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ABSTRACT

Two conceptual models of a two-layered frontal system are presented to study the wintertime shelf-slope
front. The first model examines the geostrophic adjustment over a step topography after the fall overturning
and applies only over short time scales before the nonconservative processes become important. The second
model, on the other hand, examines the thermodynamic balance over longer time scales when some dissipative
and mixing effects are included.

From the geostrophic-adjustment model, it is found that the flat-bottom solution of a less-dense shelf water
with respect to the slope water is little modified by the presence of a step. But in the case of denser shelf water,
the solution shows the detachment of the spillage when the depth ratio across the step is greater than two,
resembling some regiona! observations.

In the frictional model, the wind generated entrainment is demonstrated to provide a virtual momentum
source to maintain the along-front current shear against friction and thus can account for the persistence of
the front through the winter season. The entrainment also decreases the buoyancy of the exported shelf water,
the distribution of which however, varies greatly with the external parameters. For parameter values applicable
to the Middle Atlantic Bight, an inflection point, corresponding to a weakened lateral buoyancy gradient, is
predicted above the front, consistent with observation.
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1. Introduction

In the Middle Atlantic Bight, a seasonal thermo-
cline dominates the hydrography during summer
months. In late fall, overturning events, triggered by
increased wind stirring and surface cooling, break
down the seasonal thermocline and mix the shelf
water which, on account of its relative freshness, con-
stitutes a lighter water mass than the slope water. The
transition between the two is generally abrupt, hence
the term shelf-slope front, and occurs near the shelf
break (see Fig. 1). If the overturning is a sudden event,
then immediately afterwards the isopycnals are ver-
tical, accompanied by little mean fluid motion. This
is a dynamically unbalanced state, and the gravita-
tional flow generated, whereby the lighter shelf water
flows seaward above the shoreward flowing slope
water will induce a vertical shear in the along-front
current until geostrophic balance is restored and the
front achieves equilibrium.

Assuming that the adjustment process is inviscid
so that the potential vorticity is conserved, a number
of researchers (e.g., Csanady, 1971; Stommel and
Veronis, 1980) have solved the equilibrium state of
a two-layered frontal system overlying a flat bottom.

' Lamont-Doherty Geological Observatory Contribution No. 3530.
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Since it is the rapid depth change that facilitates the
formation of the front near the shelf break, it is im-
portant to examine the topographic effect on their
solutions. In this pursuit, Hsueh and Cushman-
Roisin (1982) have recently solved the problem nu-
merically over a topography of two adjoining linear
slopes. Our first model (Section 2) represents a sim-
plification of their work by employing a step topog-
raphy and rigid lid, The simplification allows for an
analytical solution and hence a more ready exami-
nation of its properties, and is still adequate to assess
the lowest-order effect of the shelf break. We also
present solutions for the cases of dense shelf water
and a narrow shelf that might have regional appli-
cations.

The inertial adjustment model obviously breaks
down over longer time periods when nonconservative
processes become important. In particular, friction
dissipates the current shear and flattens the front, and
mixing reduces the density contrast across the frontal
interface; both tend to destroy the shelf-slope front.
But since the front is observed to persist through the
winter season, as evidenced by the March observa-
tions shown in Fig. 1, then there must exist some
momentum and buoyancy source for its mainte-
nance. This is the subject of our second model (Sec-
tion 3) where a steady state balance is proposed that
includes some dissipative and mixing effects.
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FIG. 1. Temperature and density sections across the New England shelf-slope front
(adapted from Marra et al., 1982).
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Evaluations of the models are presented in both
sections, with major conclusions summarized in Sec-
tion 4.

2. Geostrophic adjustment
a. Governing equations

Figure 2 shows the model geometry where the front
is a two-dimensional interface (in the y-z plane) that
separates two homogeneous layers and overlies a step
topography. Initially, the front is a vertical interface
located at the step, shown by the dashed line, and the
fluid is motionless. The model seeks to determine the
equilibrium front, shown schematically by the solid
line, after the geostrophic adjustment. The adjust-
ment process is assumed inviscid and adiabatic so
that the potential vorticity is conserved, and the fron-
tal interface remains material. In our terminology,
the upper and lower layers are labeled 1 and 2, and
the x and y directions are called along- and cross-
frontal respectively. All field variables in the lower
case refer to the adjusted state.

