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Abstract. A secure sketch is a set of published data that can help to recover the original bio-
metric data after they are corrupted by permissible noises, and by itself does not reveal much
information about the original. Several constructions have been proposed for different metrics,
and in particular, set difference. We observe that in many promising applications, set difference
alone is insufficient to model the noises. We propose to look into point-set difference, which mea-
sures noises that not only remove/introduce new feature points in the biometric objects, but may
also perturb the points. In this paper, we first give an improvement for set difference construction
that can be extended to multi-sets, where the sketch is small and there is an efficient decoding
algorithm. We next give a sketch for point-set difference in both one and two-dimensional spaces.
By using results in almost k-wise independence, the size of the sketch is reduced to near-optimal.
Keywords: biometrics, error-tolerant cryptography, secure sketch, point-set difference.

1 Introduction

Most biometric data are noisy in the sense that the capturing devices and extraction algorithms
introduce inevitable noises. However, conventional cryptographic primitives do not tolerate
even the slightest change in the data. For example, in an encryption scheme, decryption would
fail if one bit of the decryption key is flipped. To use biometric data in cryptographic schemes
(e.g., to use a fingerprint as the decryption key), new primitives are proposed (such as [9, 8, 6,
3]) to achieve robustness against noises. Secure sketch and fuzzy extractor were introduced in
[6] as a generic way to reconstruct or extract a secret from noisy biometric data by publishing
a “sketch”. Given a set of original biometric data X captured during the registration process,
the encoder computes a sketch P and publishes it. Later, when a set of corrupted biometric
data Y is presented, the decoder can recover the original X from P and Y , as long as Y is close
to X under certain distance measure. The security is measured by the amount of information
about X revealed by the sketch P . Since the distribution of X may not be uniform, fuzzy

extractors perform an additional step on the reconstructed X to obtain a uniformly random
key.

Although information leakage is the main concern, in some applications, it is desirable to
have small sketches. For example, approximate message authentication codes such as [11, 5] are
developed to authenticate images under noises. Here, a short code is used to authenticate a long
message received from a noisy channel. From another point of view, a small sketch simplifies
the analysis of the information leakage, since the size of the sketch gives an upper bound of
the information revealed.

Not surprisingly, the design of a secure sketch is very much dependent on the definition
of “closeness” among biometric data, which in turn is determined by a distance function and



the type of noises to be tolerated. Secure sketch schemes for the following two main types of
biometric data have been proposed: (1) The biometric data are from a vector space, and the
distance is measured using a norm, e.g., Hamming distance. (2) The biometric data X is a
subset of a universe U , and the distance of two sets X and Y , where |X| = |Y | = s, is measured
by the set difference (s − |X ∩ Y |).

We observe that for many biometric feature representations, especially those involve images,
a combination of the above is required. For example, a fingerprint is typically represented as a
set of minutia, which are points in a 2-dimensional space [0, 1] × [0, 1], or even 3-dimensional
if the less reliable orientation attribute is included [4]. The noises introduced during scanning
usually lead to small perturbation of the minutia, together with removal and addition of minu-
tia. Hence, it is common to model the noises as a combination of two types of noises. The first
type of noise perturbs each point in X by at most a small distance, say δ, and we call this
the white noise. The replacement noise replaces some points in the perturbed X by randomly
selected points in U . The similarity between two sets X and Y can be measured by the max-
imum number of pairs of matched points, where two points x and y are considered a match
if the distance between x and y is at most δ. Let us call this measure between two point-sets
point-set difference. The following are a few observations that lead to our construction.

0-1 noise. Let us illustrate an observation using point-set X from the one-dimensional
interval [0, n], and δ = 1/2. To handle the white noise, prior to all operations, one may round
each point to its nearest integer. Hence, if a point x is corrupted by a white noise, its rounded
value could be unchanged, increased by 1, or decreased by 1. Therefore, to consider point-set
difference in the continuous domain [0, n], it suffices to consider points in Zn, whereby the
white noise either leaves each point unchanged, or increases/decreases it by 1. By using two
different rounding algorithms during the encoding and the decoding, we can further assume
that the white noise is 0-1, which either leaves each point unchanged, or increases it by 1
(Section 5). For a quick glance of why it is possible, refer to Fig. 1. Since it suffices to consider
0-1 noises, from now onward, we would only consider 0-1 noises in the discrete domain Zn.
To avoid the special case at the boundary, we assume that the 0-1 noise has no effect on the
point x = n − 1.

