A Note on Pappus' Theorem

İbrahim Günaltılı and Pınar Anapa

Abstract

Let Π be a projective plane coordinatized by a ternary ring (\mathcal{R}, T). Using the notations of [1], three operations + , and $*$ defined by $a+b=T(1, a, b)$, $a \cdot b=T(a, b, 0), a * b=T(a, 1, b), \forall a, b \in R$, where $(x, y) \circ[m, k] \Leftrightarrow T(m, x, y)=k$, $\forall m, x, y, k \in R$. In this paper, we give two configurational characterisations for $(R, *)$ to be Abelian group, using involutory perspectivities.

M.S.C. 2000: 51E20, 51A45, 05B25.

Key words: projective plane, ternary ring, involutary perspectivity.

§1. Introduction

In 1959, Pickert [3] proved that if the Pappus Theorem holds in the projective plane for two fixed base lines, then the plane is Pappian. In 1966, Buekenhout [4] proved that if Pascal's Theorem holds for a single oval in a projective plane, then the plane is Pappian. In [1], he exploited the analogy between these two results by using Buekenhout's methods to prove Pickert's Theorem. This result was achieved in [1, Chapter III], through in a slightly weaker form than that obtained by Pickert. Basic definition and theorems on projective planes may be found in [2] or [9].

Let $\Pi=(\mathcal{P}, \mathcal{L})$ be a projective plane and coordinated by a set $R(0,1 \in R)$ with respect to a coordinatining quadrangles (X, Y, O, E). That is for any two points $A, B \in \mathcal{P}$ the line joining A and B is denoted by $A \vee B$ or $A B$ and for any two lines $u, v \in \mathcal{L}$, the intersection point is denoted by $u \wedge v$ or $u v$. The points on $X Y$ (distinct from Y) are coordinatized as $(m), m \in R$, the points not on $X Y$ as $(x, y), x, y \in R$. So we may say $O=(0,0), E=(1,1) X=(0)$. Let us say $Y=(\infty), \infty \notin R$. The lines through Y (distinct from $X Y$) are coordinatized as $[a], a \in R$. Let us say $X Y=[\infty]$; the lines not passing through Y, as $[m, k], m, k \in R$. Thus $(a, b) \in$ $[a],[m, k]=(m) \vee(0, k)$. Using the notations of [1], a ternary operation T may be defined on the set R as the following [1]:

$$
(x, y) \in[m, k] \Leftrightarrow T(m, x, y)=k, \text { for all } x, y, m, k \in R .
$$

The system (R, T) is called a ternary ring on π and π can be coordinatized by this ternary ring. Three different binary operations denoted by,.,$+ *$ may be defined on R as follows [9]

$$
a+b=T(1, a, b), a \cdot b=T(a, b, 0) \text { and } a * b=T(a, 1, b) \text { for all } a, b \in R .
$$

$\overline{\text { Applied Sciences, Vol.5, No.1, 2003, pp. 27-31. }^{\text {pen }} \text {. }}$
(c) Balkan Society of Geometers, Geometry Balkan Press 2003.

In this paper, we give two configurational characterization for $(\mathcal{R}, *)$ to be Abelian group, using involutory perspectivities.

A (P, l) perspectivity (or central colineation), is a perspectivity with centre P and axis l, that is, a colineation which fixes all the lines through P and all the points on l. A projective plane is a said to be (P, l) transitive if the perspectivities of the plane with centre P and axis l are transitive on the points of one line through P (and hence every line through P), excluding P itself and the points of l.
(Pappus' Theorem). If u, v and w are distinct lines of a projective plane Π, then the (u, v, w)-Pappus' Theorem states that if $A, B, C \in u$ and $A^{\prime}, B^{\prime}, C^{\prime} \in v$ in such a way that

$$
A B^{\prime} \wedge A^{\prime} B, A C^{\prime} \wedge A^{\prime} C \in w \text { then } C B^{\prime} \wedge C^{\prime} B \in w
$$

Although this statement is not at first sight symmetric in u, v, w, it is easy to see that the (u, v, w)-Pappus' Theorem implies the (a, b, c)-Pappus' Theorem, where (a, b, c) is any permuted arrangement of the lines u, v and w.