For conciseness, the following derivations are based

- on dimensionless variables. We have scaled the vertical
and horizontal coordinates by, respectively, the shelf
depth (H,) and the internal radius of deformation (A)
based on this depth, defined as (g'H,)'? f~! where g’
is the reduced gravity and fis the Coriolis parameter.
We have chosen f A as the velocity scale.

Conservation of potential vorticity states that

1_u|y=h1 }

1 - Uy = hz(s_l (21)

where 6 = H,/H, is the depth ratio across the step
and the subscript y represents differentiation. Since
the front is material, it does not allow any transverse
motion in the adjusted state, the along-front current
must then be geostrophic and satisfy the Margules
equation,
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FiG. 2. A simplified frontal system used in the geostrophic ad-
justment model. The dashed and solid line represent the front in
its initial and adjusted state, respectively.
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2.2)

Stommel and Veronis (1980) have shown that allow-
ing a free surface has little effect on the frontal shape;
we will therefore assume a rigid lid so that

1, y<0
é, .y>0.

Uy —p = —h|y.

h.+h2=HE{ 2.3)
Combined with (2.1) and (2.2), a single equation in
h, can be derived, :

hlyy - ‘72}!1 = —H/a, (24)

where > =1+ 67",

To derive the boundary condition at y = —L where
the front intersects the bottom, we first integrate the .
X-momentum equation in time to give

un=y—m}

s 2.5
W=y—mnm (2.5)

where 7, and 7, are the initial positions of the water
column presently at y. Invoking the implicit presence
of a distinct coast, the rigid-lid assumption requires
that the net cross-shelf mass flux vanishes. This leads
to

m=-Ln=0 at y=-L  (26)
which translates, through (2.5) and (2.2), to
hy,=—-L at y=-—L. 2.7)

Similarly, where the front intersects the top surface,
we have

hy,=-R at y=R. (2.8)
Together with the boundary condition that
_ 1 at y=-L
h = {0 at y=R, 2.9)
and the matching condition that
hy, h;, be continuous at y = 0, (2.10)

Eq. (2.4) can be solved. The matching condition that
h,, be continuous is equivalent to the condition that
n; and 7, be continuous, as can be easily seen from
(2.2) and (2.5).

b. The solution
Eq. (2.4) has the general solution,

. 1.
h, = A coshyy + B sinhyy + -‘y—zg

for y<0O

] ) , (2.11)

h, = A coshyy + B sinhyy + 7
for y=0

where A, B, A, B are constants yet to be determined.
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The boundary and matching conditions, (2.7) to
(2.10), lead to

L
A sinhyL — B coshyL = 1=, @.12)
Y
- _ YR
A sinhyR + B coshyR = — —, (2.13)
1
A coshyL — BsinhyL = —, (2.14)
Y
- - 1
A coshyR + B sinhyR = — —, (2.15)
Y
Z—A+L(l—-l) (2.16)
v \é ’ '
B=B. 2.17)

These six algebraic equations can be solved for the
six unknown constants (4, B, A, B, L, R) to give (see
Appendix A)

- 1 {1
= - = — ——1
4 4 272(6 )

B=B= iz (sinhyL — v L coshyL)
Y (2.18)
L=R

. 1 1
coshyL — yL sinhyL = 3 (1 - 3)

4

Since 4 = —4 and B = B, it follows from (2.11) that
h()+ =y =1, (2.19)

and hence, with the boundary condition (2.10),
n(0) = Y, (2.20)

regardless of the value of 4. It is interesting to note
this symmetry property although the topography can
be highly asymmetric.

The solutions for the case of 6 = 1 and 10 are
plotted in solid lines in Fig. 3. It is seen that the flat-
bottom solution is little modified by the step topog-
raphy. The frontal zone is slightly widened, but its
half-width is still roughly given by the internal radius
of deformation based on the shelf depth. This is ex-
pected as the upper layer has a greater potential vor-
ticity and dominates the vorticity balance.

