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ABSTRACT

Nearshore transects, following the development of transient coastal upwelling, characteristically show
“intermediate” density fluid occupying the immediate nearshore band. Large cross-shore particle excursions
during the development of upwelling may be inferred from before and after transects, and the movement
of surface layers seaward, intermediate density fluid shoreward through a distance of the order of kilometers,
and the bottom layers also shoreward by a lesser amount. Some inevitable vertical mixing together with
the large cross-shore displacements results in efficient cross-shore mass exchange.

The main dynamical features of similar events may be investigated by means of three-layer models.
Linear theory is conveniently discussed first, the conclusions of which are easily generalized to multilayer
models. Finite-amplitude (i.c., “full”) upwelling is then considered using a potential-vorticity conserving
impulsive model. The results show that the wind *‘peels” off the surface layer over which the wind stress
is effectively distributed. Thus the next lightest layer becomes exposed to the atmosphere. The lower layers
generally respond in the barotropic mode, becoming *“equally stretched” on the removal of the surface layer,
except within a distance of the order of the baroclinic radius of deformation from the pycnocline outcropping.
The maximum velocity of the jet associated with the pycnocline outcropping is limited to an effective
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densimetric velocity. Cross-shore displacements behave similarly in the model and the observed cases.

1. Introduction

A strong impulse of longshore wind, directed so
that the coast is to the left looking downwind in the
Northern Hemisphere, if acting over stratified coastal
waters is well known to cause a drop of water tem-
perature at the coast, due to the “upwelling” of water
from deeper layers. Transient events of this kind
along the Oregon coast (Halpern, 1976; Huyer et
al., 1979) or in the Great Lakes (Mortimer, 1963;
Csanady, 1977) have been well documented. A re-
alistic idealization is to think of two layers of fluid
of slightly different density, the top layer being sub-
ject to sudden longshore acceleration. In the course
of adjustment to geostrophic equilibrium the inter-
face moves upward, but only within a relatively short
distance from the coast (scaled by the internal radius
of deformation), and if the wind impulse is strong
enough, comes to intersect the free surface and even
move some distance offshore. A two-layer inertial
adjustment model, neglecting interface and bottom
friction, quite satisfactorily accounts for many ob-
served characteristics of transient upwelling events,
including in particular the distance offshore where
the density interface is found after adjustment to
geostrophic equilibrium (Csanady, 1977).

" In the two-layer model, bottom layer fluid comes
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to occupy the nearshore band following adjustment.
The observations, however, rarely show coastal water
temperatures quite as low as are found in deep water.
In the Great Lakes, for example, water temperatures
below ~30 m are usually 5°C or lower in early and
mid summer. Coastal temperatures after the devel-
opment of upwelling are, on the other hand, typically
10°C. While the effects of vertical mixing and of
longshore advection are sometimes difficult to sep-
arate from those of inertial adjustment, a perusal of
the records of observations on upwelling events leaves
one with the distinct impression that the inertial ad-
justment alone (if it could be observed in isolation
from vertical mixing and longshore advection) would
already leave fluid of intermediate density, not bot-
tom water, in the coastal band.

Consider, for example, an upwelling event ob-
served along the north shore of Lake Ontario during
the International Field Year on the Great Lakes
(IFYGL). Figs. 1 and 2 show before and after iso-
therms in a coastal transect off Oshawa, Ontario,
bracketing an eastward wind stress impulse (/) es-
timated to have been 9 m? s™! (Csanady, 1973). This
followed an earlier, westward impulse of 7 = 2.5 m?
s™', which was the cause of the downwarping of the
isotherms visible in Fig. 1. Starting from horizontal
isotherms the algebraic total may be taken to have
been I = 6.5 m?s™!, eastward. Using the formula in
Csanady (1977), and a two layer idealization of the
temperature structure with top-layer depth A, = 7
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FiG. 1. Temperature distribution in transect across coastal waters of Lake Ontario off Oshawa,
Ontario, prior to an eastward wind impulse in early August, with a shallow thermocline.

m, the expected offshore displacement of the ther-
mocline outcropping is estimated at 6 km or so. In-
sofar as one may regard the 16°C isotherm as the
thermocline, the result is accurate.

It is also clear, however, that a two-layer view of
the event is incomplete and in some respects mis-
leading. Nearshore surface temperatures remained
around 13°C, and the 12°C isotherm, which formed
the center of the thermocline after the upwelling
event, came no closer to the surface than ~5 m,
except at station 1, 1 km from the shore. The tongue
of bottom water reaching shoreward at the innermost

stations is legitimately regarded as a bottom Ekman
layer intrusion associated with the strong eastward
flow observed at these stations at all levels. As far
as one can judge, inertial effects brought the 12°C
isotherm to 5 m from an equilibrium depth of perhaps
10 m, in an upwelling event in which the surface
mixed-layer moved some 6 km offshore.