Tailor-made quantizer as sketch. For each discrete point x, we may further round it to an
even number in {x − 1, x, x + 1}. If this extra rounding is predefined, e.g., it always rounds
down, it will not be able to eliminate the 0-1 noise for certain point-set X. Nevertheless, for a
given point x, we can always tailor-make a rounding function such that the 0-1 noise does not
have any effect on the rounded value of x. This is illustrated in Fig. 2, where the points x1 = 0
and x2 = 3 will be rounded to the same values, 0 and 4 respectively, under the 0-1 noise.
The description of such a rounding function has to be published so that the same rounding
function can be used during both the encoding and the decoding. This leads to the main idea
of our construction. Given X, we want to find a rounding function, such that the 0-1 noise
does not have any effect on the rounded values of the points in X. The description of such a
function will be part of the sketch. Since rounding is essentially a quantization process, we call
a rounding function a quantizer and the rounded values the quantized values.



Well-separation and multi-sets. Let us consider the points x3, x4 and x5 in Fig. 2. Under the
quantization as illustrated in the figure, these points will be quantized to the same value 6. In
this example, if the noise on x5 happens to increase it by 1, then the quantized value would be
different. To guarantee the consistency in the quantized values, we assume that the point-set
X is well-separated. That is, for any two points x1, x2 ∈ X, |x1 − x2| > 1.

Such assumption is rather restrictive. In practice, it is difficult to ensure that all points are
well-separated. If the input happens to contain 2 points that are the same, or close to each
other, some mechanism is required. One method is to remove one of the points. However, this
will lower the overall performance. We prefer another method which is to simply include both
points. As we can see from Fig. 2, in certain cases, the quantized points will remain the same,
hence the average performance potentially can be better than the first method. Section 6.3
discusses more on the practical issues and a way to reduce (but not eliminate) the 0-1 noise.
More interestingly, in order to include repeated points, we need a sketch for set difference that
can handle multi-sets (a multi-set is a set that may have repeated elements). Currently known
constructions do not support multi-sets.

Another perspective of our construction. Here is another method that is unsatisfactory. The
sketch includes a large point-set R such that X ⊂ R. During decoding, points in Y are matched
with the points in R. Next, the techniques for set difference are used to recover the replaced
points. However, this method reveals too much information about X, and its performance de-
pends on the underlying distribution of X. For example, if the underlying distribution is likely
to generate collinear points in X, then publishing R will reveal much about X. An improve-
ment perturbs the points in X to obtain X ′, and the sketch includes a point-set R′ such that
X ′ ⊂ R′. The set X is randomly perturbed so as to reduce the influence of the underlying dis-
tribution. Although this approach seems feasible, there are many loose-ends. Our construction
has many similarities with this approach, and indeed can be viewed as a method that realizes it.

In the rest of this paper, we first give a secure sketch for set difference that can handle
multi-sets (Section 4). We then give a secure sketch for 0-1 noises for points in one-dimensional
Zn (Section 6), and extend it to 2-dimensional Zn×Zn (Section 7). Although similar ideas can
be extended to higher dimensions, it might not be practical due to larger constant factors in
the entropy loss.

Contributions and Results.

1. We give an approach to handle the combination of 0-1 noises and replacement noises, where
the points are from a finite field Zn, and are well-separated. The total size of the sketch
and the entropy loss depends on the choices of the sketch for set difference and the sketch
that handles the 0-1 noise. If the encoder and the decoder have polynomial (with respect
to s, t, log n) computing time, the entropy loss is at most 1.5s + 1 + 2t(1 + log n), which is
in O(s+ t log n), and the size of the sketch is in O(s log n). If the encoder is able to perform
an exhaustive search in 2Ω(s) sequences, then both the size of the sketch and the entropy
loss are in O(s + t log n).



2. We give an extension of the above to a 2-dimensional universe, Zn ×Zn. If the encoder and
the decoder have polynomial computing time (with respect to s, t, log n), the entropy loss
is at most 4s + 4 + 2t(1 + 2 log n), while the size of the sketch is in O(s log n). When the
encoder can do exhaustive search in 2Ω(s), then both the size of the sketch and the entropy
loss are in O(s + t log n).

3. We give a scheme for set difference that handles multi-sets. The scheme has a simple and
yet very efficient decoding algorithm, which amounts to solving linear systems with 2t
equations, and root-finding for a polynomial of degree at most t. Hence, the number of
arithmetic operations in Zn is bounded by a polynomial of s and t. The size of the sketch
and the entropy loss are at most 2t(1 + log n). This construction is very similar to the set
reconciliation technique in [10].