Since the value of § has not been restricted, the
above solution also applies to the case of & < 1 when
the shelf water is the denser of the two. The equality
(2.20) however limits the depth ratio to greater than
Y2 or the front would cut through a solid boundary,
an obviously erroneous solution. The only boundary
condition that can be relaxed when &6 < Y2 is the re-
quirement that 4, be continuous at the step; in other
words, the spillage of the dense shelf water must be
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FI1G. 3. Geostrophically adjusted front for & = 1 and 10. Solution
for a wide shelf is shown in solid lines, and that for a narrow shelf
(with a shelf width equal to one-fifth the internal radius of defor-
mation) is shown in dashed lines.

allowed to detach from its source region. Setting #; =
6 at y = 0%, (2.16) is replaced by

A=62 2.21)

The remaining constants can be solved for to give
(see Appendix A)

- )
A = — = —
¥
B=B-= ;15 (sinhyL — yL coshyL) (2.22)
L=R

L sinhyL — coshyL = 6

The solution for the case é = 0.1 is shown in Fig. 4
by the solid line. The symmetry property (2.19) still
holds and the detached parcel has a vertical extent
given by the shelf depth. Since less vortex compres-
sion is experienced by the dense shelf water descend-
ing the step, the frontal zone is seen to be wider. There
is considerable modification to the solution when a
more realistic topography is used (Hsueh and Cush-
man-Roisin, 1982), but this qualitative feature re-
mains unchanged.

The heavy solid line in Fig. 5 shows the half-width
of the frontal zone as a function of the depth ratio
4. It has a minimum value of 0.8 at § = 1, and in-
creases to the asymptotic value of 1.2 or 0.9 as §
approaches zero or infinity, respectively. Despite
vastly different values of the depth ratio, the frontal
width therefore remains nearly constant and is roughly
given by the internal radius of deformation based on
the shelf depth.

For completeness, we have also presented in Ap-
pendix B the solution for a narrow shelf when the
equilibrium front intersects the coast. It is shown by
the dashed lines in Figs. 3 and 4 when the shelf width
is one-fifth the internal radius of deformation. The
solution shown in Fig. 3 is a generalization of that
of Griffiths and Linden (1982) where the lower layer



1802

FIG. 4. As in Fig. 3, but for 8 = 0.1.

is assumed motionless. The coupling of the two layers

increases the frontal slope and results in a narrower
frontal zone. The contours of the maximum offshore
displacement of the front are plotted as thin solid
lines in Fig. 5 as a function of § and the shelf width,
" denoted by L and R depending on whether & is greater
or smaller than 1. Except for very narrow shelves, this
displacement is not a strong function of the shelf
width and is again roughly given by the internal radius
of deformation.

¢. Discussion

There are obvious limitations of the model. Being
inviscid and adiabatic, it applies only over short time
scales before non-conservative processes become im-
portant. But even over inertial time scales, laboratory
experiments (e.g., Griffiths and Linden, 1982) show
that the front oscillates and meanders and frequently
becomes unstable. The condition of two-dimen-
sionality and steady state can be met only after proper
spatial and temporal averages are taken, which places
a stringent requirement on the data. Hydrographic
surveys are not efficient for pinning down overturning
events or for providing a temporal mean. Moored
measurements, on the other hand, usually lack the
spatial resolution to delineate the front which, mak-
ing matters worse, moves about. Until adequate data
can be obtained to compare with the model, the im-
portance of geostrophic adjustment in shaping the
shelf-slope front remains an open question. '

The assumption of a sudden overturning that cre-
ates an initially vertical interface and motionless fluid
has not been substantiated by observation. In fact,
measurements from a string of four temperature sen-
sors reported by Mayer, Hansen and Ortman (1979,
their Fig. 14) suggest rather a gradual deepening and
erosion of the seasonal thermocline. While there
might be occasions of sudden overturning, their ob-
servation certainly casts some doubt on the applica-
tion of the present model.

