^{a}(x,y) = h^{a}(x,y), \,\, x,y \in I,$$

where

$$h^a(x,y) = \frac{y+1}{(x+a+1)(y+2)}, \ x,y \in I.$$

We come to V via (3.3). Setting

$$\begin{split} \varphi^a(x,y) &= \frac{\partial^2 g^a}{\partial x \partial y}(x,y) = \\ &= -\frac{1}{(2y+1)^2} \left[\frac{1-a}{(ax+1)^2} \frac{1}{y+1} + \frac{a+1}{((a+1)x+1)^2} \frac{1}{3y+1} \right] - \\ &- \frac{y+1}{2y+1} \left[\frac{1-a}{(ax+1)^2} \frac{1}{(y+1)^2} + \frac{a+1}{((a+1)x+1)^2} \frac{3}{(3y+1)^2} \right] \end{split}$$

we have

$$Varphi^a(x,y)=rac{\partial^2(Ug^a)}{\partial x\partial y}(x,y)=-rac{1}{(x+a+1)^2(y+2)^2},\,\,x,y\in I.$$

Let us choose a by asking that

$$\frac{\varphi^a}{V\varphi^a}(0,1) = \frac{\varphi^a}{V\varphi^a}(1,1).$$

This amounts to

$$16(a-1)(a^2+a-1)(a^2+3a+3) = 11a(a+1)^3(a+2)$$

or

$$5a^5 - 7a^4 - 83a^3 - 157a^2 - 70a + 48 = 0$$

which yields as unique acceptable solution

$$a = 0.352972898...$$

For this value of a, the function $\frac{\varphi^a}{V \varphi^a}$ attains its maximum equal to

$$M(a) = 8(a+1)^2(a+3) = 49.10189173...$$

at (x,y)=(0,0), and has a minimum equal to

$$m(a) = 5.774226917...$$

at (x, y) = (0, 1) and at (x, y) = (1, 1).

Since $\varphi^a(x,y) < 0$ and $V\varphi^a(x,y) < 0$ for all $x,y \in I$, it follows that for $\psi = -\varphi^a$ with a = 0.352972898... we have

$$\frac{\psi}{M(a)} \le V\psi \le \frac{\psi}{m(a)},$$

38 Gabriela Ileana Sebe

that is,

$$v\psi < V\psi < w\psi$$

where

$$v = \frac{1}{M(a)} > 0.02036, \ w = \frac{1}{m(a)} < 0.17319.$$

Corollary 3.2. Let $g \in C^2(I \times I)$ such that $\frac{\partial^2 g}{\partial x \partial u} > 0$. Put

$$\alpha = \min_{(x,y) \in I \times I} \frac{\psi(x,y)}{\frac{\partial^2 g}{\partial x \partial y}(x,y)} \quad and \quad \beta = \max_{(x,y) \in I \times I} \frac{\psi(x,y)}{\frac{\partial^2 g}{\partial x \partial y}(x,y)}.$$

Then

(3.6)
$$\frac{\alpha}{\beta} v^n \frac{\partial^2 g}{\partial x \partial y} \le V^n \frac{\partial^2 g}{\partial x \partial y} \le \frac{\beta}{\alpha} w^n \frac{\partial^2 g}{\partial x \partial y}.$$

Proof. Since V is a positive operator (that is, takes non-negative functions into non-negative functions) we have

$$v^n \psi \le V^n \psi \le w^n \psi, \quad n \in \mathbb{N}_+.$$

Noting that

$$\alpha \frac{\partial^2 g}{\partial x \partial y} \le \psi \le \beta \frac{\partial^2 g}{\partial x \partial y},$$

we then can write

$$\begin{split} \frac{\alpha}{\beta} v^n \frac{\partial^2 g}{\partial x \partial y} &\leq \frac{1}{\beta} v^n \psi \leq \frac{1}{\beta} V^n \psi \leq V^n \frac{\partial^2 g}{\partial x \partial y} \leq \frac{1}{\alpha} V^n \psi \leq \\ &\leq \frac{1}{\alpha} w^n \psi \leq \frac{\beta}{\alpha} w^n \frac{\partial^2 g}{\partial x \partial y}, \quad n \in \mathbb{N}_+ \; , \end{split}$$

which shows that (3.6) holds.