2 Related Works

Recently, a few new cryptographic primitives for noisy inputs are proposed. Fuzzy commitment
scheme [9] is one of the earliest formal approaches to error tolerance. The fuzzy commitment
scheme uses an error correcting code to handle Hamming distance. The notions of secure sketch

and fuzzy extractor are introduced in [6], which gives constructions for Hamming distance, set
difference, and edit distance. Under their framework, a reliable key is extracted from noisy data
by reconstructing the original data with a given sketch, and then applying a normal extractor
(such as pair-wise independent hash functions) on the data. The issue of reusability of sketches
is addressed in [3]. It is shown that a sketch scheme that is provably secure may be insecure
when multiple sketches of the same biometric data are obtained.

The set difference metric is first considered in [8], which gives a fuzzy vault scheme. Later,
[6] proposed three constructions. The entropy loss by all these schemes are roughly the same.
They differ in the sizes of the sketches, decoding efficiency and also the degree of ease in prac-
tical implementation. The BCH-based scheme [6] has small sketches and achieves “sublinear”
(with respect to n, the size of the universe) decoding by careful reworking of the standard
BCH decoding algorithm. All these schemes can not handle multi-sets. The set reconciliation
protocol presented in [10] is designed for two parties to jointly discover the union of their data,
with as little communication cost as possible. Although the problem settings are different, the
techniques in handling set difference is similar and can be employed to obtain a secure sketch.

Another line of research yields the constructions of approximate message authentication

codes ([7, 2, 11, 5]), which can authenticate images that are corrupted by certain levels of noises,
which are common to images (such as white noise and compression). There are also attempts
in refining the extraction of biometric features so that the features are invariant to permissible
noises [12]. Unfortunately, the reliability of such systems is not high.

3 Preliminaries

We follow the definitions of entropy and secure sketch in [6]. We also give the closeness and
distance functions considered in this paper. A summary of notations is given in Appendix A.



Entropy. Let H∞(A) be the min-entropy of random variable A, i.e., H∞(A) =
− log(maxa Pr[A = a]). For two random variables A and B, the average min-entropy of A
given B is defined as H̃∞(A|B) = − log(Eb←B[2−H∞(A|B=b)]). This definition is useful in the
analysis, since for any `-bit string B, we have H̃∞(A|B) ≥ H∞(A) − `.

Secure sketch. Let M be a set with a closeness relation C ⊆ M×M. When (X, Y ) ∈ C, we
say the Y is close to X, or (X, Y ) is a close pair. The closeness can be determined by a distance
function dist : M×M → R

≥0 and a threshold ∆. That is, (X, Y ) ∈ C iff dist(X, Y ) ≤ ∆.

Definition 1. A sketch scheme is a tuple (M, C, Enc, Dec), where Enc : M → {0, 1}∗ is an

encoder and Dec : M×{0, 1}∗ → M is a decoder such that for all X, Y ∈ M,

Dec(Y,Enc(X)) = X, if (X, Y ) ∈ C.

The string P = Enc(X) is to be made public and we call it the sketch. We say that the sketch

scheme is m-secure if for all random variable X over M, the entropy loss of P is at most m.

That is, H∞(X) − H̃∞(X | Enc(X)) ≤ m.

Closeness and Distance Functions. In this paper, M could be the collection of subsets or
multi-sets of a universe U . The universe could be Zn or Zn×Zn, where n is a prime. We consider
2 types of noises. The 0-1 noise, and the replacement noise that replaces certain elements in a
set by randomly chosen elements. Here is a list of closeness and distance functions considered
in this paper.

1. Cs,t: The closeness determined by set difference, which is catered for the replacement noise.
A pair (X, Y ) ∈ Cs,t if |X| = |Y | = s and |X ∩ Y | ≥ s − t.

2. ZDist: Distance function defined in Zn, which is catered for the 0-1 noise.

ZDist(x, y) =

{
0 if y = x ∨ y = x + 1
∞ otherwise

. (1)

We define ZDist(n− 1, 0) = ∞. We can generalize this function to 2 or higher dimensions.
For example, in Zn × Zn, we have

ZDist((x1, x2), (y1, y2)) =

{
0 if ZDist(x1, y1) = 0 ∧ ZDist(x2, y2) = 0
∞ otherwise

. (2)

Note that ZDist is not symmetric, that is, it is not necessary that ZDist(x, y) = ZDist(y, x).

3. ZPSs,t: Closeness for point-sets of size s. Suppose X = {x1, . . . , xs} and Y = {y1, . . . , ys},
we have (X, Y ) ∈ ZPSs,t if there exists a 1-1 correspondence f on {1, . . . , s} such that

|{i | ZDist(xf(i), yi) = 0}| ≥ s − t.