The detachment of the outspilled dense shelf water
from its source region is one interesting feature pre-
dicted by the model. Although it resembles obser-
vations taken near the Weddell Sea (Foster and Car-
mack, 1976) and Ross Sea (Jacobs, Amos and Bruch-
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hausen, 1970) shelf breaks, and near the Red Sea
outflow (Wyrtki, 1971, p. 466), other processes, per-
haps frictional in nature, cannot be ruled out as being
responsible.

3. An entrainment model
a. The governing equations

As is evident from Fig. 1, the shelf-slope front is
highly variable in time. But despite the transients, the
front is observed to persist throughout the winter sea-
son. This persistence allows a definition of the mean
front, the balance of which we are addressing here in
this steady state model. Wind undoubtedly causes
much of the frontal variability, but besides bodily
displacing or deforming the front, it also generates
turbulence which will be tacitly assumed in the model
to mix the fluid vertically within layers, maintain a
sharp frontal interface, and entrain fluid upward
across this interface. The downward entrainment in-
duced by bottom turbulence will be neglected because
of the dominance of the turbulence from above.

The model configuration is shown in Fig. 6, where
the front is again approximated by an interface ad-
joining fluids of different density. The density is ver-
tically uniform within layers but allowed to vary hor-
izontally. Along-front uniformity and steady state are
assumed so that 4, = 9, = 0.

The entrainment rate is defined as

+ dh,

T

= Wf‘l‘ vlklya

I

We

3.1

FIG. 5. Thick solid line is the half-width of the frontal zone for
the case of a wide shelf, and thin solid lines are contours of the
maximum offshore displacement of the front when the front in-
tersects the coast. The shelf width is indicated by L (R) when & is
greater (smaller) than 1. All the distances have been scaled by
internal radius of deformation based on the shallower depth.
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FIG. 6. A simplified frontal system used in
the entrainment model.

where wyis the vertical velocity at the front. Without
mixing, the frontal interface is material so that wy
= —dh/dt, and w, vanishes. But in the presence of
upward entrainment, w, is positive. By vertically in-
tegrating the continuity equation and assuming a rigid
lid, we derive

sz hlvly, (3.2)
which can be substituted into (3.1) to yield
Vly = We, (3.3)

where V, = hyv, is the transport of the upper layer;
mass conservation simply requires a transport diver-
gence to accommodate the entrained fluid. Similarly,
enhtropy conservation requires a divergence of the lateral
density flux to accommodate the vertical density flux
associated with the entrainment, or

Vip1)y = Wepa. (3.4)
Similar equations apply to the lower layer,
Vay = —w,, 3.5)
(VZPZ)y = W2, (36)
which lead however to
p2y =0, 3.7)
or
p> = constant, (3.8)

i.e., in the absence of downward entrainment, a fluid
particle in the lower layer conserves its density which,
in a steady state, must then be spatially uniform. Sub-
ject to this constraint, (3.3) and (3.4) imply that

(Vl Ap)y = 09
or

ViAp = constant, (3.9

where Ap = p, — p, is the density difference across
the frontal interface, the lateral flux of which is there-
fore a constant. Alternatively, mass and entropy con-
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servation applying over the whole water column re-
quire that
(Vi + V2), =0, (3.10)

(Vip1 + Vapa), = 0, 3.11)

which, subjected to the condition of a constant p,,
lead trivially to (3.9). A similar result has been derived
by deSzoeke and Richman (1981) in their study of
the upwelling front. If ¥, = 0 at y = 0, then according
to (3.9), V, vanishes everywhere, contradicting (3.3),
thus a steady state is possible only when there is a
buoyancy influx at y = 0. .
In the y-momentum equation, geostrophy is as-
sumed so that
fAu = —gp~'Aph,y, (3.12)

where Au is the velocity jump across the interface
and p, the mean density of the fluid, is assumed con-
stant under the Boussinesq approximation. In the x- -
momentum equation, we assume that the Coriolis
force acting on the offshore transport is balanced by
the net of surface less interface stress,

—fV,=1p"' — w.Au, (3.13)

where 7 is the surface wind stress and the interface
stress has been parameterized in terms of the mo-
mentum flux associated with entrainment.