A somewhat similar, perhaps even more striking
event is shown in Figs. 3 and 4, observed in Septem-
ber 1971 in the same location. The thermocline on
this occasion was sharp and much deeper. The east-
ward wind impulse between the two illustrations was
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FIG. 2. As Fig. 1 except following eastward wind impulse.
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FIG. 3. As Fig. 1 except in late September, prior to eastward wind impulse, with deep thermocline.

about 5 m?s™!. Its effect was to “peel off” isotherms
above about 15°C, but raise the main thermocline
after the upwelling (12°C isotherms) only to ~5 m
from the surface.

The structure of upwelling events in small lakes,
due in that case to offshore wind, with earth rotation
effects being negligible, has been discussed in a pi-
oneering paper by Mortimer (1952). Fig. 5, repro-
duced from Mortimer’s paper, shows schematically
the behavior of a three-layer laboratory model under
increasingly violent winds. Mortimer points out that
case (a) of his figure is reminiscent of observations
in lakes in which “steady winds produce a very sharp
thermocline at the leeward end, in contrast to a
spreading out of the isotherms at the windward end
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of the basin.” Horizontal fluid particle displacements
which can be inferred from these illustrations are
large in the top and intermediate layers, and rela-
tively small in the bottom layer. Large horizontal
relative excursions of fluid in the three layers thus
characterize the response to wind.

From the earlier illustrations it is clear that similar
large cross-shore excursions occur in large basins
within a few kilometers from the shore. These possess
considerable dynamical importance, because the
Coriolis force, associated with a 1 km cross-shore
displacement, if unresisted, generates a longshore
velocity of 0.1 m s™'. In this manner, layers not di-
rectly acted on by the wind acquire longshore veloc-
ity. The layer that is directly influenced by the wind,
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FIG. 4. As Fig. 3 except following eastward wind impulse.



JANUARY 1982

on the other hand, deflects to the right, which is the
reason why a longshore wind leaving the coast to the
left becomes the main cause of upwelling. Without
further investigation it is not clear, however, whether
the analogy between cross-shore wind effects in a
small lake, and longshore wind effects in a large ba-
sin, extends to the behavior of intermediate and bot-
tom layers. Are there likely to be effects similar to
those shown in Fig. S in large basins? Are the iso-
pycnals in the thermocline likely to open up on an
upwelling shore, to condense on a downwelling
shore? Figs. 1-4 suggest some degree of correspon-
dence, worth a theoretical investigation.

As pointed out before, vertical mixing under strong
winds, especially at night in September, cannot be
neglected, nor is it clear to what extent any longshore
advection complicates similar events. Nevertheless,
a first step toward understanding the detailed struc-
ture of transient upwelling events in large basins may
be taken by asking how an inertial model more re-
alistic than a two-layer one would respond to sudden
longshore wind, ignoring mixing and internal friction
below the surface mixed layer. This question is ad-
dressed in this paper.

The analysis begins with a linearized three-layer
model. The results are easily generalized in principle
to a multilayer model, although they are only real-
istic for a small wind impulse, and small vertical
displacements of the isopycnals. A standard decom-
position into a set of normal modes (in the vertical)
is adopted. The resulting behavior of each mode is
readily seen to be the same as found by Crépon
(1967) in his linear analysis of impulsively generated
motions in a homogeneous fluid along a long, straight
coast. The reason for including these linear theory
calculations here is to exhibit the initial behavior in
impulsively generated upwelling. It transpires that
without a summation of all normal mode responses
(i.e., without inverting the transformation to normal
modes) the important physical properties of the re-
sultant response are not revealed. In other linear the-
ory analyses, the behavior of each excited mode is
usually considered separately, as an essentially in-
dependent physical phenomenon. When the response
consists of wavelike motions at incommensurable fre-
quencies this is a plausible point of view. However,
the impulsive motions discussed below depend lin-
early on time in each normal mode and are not rea-
sonably regarded as independent phenomena. The
matrix method of analysis adopted below leads to
easy inversion of the transformation into normal
modes.

Following the linear theory analysis of initial be-
havior, a different approach is adopted for calculat-
ing “full” upwelling, much as in Csanady (1977).
The key idealization in this part of the paper is that
the entire wind-stress force has been exerted impul-
sively, in a short enough time so that layer depths
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FI1G. 5. Behavior of three-layer laboratory basin under winds of
varying intensity; (a) gentle wind, only top interface moves ap-
preciably; (b) moderate wind, both interfaces move; (c) strong
wind, intermediate density fluid forms wedge (from Mortimer,
1952).

do not change appreciably while the wind is acting.
The calculations made concern the state of geos-
trophic equilibrium reached following the action of
the wind, so that only the impulse (time-integral) of
the wind stress appears in the results. Clearly, there
is some over-idealization in this approach, because
the wind lasts in practice long enough for the surface-
layer depth to change appreciably near shore due to
offshore transport. The dynamical importance of this
is highlighted by the potential vorticity tendency
equation for a layer of depth A

d<w+f>_ lc l<-r>

dt\ h n o)

where w is vorticity, f the Coriolis parameter and
7/p kinematic wind stress. In the theory developed
for finite amplitude upwelling, the right-hand side
of this equation, integrated over the period of wind
action, is regarded as vanishingly small, so that the
potential vorticity of each water column is the same
after the development of full upwelling as before the
application of the wind.