4 A Solution to Gauss' Problem

Let $\bar{\mu}$ be a probability measure on \mathcal{B}_I^2 , absolutely continuous with respect to $\bar{\lambda} =$ Lebesgue measure on \mathcal{B}_I^2 . Now, using the notation in Section 3, let us fixed $k, l \in \mathbf{Z}$ such that

$$g_{k,l}(x,y) = (x+1)(y+1)\frac{\partial^2 F_{k,l}}{\partial x \partial y}(x,y)$$

satisfies $\frac{\partial^2 g_{k,l}}{\partial x \partial y}(x,y) > 0, x,y \in I.$

It follows from (3.2) that

$$g_{k-n,l+n} = U^n g_{k,l}, \quad k,l \in \mathbb{Z}, \ n \in \mathbb{N}.$$

Then

$$(4.1) F_{k-n,l+n}(x,y) = \bar{\mu}(\bar{s}_{k-n} < x, \bar{r}_{l+n}^{-1} < y) = \int_0^x \int_0^y \frac{U^n g_{k,l}}{(u+1)(v+1)} du dv,$$

with $k, l \in \mathbf{Z}$, $n \in \mathbb{N}$ and $x, y \in I$, where $\frac{\partial^2 F_{k,l}}{\partial x \partial y} = \frac{d\bar{\mu}}{d\bar{\lambda}}$. Putting $G(x) = \gamma([0, x])$, we obtain the following solution to Gauss problem.

Theorem 4.1. Let $g_{k,l} \in C^2(I \times I)$, $k,l \in \mathbb{Z}$, such that $\frac{\partial^2 g_{k,l}}{\partial x \partial y} > 0$. For any $n \in \mathbb{N}_+$ and $x, y \in I$ we have

$$\frac{(\log 2)^{4} \alpha \min_{(x,y) \in I \times I} \frac{\partial^{2} g_{k,l}}{\partial x \partial y}(x,y)}{4\beta} v^{n} G(x) G(y) (G(x) G(y) - 1) \leq \\
\leq \left| \bar{\mu}(\bar{s}_{k-n} < x, \bar{r}_{l+n}^{-1} < y) - G(x) G(y) \right| \leq \\
\leq \frac{(\log 2)^{4} \beta \max_{(x,y) \in I \times I} \frac{\partial^{2} g_{k,l}}{\partial x \partial y}(x,y)}{w^{n} G(x) G(y) (G(x) G(y) - 1),}$$

where α, β, v and w are defined in Proposition 3.1 and Corollary 3.2. In particular, for any $n \in \mathbb{N}_+$ and $x, y \in I$ we have

$$0.000118302v^{n}G(x)G(y)(G(x)G(y) - 1) \le$$

$$\le |\bar{\mu}(\bar{s}_{k-n} < x, \bar{r}_{l+n}^{-1} < y) - G(x)G(y)| \le$$

$$\le 0.142502939w^{n}G(x)G(y)(G(x)G(y) - 1).$$

Proof. For all $n \in \mathbb{N}$, $x, y \in I$ and $k, l \in \mathbb{Z}$ fixed, set

$$d_n(G(x)G(y)) = \bar{\mu}(\bar{s}_{k-n} < x, \bar{r}_{l+n}^{-1} < y) - G(x)G(y).$$

Then by (4.1) we have

$$d_n(G(x)G(y)) = \int_0^x \int_0^y \frac{U^n g_{k,l}(u,v)}{(u+1)(v+1)} du dv - G(x)G(y).$$

Differentiating with respect to x and y yields

$$\frac{d_n''(G(x)G(y))G(x)G(y)+d_n'(G(x)G(y))}{(\log 2)^2}=U^ng_{k,l}-\frac{1}{(\log 2)^2}.$$

Differentiating again with respect to x and y we get

(4.2)
$$\frac{d_n^{iv}(G(x)G(y))G^2(x)G^2(y) + 4d_n'''(G(x)G(y))G(x)G(y) + 2d_n''(G(x)G(y))}{(\log 2)^4(x+1)(y+1)} = \frac{\partial^2 U^n g_{k,l}}{\partial x \partial y}(x,y)$$