Well-separated point-sets. A point-set X is well-separated if for any x, y ∈ X, we have
ZDist(x, y) > 0. We will discuss about this in detail in Section 6.3.



Almost k-wise independent random variables. A sample space on n-bit strings is k-wise inde-
pendent if, the probability distribution, induced on every k bit locations in a randomly chosen
string from the sample space, is uniform. Alon et al [1] considered almost k-wise independence
with small sample size, and gave several constructions.

Definition 2 (Almost k-wise independence [1]). Let Sn be a sample space and X =
x1 · · ·xn be chosen uniformly from Sn. Sn is almost k-wise independent with ε statistical dif-

ference if, for any k positions i1 < i2 < . . . < ik, and any k-bit string α, we have

∑

α∈{0,1}k

|Pr[xi1xi2 . . . xik = α] − 2−k| ≤ ε. (3)

If we choose ε = 2−k, the probability Pr[xi1xi2 . . . xik = α] in (3) is non-zero. To see this, let
X ′ = xi1xi2 . . . xik , then Pr[X ′ = α] = 0, and there exists some β 6= α such that Pr[X ′ = β] >
2−k, since otherwise

∑
α∈{0,1}k Pr[X ′ = α] < 1. Thus |Pr[X ′ = α]−2−k|+|Pr[X ′ = β]−2−k| >

2−k, which is a contradiction. Hence, we can always find such X given any i1, . . . , ik and any
α. Furthermore, the number of bits required to describe the sample is (2 + o(1))(log log n +
3k/2 + log k) which is in O(k + log log n).

4 Secure Sketch for Set Difference

In this section, we give a secure sketch for set difference, that is, with respect to the closeness
Cs,t. Our scheme can handle the case where X is a multi-set. The size of the sketch is at most
2t(1 + log n). In addition, there exists a simple and yet efficient decoding algorithm – we just
need to solve a linear system with 2t equations and unknowns and find the roots of two degree
t polynomials.

To handle a special case, we assume that X does not contain any element in {0, 1, . . . , 2t−1},
and will discuss how to remove this assumption later at the end of this section. Our construction
is similar to the set reconciliation protocol in [10], but the problem settings are different.

The encoder Encs. Given X = {x1, . . . , xs}, the encoder does the following.

1. Construct a monic polynomial p(x) =
∏s

i=1(x − xi) of degree s.
2. Publish P = 〈p(0), p(1), . . . , p(2t − 1)〉.

The decoder Decs. Given P = 〈p(0), p(1), . . . , p(2t − 1)〉 and Y = {y1, . . . , ys}, the decoder
follows the steps below.

1. Construct a polynomial q(x) =
∏s

i=1(x − yi) of degree s.
2. Compute q(0), q(1), . . . , q(2t − 1).
3. Let p′(x) = xt +

∑t−1
j=0 ajx

j and q′(x) = xt +
∑t−1

j=0 bjx
j be monic polynomials of degree t.

Construct the following system of linear equations with the aj ’s and bj ’s as unknowns.

q(i)p′(i) = p(i)q′(i), for 0 ≤ i ≤ 2t − 1 (4)



4. Find one solution for the above linear system. Since there are 2t equations and 2t unknowns,
such a solution always exists.

5. Solve for the roots of the polynomials p′(x) and q′(x). Let them be X ′ and Y ′ respectively.

6. Output X̃ = (Y ∪ X ′) \ Y ′.

The correctness of this scheme is straight forward. When there is exactly t replacement
errors, we can view p′(x) as the “missed” polynomial whose roots are in X ′ = X \Y . Similarly,
q′(x) is the “wrong” polynomial, whose roots are in Y ′ = Y \ X. Since the roots of p(x) and
q(x) are in X and Y respectively, we have q(x)p′(x) = p(x)q′(x). This interpretation motivates
the equation (4).

When there are less than t replacement errors, there will be many degree t monic polynomi-
als p′(x) and q′(x) that satisfy q(x)p′(x) = p(x)q′(x). For any such p′(x) and q′(x), they share
some common roots, which could be some arbitrary multi-set Z. That is, X ′ = (X \ Y ) ∪ Z,
and Y ′ = (Y \ X) ∪ Z. In Step 6, this extra Z will be eliminated.

When X ∩ {0, . . . , 2t − 1} 6= ∅, some equations in (4) would degenerate, which makes the
rank of the linear system less than 2t. In this case, it is not clear how to find the correct
polynomial in the solution space. Hence we require that X ∩ {0, . . . , 2t − 1} = ∅.