It is seen that the entrainment, although dissipative
as a momentum flux, enhances the offshore transport
through mass conservation (Eq. 3.3) which, when
acted on by the Coriolis force, can maintain an along-
front current shear against friction (Eq. 3.13). This
somewhat peculiar mechanism of entrainment as a
virtual momentum source works only in a rotating
system and is the primary physical idea we are trying
to convey here.

To close the problem, we parameterize the entrain-
ment rate according to Kraus and Turner (1967),

_ 2mouip

, 3.14
gAph, ¢ )

e

where m, is some empirical constant of order 1 and
u, is the friction velocity defined by (v*/p)"/? (v* being
the magnitude of the turbulent wind stress).

If we scale Ap and /4, by their respective values at
the origin y by the internal radius of deformation A
[defined here as (gp~' Ap(0)4,(0))'/?/f], and (Au, V;,
Wwe, 7Y by (f N, Aw¥*, w¥ | of Aw¥) where w¥ is the en-
trainment rate at y = 0, then, in terms of the dimen-
sionless variables, the governing equations become

Viy = W, (3.15)
ViAp = F, (3.16)
Au = —Aphy,, 3.17)
Vi=wAu—r, (3.18)
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we = 1/(hAp), (3.19)

where F, the transport at y = 0, and 7, the surface
wind stress, are the only two external parameters of
the system. The five equations thus determine the five
variables (Ap, h,, Au, V), w,) and the system is closed.

b. The solution

Eliminating all the variables in favor of 4, and
Ap, we derive
(3.20)

1

h
Multiplying the two and integrating the resulting
equation, we obtain '

2
L 1 —F2+£—TFlnAp,
Ap .

F
-5, (o). (3.21)

hy

where the boundary condition that A, = Ap = 1 at
y = 0 has been used. Substituting (3.22) into (3.21)
yields

(Ap), = — -

(3.22)

F?
Ap — F+ 7ApInAp (3.23)

which can be integrated numerically.

For the purpose of our discussion, we will first ex-
amine the solution of vanishing 7, in which case the
first integral of (3.23) gives

1
Ap=1"p {exp[—y(1 = F?/F] — F?}, (3.24)
with an accompanying gradient
1
(8p), = — mexp[—y(1 = F?)/F].  (3.25)

F

Except for the trivial case of F = 1 when this gradient
is constant, its magnitude varies exponentially. in y
and is monotonically increasing or decreasing de-
pending on whether Fis greater or smaller than unity.
We have plotted in Fig. 7 the solution for three dif-
ferent values of F (0.1, 1, and 10) which clearly shows
this property. Physically, for a small shelf water export
(i.e., a small F), its buoyancy is quickly reduced by
the entrainment, resulting in a sharp gradient near
the influx point. A larger shelf water export is however
more apt to maintain its buoyancy against the en-
trainment effect, the lateral gradient of which is there-
fore small near the influx point and sharpens offshore
as the entrainment rate increases. It is also trivial to
show from (3.20) and (3.21), by setting v = 0, that

_ 1
(Ap)y ’

hyy (3.26)
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F1G. 7. Solution of Ap and A, as a function of the offshore
distance y for r = 0 and F = 0.1, 1, and 10.

i.e., the frontal slope is inversely proportional to the
buoyancy gradient, as is clearly shown in Fig. 7. The
frontal interface is therefore straight for F = 1, but
is concave (convex) upward when F is greater (smaller)
than one. Setting Ap = 0 in (3.24), one obtains the
width of the frontal zone

F
Y

InF?, 3.27)

which has a maximum when F = 1. It is interesting
to note that both large and small shelf water export
lead to a narrower frontal zone:

c. The effect of a mean wind stress

The effect of wind stress on the buoyancy gradient
can be inferred from the last term in (3.23). Since this

‘term vanishes for Ap = 1 or 0, it has the maximum

effect at some intermediate value of Ap and, depend-
ing on the sign of 7, either sharpens or weakens the
buoyancy gradient. It is possible then that an extre-
mum can be generated in the buoyancy gradient (i.e.
an inflection point) and it considerably modifies the
solution shown in Fig. 7. In fact, the condition for
inflection point (represented in the following by a
superscript i) )
XAp) =0