Definition. Let u and v be any two lines of a projective plane Π, for every point $P(\notin u \vee v)$ of the plane Π, we define the involutory permutation σ_{P} of the point set $u \vee v$ by
(i) $\quad P, X, \sigma_{P}(X)$ colinear, for all $X \in u \vee v$,
(ii) $X \in u \Rightarrow \sigma_{P}(X) \in v, Y \in v \Rightarrow \sigma_{P}(Y) \in u$.
(iii) $\quad X \in u \Rightarrow \sigma_{P}(X)=(P \vee X) \wedge v, Y \in v \Rightarrow \sigma_{P}(X)=(P \vee Y) \wedge u$

Lemma 1. ([1], Theorem 3.1) The following statements are equivalent:
(a) the $(u, v, w)-$ PappusTheorem;
(b) $\quad\left(\sigma_{X} \sigma_{Y} \sigma_{Z}\right)^{2}=1$ for any three points $X, Y, Z \in w(\notin u, v)$
(c) $\quad \sigma_{X} \sigma_{Y} \sigma_{Z}=\sigma_{T}$ for some $T \in w$, where $X, Y, Z \in w(\notin u, v)$.

Lemma 2. ([1], Theorem 3.3) The $([0,0],[0],[\infty])$-Pappus Theorem holds in Π if and only if $(R \backslash\{0\}, \cdot)$ is an Abelian group.

Lemma 3. ([1], Theorem 3.6) Provided that $a+b=T(a, 1, b)$, for all $a, b \in R$, the $([0],[1],[\infty])$-Pappus Theorem holds in Π if and only if $(R,+)$ is an Abelian group.

§2. Main Results

Theorem 1. The ([0], [∞, [1])-Pappus Theorem holds in Π if and only if $(R, *)$ is an Abelian group.

Proof. We denote by σ_{X}, the permutation of the points of [0] and $[\infty]$ which interchanges pairs collinear with $(1, x)$, where $x \in R$. Assume that the restricted Pappus Theorem holds true.

Let $X=(1, x), Y=(1, y), Z=(1, z)$ and $I=(1,0), x, y, z \in R \backslash\{0\}$. Therefore

$$
\begin{aligned}
\sigma_{X} \sigma_{I} \sigma_{Y}((0)) & =\sigma_{X} \sigma_{I}(((1, y) \vee(0)) \wedge[0])=\sigma_{X} \sigma_{I}((0, y)) \\
& =\sigma_{X}(((0, y) \vee(1,0)) \wedge[\infty])=\sigma_{X}((y)) \\
& =((y) \vee(1, x)) \wedge[0]=(0, y * x)
\end{aligned}
$$

Similarly, $\sigma_{Y} \sigma_{I} \sigma_{X}((0))=(0, x * y)$. By Lemma $1, x * y=y * x \forall x, y \in R$. Thus $(R, *)$ is commutative. Again,

$$
\sigma_{Z} \sigma_{I} \sigma_{Y} \sigma_{I} \sigma_{X}((0))=\sigma_{Z} \sigma_{I}(0, x * y)=\sigma_{Z}((x * y))=(0,(x * y) * z)
$$

and

$$
\sigma_{Y} \sigma_{I} \sigma_{Z} \sigma_{I} \sigma_{X}((0))=\sigma_{Y} \sigma_{I}(0, x * z)=\sigma_{Y}((x * z))=(0,(x * z) * y)
$$

By Lemma 1, $\sigma_{Z} \sigma_{I} \sigma_{Y} \sigma_{I} \sigma_{X}=\sigma_{Y} \sigma_{I} \sigma_{Z} \sigma_{I} \sigma_{X}$ and therefore $(x * y) * z=(x * z) * y$. But by the commutativity just proved, this becomes $(x * y) * z=x *(y * z)$, namely the associative law. So $(R, *)$ is an Abelian group.

Conversely, assume that $(R, *)$ is an Abelian group. Therefore, $\forall p \in R$,

$$
\begin{aligned}
\sigma_{X} \sigma_{Y} \sigma_{Z}((p)) & =\sigma_{X} \sigma_{Y}((p) \vee(1, z) \wedge[0])=\sigma_{X} \sigma_{Y}((0, p * z)) \\
& =\sigma_{X}((0, p * z) \vee(1, y) \wedge[\infty])=\sigma_{X}\left(\left((p * z) * y^{-1}\right)\right. \\
& =\left(\left((p * z) * y^{-1} \vee(1, x)\right) \wedge[0]\right)=\left(0,(p * z) * y^{-1} * x\right)
\end{aligned}
$$

and hence

$$
\begin{aligned}
\left(\sigma_{X} \sigma_{Y} \sigma_{Z}\right)^{2}((p)) & =\sigma_{X} \sigma_{Y} \sigma_{Z}\left(\left(0,(p * z) * y^{-1} * x\right)\right. \\
& =\sigma_{X} \sigma_{Y}\left(\left(0,(p * z) * y^{-1} * x\right) \vee(1, z) \wedge[\infty]\right) \\
& =\sigma_{X} \sigma_{Y}\left(\left(z^{-1} *(p * z) * y^{-1} * x\right)\right) \\
& =\sigma_{X} \sigma_{Y}\left(\left(y^{-1} * p\right) * x\right) \\
& =\sigma_{X}\left(\left(\left(y^{-1} * p\right) * x \vee(1, y)\right) \wedge[0]\right) \\
& =((0, p * x) \vee(1, x)) \wedge[\infty]=(p)
\end{aligned}
$$