Calculations made for a two-layer model, with a
crude allowance for potential vorticity changes in the
course of wind action, show (Csanady, 1977) that
the response is modified in some respects by the fact
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that the top layer becomes shallower as the upwelling
develops, i.e., the shape of the interface becomes
different from that which is calculated with constant
potential vorticity. However, the gross behavior re-
mains the same. Perhaps it is not necessary to stress
this point further: the idealized calculations should
provide some useful physical insight, but they clearly
have their limitations.

From a physical point of view, the main justifi-
cation for an impulsive force model of wind action
is that most of the drag force during a storm is ex-
erted on the water in a matter of 5-10 h, while the
longshore currents generated, and the associated up-
welled thermocline structure, persist for days. The
model of impulsive force application, followed by
adjustment to geostrophic equilibrium with no wind
stress acting, is certainly more realistic than the as-
sumption of a constant wind would be. This is the
case, at least in midlatitudes, and such a model
should apply with some degree of realism to up-
welling in the Great Lakes or along the Oregon
Coast.

2. Three-layer fluid, small displacements

Consider three layers of fluid of equilibrium depths
hy, hy, hs, densities py, p,, ps, the total depth H = h,
+ h, + h; being constant (Fig. 6). Let the surface
and the interfaces be displaced vertically by the dis-
tances ¢, {; and {3, all small compared to the smallest
of h;. Supposing the pressure to be hydrostatic, the
linearized equations of motion on a rotating earth
take the form

du, a6 | Fi ]
o T T T
o, o __ 9% F
o THm="85, 1y
91_‘_2_ fpy. — — ﬂaG < ﬂ)%
at 1oz gp2 ox ! py/) 0Xx
31)2 . P 65‘1 < Pl> a§2
ot fuy =g g1 =B =2
FTIAEAC P Faa A [ 0
By o g0 &(1_&>9ﬁ ’
ot : p3 0x p3 p2/ 0x
- <1_._2>%
£ p3/ Ox
dv; . p1 95, P2 ( Pl) 95,
ot fuy=—g B g B2 B 22
o T p3 9y ps p2/ 8y
_g(l_&>3_é
p3/ 9y

where f is the Coriolis parameter, F,, F, are kine-
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FI1G. 6. Three layers of fluid along straight, infinite coast,
responding to longshore wind toward positive y (into drawing).

matic wind stress components, u; and v; (i = 1, 2, 3)
are x and y components of the velocity in the three
layers and g is acceleration of gravity. The three
equations of continuity are

ow o 13,
ox oy h, 9t (65— &)

ou, avz 14 L

— el 2 e — — — 2
ax Ty h ot (52— $3) (2)
Ouy  Ovy _ _ 108

dx dy h, ot

Let a linear combination of the equations of mo-
tion (1) be formed by multiplying the equations of
the first layer by a constant a, the second by b, the
third by ¢ and adding. On the right-hand side of this
combination one finds x and y gradients of the pres-
sure variable:

4
n*=(a+bﬂ+cﬂ>§,+(b—bﬂ
P2 3 P2

+c£3—c£1>§'2+<c—c£3)§‘3. (3)

P3 P3 P3

A similar combination of the equations of conti-
nuity has on its right-hand side the time deriva-
tive of

a b a c b)
O=—H+|———lh+l———)6. @
Lottt (E-a)s @

Let the constants a, b, ¢ be chosen so that II

and II* are the same, except for a constant multi-

plier 3:
(5)

where the identity is to hold for whatever values of
¢, & and §. Equating the coefficients of §;, §; and
{3 in this identity, one finds three equations for a, b
and ¢. After some minor manipulations one can ex-
press these equations in the following form, in matrix
notation:

* = gII;,
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L _B8  a T R
- - a
hy P2 P3
1o =2 2l b =0 ()
h; P3
1 1 1 — —é c
hs L
I p—

In order for non-trivial solutions to exist, the de-
terminant of the square matrix must vanish. This
yields a cubic equation for the multiplier 8:

B —HB +yH*3—aH?=0, )

where |
LARTE (er2hihy + €ex3hyhs + €3hyhs),

1
a= ? €12€23h, 203,

4
Gg2=1——,
P2
P2
623=l-___,
P3
613=1_&.
P3

In cases of practical interest, all ¢; are small, say,
of order ¢ = 1072 An inspection of Eq. (7) reveals
that one of the three roots 3; (i = 1, 2, 3) is of order
H, the other two of order e¢H. The order H root is
approximately

(®)

The other two roots, i = 2, 3, approximately satisfy
Eq. (7) with the cubic term. deleted, i.e.,

Bl =H+ O(EH).