1—F2_1)
Fr ’

the contours of which are plotted in Fig. 8. Since
33(Ap){=7[(Ap);}/(Ap)'} has the same sign as 7, the
inflection point corresponds to a maximum (mini-
mum) in the magnitude of the buoyancy gradient

(3.28)
leads trivially to

(Ap) = exp( (3.29)
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FIG. 8. Contours of (Ap) as a function of F and 7. The lower
solid curve represents (Ap), = 0 and the shaded areas indicate
regions of inflection point.

when 7 is positive (negative). For a negative wind,
however, we must further require that (Ap), never
vanish, otherwise, (3.20) implies an infinite 4, and
an obvious breakdown of the model. The model
therefore applies only above the lower curve shown
in the figure representing (Ap); = 0, with shaded areas
indicating regions of the inflection point. It is seen
that for F of order 1 or less, there is a considerable
range of negative wind stress that can generate an
inflection point, resulting in a weakened buoyancy
gradient at some mid-section above the front. This,
as further substantiated by some parameter estimates
later, can perhaps account for the observed frontal
structure shown in Fig. 1.

The solutions for the case of F = 1 and 7 = -2,
0, and 2 are plotted in Fig. 9 which clearly show the
inflection point predicted by Fig. 8. In addition, wind
also modifies significantly the frontal shape. A posi-
tive wind generally drives a greater along-front cur-
rent shear and steepens the front. A negative wind
has just the opposite effect, but in this particular ex-
ample of r > F, a negative along-front current shear
is generated near y = 0 (see Eq. 3.18) and the frontal
interface deepens offshore until the increasing off-
shore transport, replenished by entrainment, reverses
the along-front current shear and the frontal slope.
If the wind is strong enough, the frontal interface will
deepen indefinitely, causing the breakdown of the
model mentioned above. The shortcoming of the
model can be remedied by the inclusion of some
three-dimensional effects discussed in the next sec-
tion.
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d. Discussion

As remarked in Section 2.3, it is extremely difficult
to derive a mean front from observations to compare
with the model. Nor do we expect a model of this
crudeness to apply in detail to the shelf-slope front,
a phenomenon rich in both structure and physical
processes. Our aim is to demonstrate that the en-
trainment can act as a viable mechanism for main-
taining the front, thus accounting for its persistence.
Some key hypotheses and qualitative features of the
model nevertheless do compare favorably with ob-
servation, suggesting some validity for the proposed
balance.

For example, the assumption of negligible down-
ward entrainment leads to a structureless lower layer,
consistent with the observations shown in Fig. 1.
Despite the observed transients, the density field
above the frontal interface exhibits sharper gradients
at both the shoreward and seaward edge of the frontal
zone, accountable by the model over certain param-
eter ranges. But do they correspond to realistic pa-
rameter values? The answer is affirmative according
to the following estimates. Because of the great un-
certainty involved, partly due to the imprecise defi-
nition of some parameters in a geophysical environ-
ment, only order of magnitude estimates will be at-
tempted.

We use Ap ~ 0.4 X 1073 and h; ~ 100 m as the
buoyancy and depth scale. With f ~ 107* s7!, the
internal radius of deformation is then 6 km. To es-
timate the scale of the entrainment rate (i.e., its value
at y = 0), we set my ~ 0.5 (Davis et al.,, 1981) and
Uy, ~ 2.2 cm s~ (corresponding to a 5 dyn cm™2
turbulent wind stress), which gives w¥* ~ 3 m day™'.
The scales of the mean wind stress and the offshore
transport are then 0.2 dyn cm™ and 7 km? year™'
respectively.

10
0.8

AP Q6
04

0.2

02

F1G. 9. Solution for the case F = 1 and r = —2, 0 and 2.