Note that in the above we do not require the elements of X and Y to be distinct, so this
scheme can handle multi-sets. Furthermore, since the size of each p(i) for 1 ≤ i ≤ 2t is (log n),
the size of P is 2t(log n). Therefore, we have the

Lemma 1. When X ∩{0, . . . , 2t− 1} = ∅, the entropy loss due to Encs(X) is at most 2t log n.

Removing the assumption on X and Y . The assumption that X cannot contain any element
from {0, . . . , 2t−1} can be easily relaxed. We can find the smallest prime m such that m−n ≥ 2t,
and then apply the scheme on Zm. But instead of publishing p(0), . . . , p(2t − 1), we publish
p(m− 1), . . . , p(m− 2t). In this way, the size of the sketch is 2t log m. In practice, this is not a
problem since the size of the universe may not be prime, and we will need to choose a larger
finite field anyway. For t that is not too large (say, t ≤ n/4), we can always find at least one
prime in [n + 2t, 2n]. Hence, we have the

Lemma 2. When t ≤ n/4, the entropy loss due to Encs(X) is at most 2t(1 + log n).

5 Reduction from White Noise to 0-1 Noise

Now we describe how to reduce the problem of dealing with white noises in a continuous
domain to 0-1 noises in a discrete domain.

First, let us consider points in R, and the white noise that corrupts each point by at most
δ. That is, for any x and its corrupted version y, we have |y − x| ≤ δ. We use two different
quantizers, Qe and Qd, during encoding (on the original point-set X), and during decoding
(on the corrupted set Y ) respectively. During encoding, we define Qe(x) = k if and only if



x ∈ [2kδ, 2(k+1)δ). During decoding, we define Qd(y) = k if and only if y ∈ [(2k−1)δ, (2k+1)δ).
Note that when |x−y| ≤ δ, we have Qd(y) ∈ {Qe(x), Qe(x)+1}, hence the noise becomes 0-1.

Therefore, instead of working with points from R and white noises in the range [−δ, δ], it
suffices to consider 0-1 noises in Z. To avoid the special case at the boundary when working
in the finite field Zn, we assume that the white noise has no effect on the last element n − 1.

0 6δ4δ2δ

x 2x 1

Q d

Q e 1 2k=0

1 2k=0

Fig. 1. Reduction from white noise to 0-1 noise.

6 0-1 Noise with Replacement when M = P(Zn)

In this section, we consider 0-1 noise with replacement (the closeness ZPSs,t). The universe is
the one-dimensional Zn. We assume that the original biometric data X is well-separated.

The final sketch published is a concatenation of two sketches, PHPS . The role of PH is to
correct the 0-1 noise (Section 6.1 and 6.2). PH is the description of a quantizer H, whereby the
quantized X remain the same under the 0-1 noise. Since the quantized points are consistent,
we can apply the techniques on set difference on them to correct the replacement noise. The
sketch for set difference is PS . In this section, we focus on the construction of PH .

6.1 Main Idea in Construction of PH

We render the elements in Zn using two colors, black and white. For any x ∈ Zn,

color(x) =

{
white if x ≡ 1 mod 2
black if x ≡ 0 mod 2

(5)

We call a many-to-one function H a quantizer if for all x, H(x) = x if x is black, and H(x)
is either x − 1 or x + 1 if x is white. Fig. 2 depicts such a function. For X = {x1, . . . , xs}, we
denote H(X) , {H(x1), . . . , H(xs)}.

Given X = {x1, x2, . . . , xs}, our goal is to find a quantizer such that each point in X will
be consistently quantized, even under the influence of 0-1 noises. In particular, we require that

§1 ∀x ∈ X, H(x) = H(x + 1).
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Fig. 2. A quantizer H. The arrows indicate how the points are quantized (or rounded) to even numbers.

H(x) H(x) H(x)

bbb

(b) (c)(a)

Fig. 3. Recovering x from H(x). There are three scenarios for H when H(x) = b.

To reconstruct X given H(X), we need to add more constraints on H. Suppose we know
that H(x) = b for some b, as illustrated in Fig. 3. In scenario (b) and (c), x must be b and
b − 1 respectively. However, when (a) happens, x can be either b or b − 1.

To resolve the ambiguity, we add one but not both of the following two constraints:

§2a ∀x ∈ X, H(x + 2) = x + 3 if x is white, or

§2b ∀x ∈ X, H(x − 1) = x − 2 if x is black.