Bas = 5 [y £ (' = 42)/] + OCH).  (9)

Taking now 8 in Eq. (5) to be one of the three
roots of Eq. (7), one of the multipliers a, b, ¢ may
be chosen arbitrarily, the other two are determined
by Eqgs. (6). One thus arrives at the square matrix
of coefficients [a;, b;, ¢;], i = 1, 2, 3, the index i
connecting to the root ;. A convenient choice proves
to be ¢; = h, for all i, which results in

“hyh
@ = —hy—hy + e —— + I3i1
B:
by = hy — Bl (10)
B:
¢ = h3

J

Some further results are written down most con-
cisely by changing the notation of the matrix [a;, b,
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¢;] into [ay], i.e., replacing a by j =1, b by j = 2,
¢ by j = 3. The multiplication of Egs. (1) and (2)
by a;, j = 1, 2, 3, followed by their addition is then
tantamount to the following transformation of the
velocity variables:
U,' = a;U;
ij4j (11)

Vi=ay;

where the summation convention applies. The trans-
formation of the pressure variables is a little more
complicated, given by Eq. (4) above. On writing

a; b, a ¢ b
bi=_’, b,~=——'—-—', b,-=—i—-—', 12
1= 2= T h, = h (12)

the pressure transformation is expressed as
II; = byS; . (13)

The forcing terms transform as
a; a;

=— i =—F,. 14
in h] an Fyt hl y ( )

The transformed equations of motion and continuity
now become

N

Wiy e Il
5, —fVi=—g8——+ Fu (nosums)
al/i OH, L
- T fUi=—gBi—— + Fy Y, (15
at fUl gﬁl ay yi ( )
o, , 3V, _ _aIL,
dx  dy at J
for i = 1, 2, 3. The three sets of three equations of

motion and continuity for each layer have thus been
replaced by three sets of normal mode equations,
which, unlike the original equations, are uncoupled,
so that each set can be solved independently of the
other two. The solution of the original equations is
then found, in principle, by inverting the transfor-
mation of the variables, i.e.,

A A

uj=K’=',U,'
A,

vj=X:V,.L, (16)
B,

;=—H‘.

=124, ‘

where 4,; and Bj; are the cofactors of a; and by re-
spectively and A,, A, are the determinants |a,| and
lbyl. The three terms on the right of (16) (on ex-
panding sums over index i) may be thought of as
contributions to velocities and elevations by individ-
ual normal modes, which are simply summed.
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3. Quasi-geostrophic response to sudden longshore
wind

Let a longshore wind stress F, = F, F, = 0 be
suddenly applied at r = 0 to the three-layer system
illustrated in Fig. 6. On transformation to normal
modes, each of the three sets of Egs. (15) is to be
solved in this case with F,; = 0, F,; = a,;F/h, at ¢
= 0. The solution is known from homogeneous fluid
theory, having been discussed in detail by Crépon
(1967): it consists of a quasi-geostrophic part and
near-inertial oscillations propagating from the coast
into the interior with velocity (g8;)!/%2. The quasi-
geostrophic part is Charney’s (1955) well-known
coastal jet

aF
U =-"—(1 - exR)
fin
Ft ‘
V,= %:— e™*/®, (nosums) ! , (17)
1
a;Ft
Hi - _ i ~x/R;
fRih,

J

where R, = f~'(gB:)"/* are the three radii of defor-
mation. The solution satisfies the boundary condition
at the coast, U; = 0, and reduces at infinity to Ekman
transport, U, = a,F/fh,, V; = 0, I, = 0.

Velocities in each of the three layers are found on
inverting the transformation to normal modes ac-
cording to Eq. (16). Simple results are obtained for
some limiting cases. Consider first cross-shore veloc-
ities at x > R,, for any I

ujzA_ijUi=Aijai ¢ iy
fh

A, A,

By a well-known theorem of algebra, the product
sum a;A4; is equal to A, for j = 1, to zero for j = 2
or 3, because g; is the first column of the matrix of
which A4,; are the cofactors. Thus

F

fh’
The discrepancy between the first root of Eq. (7),

81 =~ H, and the other two roots has the consequence

that R, » R,, R,. “Intermediate” distances may thus
be defined by
(19)

At such intermediate distances U, =~ 0, but U,
= a,F/fh,, Us = asF/fh,, according to Eq. (17). To
interpret this result physically the [a;] matrix needs
to be examined. Neglecting terms of order ¢ from
Eq. (10) this matrix is

(x> R). (18)

u = u,=u; =0, (x> R). (18a)

RZ’R3<x<R19

} h, h, hy
[aij] = _hz + >\2h2 - h3 hz - Azhz h3 ’ (20)
— —hz + A3h2 - h3l hz - >\3h2 h3
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where A, = €23h;3/82, A3 = €343/ 8;. Using the theorem
just quoted, a;4,; = 0 for j = 2 or 3, one finds at once

_ﬂEA”: F (21)

_fhl A, _fo

and u; = u,, uy = F/fh, — F/fH. This is cross-shore
Ekman drift in the top layer, and a compensating
adjustment drift F/fH evenly distributed over the
water column, as in a homogeneous fluid close to a
coast under similar forcing. Very close to the coast
x <€ R;, and all cross-shore velocities vanish, u,
= Uy T Uz = 0. .