40 Gabriela Ileana Sebe

 $n \in \mathbb{N}, x, y \in I$. Since $d_n(0) = d_n(1) = 0$, it follows from a well-known interpolation formula that

$$d_n(u) = \frac{u(u-1)}{2} d_n''(\theta), \ n \in \mathbb{N}, \ u \in I,$$

for a suitable $\theta = \theta(n, u) \in I$. Therefore, from (3.3), (4.2) becomes

$$d_n''(G(x), G(y)) = \frac{(\log 2)^4}{2} (x+1)(y+1)V^n \frac{\partial^2 g_{k,l}}{\partial x \partial y}(x,y),$$

which implies

$$\begin{split} &d_n(G(x)G(y)) = \\ &\frac{(\log 2)^4}{2}(\theta'+1)(\theta''+1)V^n\frac{\partial^2 g_{k,l}}{\partial x\partial y}(\theta',\theta'')G(x)G(y)(G(x)G(y)-1) \end{split}$$

for any $n \in \mathbb{N}$ and $x, y \in I$, and for suitable $\theta' = \theta'(n, x) \in I$ and $\theta'' = \theta''(n, y) \in I$. The result stated follows now from Corollary 3.2.

In the special case $\bar{\mu} = \bar{\lambda}$ we have $g_{k,l}(x,y) = (x+1)(y+1), x,y \in I$. Then, with a = 0.352972898... we have

$$lpha = \min_{(x,y) imes I imes I} rac{\psi(x,y)}{rac{\partial^2 g_{k,l}}{\partial x \partial y}(x,y)} = -arphi^a(1,1) = 0.386433943\ldots,$$

$$eta = \max_{(x,y) imes I imes I} rac{\psi(x,y)}{rac{\partial^2 g_{k,l}}{\partial x \partial y}(x,y)} = -arphi^a(0,0) = 6.705945796\ldots,$$

so that

$$\frac{(\log 2)^4 \alpha}{4 \beta} = 0.000118302\dots, \quad \frac{(\log 2)^4 \beta}{\alpha} = 0.142502939\dots.$$

The proof is complete.

Concluding Remarks

Theorem 4.1 points out to a kind of asymptotic stochastic independence of \bar{s}_{k-n} and

 \bar{r}_{l+n}^{-1} under $\bar{\mu}$.

It is interesting to compare this result with Corollary 3 in [2] which shows that for any probability measure μ on \mathcal{B}_I , absolutely continuous with respect to λ

$$\mu(s_n \le x, \tau^0 \le) \to G(x)\mu([0, y]) = \frac{\log(x+1)}{\log 2}\mu([0, y]),$$

as $n \to \infty$. Moreover, Corollary 2' in [2] shows that

$$\gamma_a(s_n \le x, \tau^0 \le y) \to G(x)\gamma_a([0, y]) = \frac{\log(x+1)}{\log 2}\gamma_a([0, y]),$$

as $n \to \infty$. Again, we have a kind of asymptotic stochastic independence of s_n^a and τ^0 under γ_a for any given $a \in I$, while the following relation in [1]

$$\gamma_a(s_n^a \leq x, \tau^n \leq y) \rightarrow \bar{\gamma}([0, x] \times [0, y]) = \frac{\log(xy + 1)}{\log 2},$$

as $n \to \infty$, does not allow for such an interpretation.

References

- [1] M. Iosifescu, On the Gauss-Kuzmin-Lévy theorem III. Rev. Roumaine Math. Pures Appl. 42 (1997), 71-88.
- [2] M. Iosifescu, On a 1936 paper of Arnaud Denjoy on the metrical theory of the continued fraction expansion. Rev. Roumaine Math. Pures Appl. 44 (1999), 777-792.
- [3] M. Iosifescu and C. Kraaikamp, Metrical Theory of Continued Fractions. Kluwer, Dordrecht, 2002.
- [4] H. Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions. Takyo J. Math. 4 (1981), 399-426.
- [5] G.I. Sebe, The distribution of certain sequences connected with the regular continued fraction. UPB Sci. Bull. Series A, vol. 63, 2(2001), 35-43.
- [6] E. Wirsing, On the theorem of Gauss-Kuzmin-Lévy and a Frobenius-type theorem for function spaces. Acta Arith. 24 (1974), 507-528.

Author's address:

Gabriela Ileana Sebe University Politehnica of Bucharest, Department of Mathematics I Splaiul Independenței 313, RO-77206 Bucahrest, Romania