1806

The mean wind stress, of course, varies from year
to year, but in the Middle Atlantic Bight, it is gen-
erally negative and is given by the scale above (see,
e.g., Beardsley and Boicourt, 1981). The offshore
transport of shelf water is more difficult to determine.
From current measurements, Beardsley et al. (1976)
have estimated the alongshore transport of shelf water
{within the 100 m isobath) to be approximately 8000
km? year™!. The scale given above corresponds to a
uniform divergence of this transport over the length
of the Middle Atlantic Bight (say, a distance of 1000
km). However Beardsley et al. (1976) have found sim-
ilar transports at three different transects that they
have measured, and the observations of Ford et al.
(1952) and Kupferman and Garfield (1977) further
suggest that the bulk of the shelf water is removed
near Cape Hatteras where this southwestward drift
coalesces with the Gulf Stream. We therefore suggest
that F is at most O(1) and is likely to be much less.

It is not realistic for the front to intersect the surface
at a slanted angle. The constant wind stirring will
maintain a finite-depth surface mixed layer within
which the isopycnals are essentially vertical. The front
cannot continue to slope toward the surface after it
reaches this depth, seaward of which the alongshore
current shear as well as the non-Ekman component
of the offshore transport must then vanish (see Eqgs.
3.12 and 3.13). This argument suggests a convergence
region seaward of the frontal zone where sinking
motion must occur. The sinking fluid returns
shoreward underneath the frontal interface, gradually
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feeding into the upper layer through entrainment,
thus completing the circuit. Fig. 10 shows the mean
cross-shelf current in winter (averaging period is from
November 1979 to March 1980) constructed from
the monthly means of Beardsley er al. (1982), together
with the mean frontal position determined by Wright
(1976) from historical data. The flow direction, al-
though consistent with the model, can also be ex-
plained by simple Ekman dynamics. A transport di-
vergence above the front, which would be more con-
clusive evidence of the entrainment, cannot however
be extracted from the data because of the insufficient
spatial resolution. Neither is there enough spatial cov-
erage of the array to examine the convergence region
proposed by the model.

The breakdown of the model described earlier can
be remedied by including some three-dimensional
effects. For example, F might not be an independent
parameter but vary with r—i.e., a stronger eastward
wind weakens the westward drift more rapidly, re-
sulting in a greater offshore transport—so that it al-
ways lies within the valid domain of the model; or,
the wind might set up an opposing pressure gradient
that effectively reduces its effect. These complications
however will introduce further arbitrariness to the
model and are not particularly useful for our objec-
tive.

4. Summary and conclusions

We have presented two conceptual models of a
simplified two-dimensional, two-layered frontal sys-
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F1G. 10. Mean cross-shelf current in winter constructed from the monthly means of Beardsley
et al. (1982). Averaging period is from November 1979 to March 1980. The brackets represent
the standard error based on a correlation time scale of 5 days, and the dashed line represents
the mean front (Wright, 1976) determined from historical data.
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tem to study the wintertime shelf-slope front. The
first model is a straightforward extension of the clas-
sical geostrophic adjustment problem to a step to-
pography and is intended to examine the equilibrium
front after the fall overturning. Being inviscid and
adiabatic, it applies only over short time scales before
non-conservative processes become important. The
second model, on the other hand, examines the ther-
modynamical balance of the shelf-slope front over
longer time periods when some dissipative and mix-
ing effects are included.

From the geostrophic adjustment model, we have
shown that if the shelf water is the less dense of the
two water masses, then the equilibrium front over a
flat bottom is little modified by the presence of a step.
Despite the asymmetry of the step topography, the
front retains its symmetry, and the half-width of the
frontal zone, though slightly increased, is roughly
given by the internal radius of deformation based on
the shelf depth. In the case of dense shelf water, how-
ever, the solution shows a detached parcel of shelf
water residing offshore at the bottom when the depth
ratio across the step is greater than two. This predicted
feature is reminiscent of some hydrographic sections
made near the Weddell Sea and Ross Sea shelf breaks
and the Red Sea outflow.

In the frictional model, we have demonstrated that
the entrainment, although dissipative as a momen-
tum flux, enhances the offshore transport above the
front, which, when acted on by the Coriolis force, can
maintain an alongfront current shear in the presence
of friction. This somewhat peculiar mechanism of
entrainment as a virtual momentum source works
only in a rotating system and can account for the
persistence of the shelf-slope front. It is further sug-
gested that the non-Ekman component of the off-
shore transport sinks seaward of the frontal zone and
returns shoreward to complete the circuit. There are
however no adequate data to examine either the in-
creasing offshore transport in the upper layer or its
subsequent sinking as proposed by the model.