The distribution of longshore velocities v; may sim-
ilarly be inferred from (17) and (20) noting that ¥;
= qFt/h, at x K Ry, V; = 0 at x — oo, and ¥,
= Ft,V, = V; =0 at “intermediate” distances defined
by Eq. (19). Correspondingly,

U (Ry, Ry <« x € R)).

Ft
U‘=—,v2=v3=0, (X:O)
hy
Ft ‘ :
1-’1:”2:173:‘1}, (R, R; « x < Ry) (22)

U1=02=v3=0, (X>R1)

These asymptotic results are very much as one
finds from a two-layer model, treating the bottom
two layers as one, i.e., ignoring the structure of the
thermocline. More interesting results emerge on cal-
culating the interface displacemients {, and {;. These
depend on the matrix [b;], given to zeroth order in
e by:

[bij]

r 1 0 0|
hy + By h, H hy + hy

=| =224 )\,2 = -2 A
h, hy by P h 2
h2+h3 h2 H hl+h2
2232 S A
h, *hy by T Ay ’

(23)

As may be seen from Eq. (17), the excitation of
the individual normal mode pressure variables 1I; is
proportional to R;”', hence it is much less intense for
i = 1 than for i = 2, 3. Correspondingly, interface
displacements are given to an adequate accuracy by

Ft [ aBn _ /g, , @3Bn _ /R]
~ = | 2 /Ry p 23 /RS
& fh.Ab[ R, © R, ¢
. (29)
g— ~ — Ft [@2_3 e—x/Rz+a3_B33€—x/R3
? b L R, R,

The cofactors B;; of the matrix [b;] in Eq. (23)
are easily calculated and, together with a,, a; from
Eq. (20), determine interface shapes to zeroth order.



JANUARY 1982

The theoretical results are best appreciated by means
of a numerical example discussed in the next section.
One general result worthy of note is that, since v,
= p; = 0 at x = 0, the interface shape must here
have a horizontal tangent by Eqs. (1):
% _ o,
dx
By contrast, 3{,/dx at x = 0 is certainly not zero,
because v, and v, differ on account of the acceler-
ation of the top layer by the wind.

(x =0). (25)

4. A typical example

A typical summer situation in the coastal ocean
may be modeled by the following:

h| =15m _ -3
h2 =15m :lZ ; }8_3
h3 =45m b
H=175m f=10"s" g=10ms™2
It is easy to calculate
A= 22 83772,
B2
N = 21 g 16228,
Bs
R, =274km, R,=495km, R;=2.35km.

For an impulse F = 1 m? s™!, the interface ele-
vations are thus calculated to be (in m)

6= 1.13e7/R2 + 1.03¢/%

= 1.56¢7%/R — 0.74¢™*/%s | (26)

At the coast, where x = 0, these add up to 2.16
m for {, and 0.82 m for {;. On integrating from the
coast to infinity, one finds an excess volume of 0.8
Ft/f accommodated below the top interface and 0.6
Ft/f below the second, in accordance with the cross-
shore transports calculated at intermediate distances.
Closer to shore, however, there is a rearrangement
of fluid: the second layer is thicker than its equilib-
rium depth to a distance or order R;; beyond that
it is thinner to a distance of order R,. Fig. 7 illustrates
the calculated interface shapes. The variations of the
thickness of the various layers imply considerable
relative motion in the cross-shore direction.

An impulse I = Fr of 1 m? s™' is quite moderate,
evoked by a 7 m s™! wind acting for only 3 h. An
order of magnitude larger impulse is commonplace.
Linear theory is clearly not valid for such cases, be-
cause the predicted interface displacement exceeds
top layer thickness.