Note that the constraint will not eliminate scenario (a). Nevertheless, even if scenario (a)
happens, we can conclude that x = b if §2a is imposed, and that x = b − 1 if §2b is imposed.

6.2 Short Descriptions of H (Sketch PH)

A quantizer H can be conveniently represented by a sequence 〈h1, h3, h5, . . . , hn−2〉 where
hi = 0 if H(i) = i−1; otherwise, hi = 1. Publishing such a sequence requires bn/2c bits, which
is undesirable when n is large.

For any given X, there would be many quantizers that satisfy the constraints in Section
6.1. The constraints restrict the values of hi for certain indices i’s. Let W be the set of these
indices. For any other j 6∈ W , hj can be either 0 or 1.

The first constraint §1 restricts s of such hi’s. For constraints §2a and §2b, we choose §2a if
white is the minority color in X, and §2b otherwise. In this way, the number of restricted hi’s
is at most 0.5s. Hence, we have |W | ≤ 1.5s. Note that we need to publish an additional 1 bit
to indicate which constraint, either §2a or §2b, we have used.



We give two constructions of short descriptions. The first one is simple and efficient but
requires |W | log n bits. The second one requires space that is near-optimal, but it requires
exhaustive search during encoding. In either case, the entropy loss is small, and there exists
efficient decoding algorithms. Let k = |W |, and W = {w1, . . . , wk}.

Construction I: Construct a polynomial f(x) of degree k − 1 as the following.

1. Randomly choose d1, . . . , dk ∈ U such that for 1 ≤ i ≤ k, di ≡ hwi
mod 2.

2. Find a degree k − 1 polynomial f such that f(wi) = di for 1 ≤ i ≤ k.

The sketch PH is the k coefficients of f . Hence, the size of the sketch is k log n. The size of this
sketch could be reduced further to about k log(n/2), since we can work on a smaller finite field.
This is possible because the number of hi’s is only bn/2c, thus any finite field of size greater
than n/2 is sufficient.

During decoding, the quantizer H to be used is the one represented by hi = f(i) mod 2
for all odd i.

Construction II: Firstly we construct an almost k-wise independent space on n bits [1],
and ε = 2−k. Given W and 〈hw1

, . . . , hwk
〉, we uniformly choose a sample β = β1 · · ·βn in the

sample space such that βwi
= hwi

for all i. The representation of β is then the description of
H, which is the sketch PH . Note that the size of PH is ` = (2 + o(1))(log log n + 3k/2 + log k),
which is in O(s + log log n). However, we do not have an efficient way to find such sample,
except by exhaustive search in the sample space of size 2`. Nevertheless, the decoding can be
done efficiently.

Lemma 3. The entropy loss due to PH is at most 1.5s + 1 for Construction I, and at most

(2 + o(1))(log log n + 9s/4 + log(1.5s)) + 1, which is in O(s + log log n), for Construction II.

Proof: For Construction I, we count the entropy. Let R be the randomness we invest
in choosing the random numbers di’s. The entropy of R is k(log n − 1) bits. The number of
possible output of f is nk. Together with the one additional bit to choose the constraint, the
average min-entropy (X, R) given PH is at least H̃∞(X) − k − 1. The randomness R can be
recovered from X and PH . Therefore, H̃∞(X) − H̃∞(X|PH) ≤ k + 1.

For Construction II, the entropy loss is simply bounded by the size of PH . That is, H̃∞(X)−
H̃∞(X|PH) ≤ |PH | ≤ (2 + o(1))(log log n + 3k/2 + log k) + 1.

Since k ≤ 1.5s, we have the claimed bounds.

Recall from Section 4 that PS introduces entropy loss at most 2t(1+log n), the total entropy
loss of PHPS is bounded by the following.

Theorem 1. When t ≤ n/4, the entropy lost due to PH and PS is at most h+1+2t(1+log n),
where h = 1.5s if PH is computed using Construction I, and h = (2 + o(1))(log log n + 9s/4 +
log(1.5s)), which is in O(s + log log n), if PH is computed as in Construction II.



6.3 On the Assumption that Points are Well-Separated

If the points are not well-separated, the error tolerance of our scheme would be affected. For
example, consider the points x3, x4 and x5 in Fig. 2. If the 0-1 noise shifts x5 from 7 to 8,
it will be considered as a replacement error. If the noise happens to leave x5 unchanged, then
the scheme still works. In addition, if X contains duplicated elements, our scheme would work
fine because the sketch in Section 4 can handle multi-sets. In other words, our scheme has a
guaranteed error tolerance when there are no two points x, x′ ∈ X such that x − x′ = 1.