A shelf water export is postulated in the model to
provide the needed buoyancy source for the steady-
state thermal balance. Its buoyancy decreases offshore
as the denser water is entrained upward across the
frontal interface. Without wind, the buoyancy gra-
dient varies monotonically offshore—sharpening or
weakening depending on whether F, a dimensionless
offshore transport, is greater or smaller than one. But
with wind, an extremum can be generated. Specifi-
cally, the magnitude of the buoyancy gradient can
exhibit a maximum (minimum) when wind is posi-
tive (negative). In application to the Middle Atlantic
Bight where the westerlies prevail in winter and where
Fis O(1) or less, the model predicts the existence of
an inflection point and hence a weakened buoyancy
gradient above the front, much like that observed in
some hydrographic data. In the lower layer, the as-
sumption of a negligible downward entrainment leads
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to a uniform density field, consistent with observa-
tion.

More complicated models can certainly be con-

~ structed on the physical basis laid out here. At the

present time, however, our understanding of the shelf-
slope front is hampered as much by lack of sophisti-
cation in the model as by lack of adequate sampling
techniques to monitor the front. Until more data are
acquired that can be compared with the model, our
modeling effort has to remain somewhat speculative.
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APPENDIX A
Solution for a Wide Shelf

Solution (2.18) is obtained in the following way.
Multiplying (2.12) to (2.15) by —coshyL, —coshyR,
sinhyL and sinhy R, respectively, adding the resulting
equations, and using (2.17), we obtain

sinhyL — yL coshyL = sinhyR — yR coshyR,

which leads to
L =R, (A1)

since sinhx — x coshx is a single-valued function of
X. Similarly multiplying (2.12) to (2.15) by —sinhyL,
sinhyR, coshyL and —coshyR, respectively, adding
them, and using (2.16) and (A1), we derive

coshyL — yL sinhyL = % (l - -;-) . (A2)
A, B, A, B can then be trivially solved by substituting
(A1) and (A2) into the original equations.

To obtain the solution (2.22), we first notice that
(A1) still holds since the equations used to derive it
remain unchanged. Multiplying (2.13) and (2.15) by
sinhyR and coshyR, respectively, and substracting
the resulting equations yields

vL sinhyL — coshyL = 6.
A, B, A, B can then be obtained.

(A3)

APPENDIX B
Solution for a Narrow Shelf

For the case 6 > 1, the shelf width L is given, and
all the boundary conditions, (2.7) through (2.10), ap-
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ply except the one that requires 4, = 1 at y = —L,
The five equations—(2.12), (2.13) and (2.15) through
(2.17)—therefore determine the five constants (4, B,
A, B, R). Simple manipulation leads to the following
solution. '

.1 )
A = — (YR sinhyR — coshyR)

- 1 {1
=4d-—|--
4 ')'2(5 1)

_ 1 .
B=B= ? (sinhyR — yR coshyR)

2

(BI)

sinhy(R + L) — yR coshy(R + L)

If
(=]

+yL + (-;— - 1) sinhyL

The last equation relates R to L and can be solved
numerically by iteration. The contours of constant
R are shown in the right half of Fig. 5.

For the case § < 1, the shelf width R is given, with
the requirement that #, = 0 at y = R, and hence
(2.15) is dropped. Again the five equations—(2.12)
through (2.14) and (2.16), (2.17)—determine the five
constants (4, B, A, B, L). The solution is given by

)
,YZ
1 .
A= ;5 (coshyL — yL sinhyL)-
1 . (B2)
B = B = —; (sinhyL — vL coshyL)
Y
(sinhyL — L coshyL) coshyR
+ YR + 6 sinhyR =0

The last equation relates L to R, the contours of which
are shown in the left half of Fig. 5.

As an example, the solution when the shelf width
equals one-fifth the internal radius of deformation is
shown in dashed lines in Figs. 3 and 4.
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