5. Finite vertical displacements

Consider therefore the practically important case
where the top interface comes to intersect the free
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i 1 1
5 x, km 10 15

F1G. 7. Vertical displacements of top ({,) and bottom ({3) in-
terfaces at different distances from the coast, calculated from lin-
ear (small perturbation) theory, for very light longshore wind im-
pulse (Ft = 1 m? s™'). For wind toward positive y, displacements
are upward, for opposite wind downward.

surface at some arbitrary distance x = g from the
coast (Fig. 8). Subject to later verification it will be
supposed that the second (lower) interface does not
come to the surface. The so represented “full” up-
welling is taken to be produced by a sufficiently
strong alongshore wind impulse toward positive y,
all exerted before fluid column depths change’ sig-
nificantly. Following this the fluid layers adjust to
equilibrium. Friction is neglected (except for sup-
posing the top layer to have been accelerated by the
wind) so that the adjustment process is governed by
conservation of potential vorticity. Geostrophic bal-
ance following adjustment and the equality of po-
tential vorticity before and after, for each layer sep-
arately, yields the following set of six equations, valid
at x > a, where three layers of fluid are present after
adjustment:

d A
_f”1=_g;.%
—pp = g P1 45 a5
fo; gpzdx 12 4
—fvs = — pds P2 i _ 45
3 gsdx s l2d 23d

. @

Eliminating the velocities between these equations,
writing
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FiG. 8. Definition sketch for three-layer fluid subject to *‘full”
upwelling, in which top density interface intersects surface.

==L - (28)

and multiplying by 8/f, the following equations for
surface and interface displacements result:

8 8 N
! hl hl 0 ;l
I B 8 .
A -£ 2 X =0. (29
0 €12 h, h, & ( )
P P2 M B
—_ — T T €3 T T $
I Py P hs_ L

The determinant of the square matrix has to vanish
for nontrivial solutions to exist. This is easily shown
to be the same as the determinant in Eq. (6) and
yields the same equation for 3, Eq. (7). The structure
of the solution at x = a is therefore much the same
as given by the linear theory, consisting of three ad-
ditive contributions to each of ¢; (i = 1, 2, 3), cor-
responding to the three roots 8; (j = 1, 2, 3). The
boundary conditions at infinity are the same, {; —
0, but they differ at x = a, the shoreward bound of
the three-layer system. Here the conditions are that
the top-layer thickness vanishes and that the second
interfaces and the bottom two layer velocities join
smoothly:

G+h

$ =

$-= &, (x = a) , (30)
dy| _ ds,
dx|._ dx|,

where subscripts — and + designate values infinites-
imally to the left and right of x = a, respectively.

It is thus necessary to consider also the two-layer
adjustment problem at x < a. Here geostrophic bal-
ance and potential vorticity conservation are ex-
pressed by
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"f”2=‘“gg%
dé, d
_fv3=_g&.d_‘(‘:_. 23.&
3 dX dx
L. (31)
@ 6 %
dx hz h2
s _  §
dx fh3 J

Again using the notation of Eq. (28), but with 8
= . on elimination of v,, v,, the following equations
for the interfaces emerge:

B B

1
h2 hz

2
X = 0.

- €3 — 7 $3
P3 h;

(32)

Note that at x < a the top of the second layer
coincides with the free surface, i.e., {, = h; + O(6H),
where § is a small quantity. The boundary condition
at the coast is zero cross-shore displacement in the
course of the adjustment process. The longshore
momentum equations are, in the absence of longshore
pressure gradients and internal friction:

~

dv, F

4~ fwt h,

dv, _ L, (33)
dt fur

dvy

dt - fu3

where the time derivatives are total. At the coast, u;
= 0 and, if layers 2 and 3 remain attached to the
coast:

(x=0) (34)

The velocities at x > 0 are, by Eqgs. (31), propor-

vz=v3=0,

" tional to the degree of stretching experienced by the

two layers. A special case, which will turn out to be
of interest, is'when the two bottom layers are equally
stretched, i.e.,

§2+h2_§3=§3+h3

h P (35)
or, solving for the ratio {;/¢;

$ hs

== 35a

G htohs (330)

Eqs. (32) are consistent only if the determinant
of the square matrix vanishes, i.e., if

Bx — Ba(hy + h3) + ex3hohs = 0. (36)
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The two roots are, to the lowest order in e,
Bs1 = ha + hy + O(eH)

— €23hyh;3
*2 7 hy + hy

In addition to determining 84, Eqs. (32) also yield
the relationship of the displacements {, and {3 for

fixed B,:
h
&= §2<1 - B:> .

Thus, in the barotropic mode, B4 = By =~ hy + hy,

H__h
§_2 h2+h3,

(37)
+ O(e2H)

(38)

(39)

a result identical with Eq. (35a). In this mode, given
that ¢ = h, + O(8H), the lower interface shape is
thus nearly horizontal, {3 ~ h;h;/(h,y + h3) + O(6H).
Where the barotropic mode only is excited, the sec-
ond interface rises to this nearly constant new depth.