During the reduction from white noise to 0-1 noise as in Section 5, we can choose a step
size that is larger than 2δ, such that given the same white noise, the points are less likely to be
shifted. In other words, the 0-1 white noise is reduced on average. Note that this introduces
more entropy loss. Moreover, such trade-off depends on the distribution of the input biometric
data. Therefore, we will not discuss it further in this paper.

In sum, with the requirement on well-separation, our scheme can tolerate the claimed noise
in the worst case. Without the requirement, the scheme could still perform well in average.
Hence, it is better to include those points that violate the well-separation requirement, instead
of removing them. To include those points, we have to handle multi-sets.

7 0-1 Noise with Replacement when M = P(Zn × Zn)

We now extend our construction on 0-1 noise with replacement to U = (Zn × Zn). Similar

to one-dimension, the sketch is the concatenated P̃H P̃S . We will only discuss the sketch P̃H .
We assume that X is always well-separated. That is, for any distinct (u1, v1), (u2, v2) ∈ X,
|u1 − u2| ≥ 2 and |v1 − v2| ≥ 2.

7.1 Quantizer H

The elements in U are rendered with 4 different colors as below.

color(u, v) =





black if u ≡ v ≡ 0 mod 2
white if u ≡ 0 mod 2 ∧ v ≡ 1 mod 2
red if u ≡ 1 mod 2 ∧ v ≡ 0 mod 2
green if u ≡ v ≡ 1 mod 2

(6)

The 0-1 noise either leaves a point x untouched, or shifts it to one of the 3 adjacent points. Let
Neighbour(u, v) be the set of 4 points that (u, v) may be shifted to by the 0-1 noise, namely
{(u, v), (u + 1, v), (u, v + 1), (u + 1, v + 1)}.

In Zn×Zn, a quantizer H maps each point (u, v) to a black point (u′, v′) where |u−u′| ≤ 1
and |v − v′| ≤ 1. Fig. 4 illustrates such a quantizer. We need an H that satisfies the following:
For each (u, v) ∈ X, all the 4 points in Neighbour(u, v) are mapped to the black point in
Neighbour(u, v). In other words,

]1 ∀x ∈ X, ∀w ∈ Neighbour(x), H(x) = H(w).



(6,0)

(6,3)(0,3)

(0,0)

Fig. 4. Quantizer H in 2-D.

In this way, if x ∈ X and y is a copy of x corrupted by 0-1 noise, then H(x) = H(y).

For each white and red point, there are two possible black points that it can be mapped to. It
seems at first that there are four choices for each green point, but after the quantization for red
and white points are fixed, only two choices are left. For instance, in Fig. 4, from the surrounding
white and red points, we can deduce that the green point (3, 1) can only be mapped to either
(2, 0) or (4, 2). Hence, a straight forward description of H requires (1/4+1/4+1/4)n2 = (3/4)n2

bits.

We could apply similar ideas as in Section 6.2 to these (3/4)n2 bits to obtain P̃H . However,
there are still ambiguities to resolve when we recover X from H(X). For example, if H(x) =
(0, 2) as in Fig. 4, we would not be able to tell whether x = (0, 1) or x = (0, 2). Our basic idea
is to apply the ambiguity resolving techniques in Section 6.1 by imposing more constraints on
H. The details of the construction of P̃H can be found in Appendix B.

Similar to 1-D, to obtain a short description H, we identify the number of bits that have to
be fixed due to the imposed constraints. In total, 3s bits are imposed by ]1, and an additional s
bits are imposed by the constraints that resolve ambiguities. Then we can apply the techniques
in Section 6.2. For instance, using Construction I as in the case of 1-D, we need to find a degree
4s−1 polynomial, which gives entropy loss at most 4s. We also need 4 additional bits to specify
which color are the majority and minority in X. Thus, we have the following results.

Lemma 4. The entropy loss due to P̃H is at most 4s + 4 with Construction I, and (2 + o(1))
(log(2 log n) + 6s + log(4s)) + 4, which is in O(s + log log n), with Construction II.

Theorem 2. When t ≤ n2/4, the entropy loss due to P̃H and P̃S is at most h + 4 + 2t(1 +

2 log n), where h = 4s if P̃H is computed using Construction I, and h = (2+o(1))(log(2 log n)+
6s + log(4s)) with Construction II.
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A Summary of Notations

n An odd prime.

U The universe, which could be Zn, Zn × Zn, or an Euclidean space.

M The set of biometric data. It is associated with a closeness relation.

X The original biometric data. X = {x1, . . . , xs} ∈ M.

Y A copy of X corrupted by noise. Y = {y1, . . . , ys} ∈ M.

s The size of the biometric data X.

t The number of errors (w.r.t. to replacement noise) the scheme is designed to tolerate.

δ The amount of error (w.r.t. to white noise) the scheme is to tolerate.

P A sketch.

H A quantizer that handles 0-1 noise.

H∞ Entropy. H∞(A) is the min-entropy of random variable A: H∞(A) = − log(maxa Pr[A =
a]). H̃∞(A|B) is the average min-entropy of A given B: H̃∞(A|B) = − log(Eb←B[2−H∞(A|B=b)]).

Cs,t The closeness relation defined by set difference. A pair (X, Y ) ∈ Cs,t if |X| = |Y | = s and
|X ∩ Y | ≥ s − t.

ZDist Distance function defined in Zn, which caters for the 0-1 noise. For x, y ∈ Zn, ZDist(x, y)
is defined to be 0 if 0 ≤ y − x ≤ 1, infinity otherwise.

ZPSs,t Closeness for point-sets of size s. For two point-sets X and Y , Y is close to X if at least
s − t elements in Y are close to a matching point in X under the 0-1 noise.



B Detailed Construction of P̃H

The quantizer H can be defined in terms of 3 functions Hw, Hr, and Hg,

H(x) =





Hw(x), if color(x) = white

Hr(x), if color(x) = red

Hg(x), if color(x) = green

Each function maps its input to one of its neighbouring black points. For convenience, for
any x ∈ X, let xb, xw, xr, and xg be the black, white, red and green points in Neighbour(x)
respectively. Hence, the first constraint ]1 is equivalent to the following. For all x ∈ X,

]1a Hb(x) = xb ]1b Hw(x) = xb

]1c Hr(x) = xb ]1d Hg(x) = xb.

As mentioned in Section 7, there are two possibilities for Hr(x) and Hw(x), and once
they are fixed, there are also two possibilities for Hg(x). Hence, to describe H in a straight
forward manner using a binary sequence, we only need m = (1/4 + 1/4 + 1/4)n2 bits. Let
h = 〈h1, . . . , hm〉 be such a sequence.

For any x ∈ X, to satisfy constraint ]1b, we need to restrict the value of at most one bit
in h. Same for ]1c and ]1d. We do not need to consider ]1a since it is implicit. Therefore, for
s points, we need to restrict 3s bits in h.

Similar to the 1-dimensional case, there will be ambiguities when we try to recover X from
an H that satisfies only ]1. One of the worst (most ambiguous) scenarios of H is as illustrated
by the solid arrows in Fig. 5. In this case, if H(x) = x1 for some x ∈ X, any of the four points

X1

X4X3

X2

X7

X8

X5 X6

Fig. 5. Ambiguity resolving in 2-D. The solid arrows show how H quantizes each point, and the dashed arrows
show how the ambiguities can be resolved.

x1, x2, x3 and x4 could be x.

To resolve the ambiguity while keeping the size of the sketch small, we impose more con-
straints on H. First, we find the most and the least frequently occurred colors in X. Without



loss of generality, we assume that they are black and green respectively. Then we require that
the following constraints are satisfied by H. For all (u, v) ∈ X,

]2a Hr(u + 2, v) = (u + 3, v) if (u, v) is red;
]2b Hw(u, v + 2) = (u, v + 3) if (u, v) is white;
]2c Both ]2a and ]2b if (u, v) is green.

With the above additional constraint, we can resolve the ambiguity by the following rules.
If H is as shown by the solid arrows in the figure, we declare that x = x1. If Hr(x5) = x6

(the horizontal dashed arrow), and the rest follow solid arrows, we declare that x = x2. If
Hw(x7) = x8 (the vertical dashed arrow), and the rest follow solid arrows, we declare that
x = x4. If both Hr(x5) = x6 and Hw(x7) = x8, we declare that x = x3.

In this case, each red and white point would restrict one more bit by constraints ]2a and ]2b
respectively, and each green point would restrict two more bits by constraint ]2c. Since green
is the least frequently occurred color, the number of green points is at most s/4. Similarly, the
number of black points is at least s/4. In the worst case (in terms of the number of restricted
bits), there are s/4 green points and s/2 red and white points. Therefore, the total number of
bits restricted by these constraints is at most (1/2 + 2/4)s = s.

Therefore, 3s + s = 4s bits are restricted in the (3/4)n2 bits of h. By applying the con-
structions in Section 6.2, we obtain the results presented in Section 7.