The internal mode, 84 = B4, is characterized by
very different interface displacements, {; = order
X (e7'¢,), but its influence is restricted to horizontal
boundary layers of scale width R¥ = VgB,.. Thus if
a > Rf, any internal mode excitation present near
x = a decays to a negligible amplitude at the coast.
Because the boundary conditions at the coast can be
satisfied without internal readjustment [as in a two-
layer system shoreward of the outcropping of the
single interface [Csanady (1977)] no interface dis-
tortion occurs here, the interface between the second
and third layers remaining flat (to order 8). As in
the linear theory, d{3/dx must vanish at the coast
in view of the boundary condition (34). Its shape
may in fact easily be seen to be proportional to 6H
cosh(x/R¥), with R¥ = (gB)¥?2, if a> R¥. Thus, the
second interface rises no higher than {3 = hhs/(h,
+ h3) + O(6H), the level determined by the principle
of equal stretching. This verifies the hypothesis made
at the beginning of the present section, that the bot-
tom interface remains submerged.

In the neighborhood of the top interface outcrop-
ping, x = a, the interface shapes may be written,
neglecting barotropic mode contributions of order §
and of order ¢, and supposing a > R¥:

_ b
hy, + hs

& = B exp[—(x — a)/Ry]
+ C exp[—(x ~ a)/Rs],
¢ = (1 — w3)B exp[—(x — a)/R,]
+ (1 = p3)C exp[—(x — a)/Ry] |
ehy/Bi i = 2, 3.

) — Aexp[(x — a/R¥], (x<a)

(x=a)> (40)

with u; =
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F1G6. 9. Mass balance of displaced layers at x = a: oppositely
shaded areas are equal, top layer outflow being balanced by inflow
in the bottom two layers, with greater shoreward displacement in
intermediate layer.

Applying the conditions expressed in Egs. (30),
with the neglect of §; = O(8 + ¢), it is possible to
determine the three constants 4, B and C. This fully
determines (to zeroth order in ¢ and §8) the interface
shapes near the pycnocline outcropping for the
asymptotic case of a large enough wind impulse to
produce a > R¥.

To calculate the magnitude of a for a given wind
impulse I = Ft it may be supposed that a < R, (the
radius of deformation in the barotropic mode), in
which case the fluid column displacements across x
= g balance to zeroth order (Fig. 9):

&h; =0 (sum), (41)

where §; = [ ujdt, u)(t) being the cross-shore velocity
at time ¢ of the fluid column ending up at x = q after
adjustment.

The time-integrated form of Egs. (33) now yields,
noting that & = a for the top layer fluid at x = a
after adjustment,

_ by | D5k
fof

The first of (33) on time integration also yields

ah, (42)

v, = I_ fa. (43)

The velocities v, and v; may be expressed from
Egs. (27) as v, plus terms proportional to interface
slopes. Substituting into (42) and eliminating v, with
the aid of (43), gives, to the lowest order in ¢

_Khyt+hy) 1

fmH " fH

d d
X élzg(hz + h;) d_i‘: + 623gh3 —J%} . (44)

The bracketed term is negative and its precise
value varies weakly with a, becoming constant for
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F1G. 10. Calculated interface shapes near the surface outcropping of the top
interface, for large offshore displacement a.

a > R#, as may be seen from the discussion above.
Thus, as in the two-layer case (Csanady, 1977), some
minimum impulse is necessary to bring the top in-
terface to the surface. Once a becomes large enough,
its further dependence on [ is linear, again as in the
two-layer case. In this asymptotic stage the second
term on the right of Eq. (44) effectively replaces the
(negative) internal radius of deformation of the two-
layer model.

If the same numerical example is taken as before,
one calculates R¥ = 3.35 km for the internal radius
of deformation at x < a, after the top interface moved
sufficiently far offshore. The calculations of the con-
stants in Eq. (40) yield

A B C

£=035, —=1, ~=
hy h, h,

to within €'/2. The second term on the right of (44)
is 3.9 km, so that ¢ = 10 km is generated by an
impulse of I = 26 m? s™'. This is high for a single
impulse (20 m s™! wind acting for 8 h) but certainly
not unrealistic. Fig. 10 illustrates calculated condi-
tions near x = a.

Cross-shore water column displacement in the sur-

0, (45)

. face layer just under the frontal outcropping are in

this case a = 10 km. If the bottom layers moved
together, they would compensate with an offshore
displacement of 2.5 km. In the three-layer example,
however, :

~£ = 2.5+ (A/h)R¥ = 3.67 km,
—& = 2.5 — (A/h;)R¥ = 2.11 km.

Thus there is considerable relative motion between
the layers, mainly between layers 1 and 2 (Af
= 13.67 km) but also between layers 2 and 3 (Af
= 1.56 km). One should remember further that only
the quasigeostrophic response has been calculated

here: near-inertial oscillations excited in addition in-
volve almost-periodic displacements of the same
order.

6. Discussion

What can one usefully learn from highly idealized
models such as discussed above? Constant total
depth, neglect of mixing and. internal friction, and
impulsively exerted wind stress are certainly gross
overidealizations. Nevertheless, the calculations re-
veal some key characteristics of the inertial response
of a stratified fluid to forcing directly applied to the
top layer alone. Compared to the two-layer model
discussed in detail earlier, the extra information con-
cerns what happens when the density differences
between layers below the surface mixed layer are
about as large as the density jump at the base of the
mixed layér.

One important general recognition is that the wind
“peels off” the surface layer over which it acts,
bringing only the next lighter layer to the surface,
without causing the second (or third, or fourth) in-
terface to move upward by more than a fraction of
its initial depth. In the absence of a direct external
force acting on the lower layers, their longshore ac-
celeration is due solely to cross-shore adjustment
drift. At a vertical coast, where all cross-shore ve-
locities vanish, no longshore velocities arise and den-
sity interfaces remain horizontal. Significant inter-
face tilts develop only in internal boundary layers of
scale width R,: this follows from the structure of the
governing equations on the principle discussed by
Carrier (1953). Because at the shore the lower in-
terface(s) remains (remain) horizontal, no internal
boundary layer is required there.

In a qualitative way this result should remain valid
over a sloping bottom, as may be seen by reference
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to Fig. 11. Consider the case again when the top
interface-surface intersection is far offshore and the
water from lower layers has replaced top-layer fluid
nearshore. Little reflection shows that the boundary
conditions at the coast may be satisfied if a/l fluid
columns (in both lower layers) are displaced shore-
ward by the same distance b, generating constant
velocity v, = v; = fb toward positive y. The second
interface then remains horizontal, except again in
the neighborhood of the surface outcropping of the
top interface.

It also follows quite generally that internal mode
adjustments of interface shape remain confined to
within distances of order R, of the top interface out-
cropping. A coastal jet appears within this range, but
beyond that the response is the same as in a ho-
mogeneous fluid. This result is the same as one finds
from a two-layer model, except that it is now seen
to apply to the bottom interface as well (and, by
reasonable inference, other interfaces, for multilayer
models).

A further general result, peculiar to a model with
at least three layers, is the recognition of considerable
relative motion between the lower layers. On account
of the different shape of the top and bottom inter-
faces near the top interface outcropping, itself a di-
rect consequence of longshore velocity differences or
their absence, the second layer becomes thicker (the
isopycnals “open up” somewhat) on the shore side
and thinner further offshore for compensation, than
the equally-stretched limit far from the outcropping.
The associated cross-shore relative displacements are
of a large amplitude, of the order of kilometers.

Another result, not so far discussed explicitly, is
that an opposite wind impulse, which causes down-
welling, again affects the top interface more than the
bottom one, close to shore. In such an event the top
interface is depressed more than the bottom one,
squeezing the intermediate-density fluid away from
the coast. The cross-shore displacements predicted
by theory for upwelling or downwelling are of the
same order. Hence, an alternation of upwelling and
downwelling events acts as a sort of “bellows” mech-
anism, moving intermediate density fluid in and out
of the coastal band. Since in the real case such in-
ertial effects are likely to be accompanied by con-
siderable vertical mixing, the bellows mechanism is
likely to be an important instrument of cross-shore
mass exchange.

It remains to note here previous models of tran-
sient upwelling due to Allen (1973) and Pedlosky
(1974, 1978). These are based on boundary layer
theory, but the equations governing the interior flow
are effectively the same as Egs. (1), or their nonlinear
analogs, except for the assumption of continuous
stratification rather than discrete layers. This is not
an important difference in itself, at least for the lin-
ear theory, because the response of the stratified in-

G. T. CSANADY 95

£b

F1G. 11. Three-layer fluid over inclined plane beach, after de-
velopment of full upwelling. Shoreward displacements of fluid col-
umns near the coast are equal in both lower layers, and so therefore
are longshore velocities. The second density interface consequently
remains horizontal, except in the region of the top interface out-
cropping.

terior can be reduced to a sum of normal modes,
much as the three layer system discussed earlier. The
major difference lies in the hypothesis made by both
Allen and Pedlosky that the interior flow is forced
entirely by a continuous sink at the surface-coast
corner, where a surface Ekman layer originates,
driven by a sustained wind. This idealization involves
the hypothesis that the fluid continually drawn into
the “sink” is able to move offshore in the surface
Ekman layer. Since in a stratified fluid surface den-
sity is less than the density of the lower layers sup-
plying the sink, this requires appropriate surface
heating or freshening, so that the mode] is diabatic.
By contrast, the previous calculations were made
supposing that fluid columns conserve their density.
On this hypothesis, Ekman transport advects surface
layer fluid offshore ultimately to the point where the
top interface comes to intersect the free surface.
From the observational evidence it would appear that
an adiabatic model constitutes a more realistic ideal-
ization of rapidly developing transient upwelling than
a diabatic model requiring a fairly large heat or
freshwater input at the coast. One should add, how-
ever, that mixing of overlying layers by a strong wind
is not negligible, generating some intermediate den-
sity fluid that may well escape along a mid-level is-
opycnal surface. This, and other similar questions,
are clearly outside the scope of the present investi-
gation.
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