Thus $\left(\sigma_{X} \sigma_{Y} \sigma_{Z}\right)^{2}=1$ and the restricted Pappus Theorem holds in Π by Lemma 1

Theorem 2. Provided that $a * b=T(1, a, b), \forall a, b \in R$, the $((0),(1),(\infty))$ dual Pappus ${ }^{\prime}$ Theorem holds in π iff $(R, *)$ is an Abelian group.

Proof. We denote by σ_{X}, the permutation of the lines through (0) or (1) which interchanges pairs meeting on $[x], x \in R \backslash\{0\}$, let σ_{0} be the corresponding permutation for [0].

Assuming the restricted dual Pappus' Theorem, we have:

$$
\sigma_{Y} \sigma_{0} \sigma_{X}([0,0])=\sigma_{Y} \sigma_{0}([1, x])=\sigma_{Y}([0, x])=[1, y * x] .
$$

In this last line we have to appeal to the special assumption $T(1, a, b)=a * b$.

Similarly,

$$
\sigma_{X} \sigma_{0} \sigma_{Y}([0,0])=[1, x * y] .
$$

By the dual of Lemma $1, x * y=y * x$, and

$$
\begin{aligned}
\sigma_{Z} \sigma_{0} \sigma_{Y} \sigma_{0} \sigma_{X}([0,0]) & =[1, z *(y * x)] \\
\sigma_{Y} \sigma_{0} \sigma_{Z} \sigma_{0} \sigma_{X}([0,0]) & =[1, y *(z * x)]
\end{aligned}
$$

By the dual of Lemma 1, we have $z *(y * x)=y *(z * x)$. But by the commutativity just proved, this becomes $(y * x) * z=y *(x * z)$, namely the associativity. Hence $(R, *)$ is an Abelian group.

Conversely, assume that $(R, *)$ is an Abelian group. Therefore, $\forall k \in R$,

$$
\begin{aligned}
\left(\sigma_{Z} \sigma_{Y} \sigma_{X}\right)^{2}([0, k]) & =\sigma_{Z} \sigma_{Y} \sigma_{X} \sigma_{Z} \sigma_{Y}([1, x * k]) \\
& =\sigma_{Z} \sigma_{Y} \sigma_{X} \sigma_{Z}\left[0, y^{-1} * x * k\right] \\
& =\sigma_{Z} \sigma_{Y} \sigma_{X}\left(\left[1, z * y^{-1} * x * k\right]\right) \\
& =\sigma_{Z} \sigma_{Y}\left(\left[0, x^{-1} * z * y^{-1} * x * k\right]\right) \\
& =\sigma_{Z}\left(\left[1, y * z * y^{-1} * k\right]\right)=[0, k] .
\end{aligned}
$$

So, we have $\left(\sigma_{Z} \sigma_{Y} \sigma_{X}\right)^{2}=1$, and by the dual of Lemma 1 , the $((0),(1),(\infty))$ dual Pappus' Theorem holds in π. It is easy to see that the $((0),(1),(\infty))$ dual Pappus Theorem implies the $((0),(\infty),(1))$ dual Pappus Theorem since $((0),(\infty),(1))$ is any permuted arrangement of the points $(0),(1)$ and (∞).

References

[1] Burn, R.P., Bol Quasi-Fields and Pappus' Theorem, Math. Zeitchr. 105 (1968), 351-364.
[2] Hall, M., The theory of groups, New York, Macmillan, 1959.
[3] Pickert, G., Der Satz von Pappus mit Festelementen, Arch. Math. 10 (1966), 56-61.
[4] Buekenhout, F., Plans projectives a ovoides pascaliens, Arch. Math. 17 (1966), 89-93.
[5] Hughes, D.R., Planar division neo-rings, Trans. Amer. Math., 11 (1960), 339-341.
[6] Kaya, R., On the connection between ternary rings and the restricted dual Pappus Theorems-I, Jour. of Fac. of the K.T.Ü, v. 111 (1980), Fasc. 6, 49-57.
[7] Kaya, R., On the connection between ternary rings and the restricted dual Pappus Theorems-II, METU Journal of Pure and Applied Sciences, v. 17 (1984), n. 1, 63-68.
[8] Olgun, Ş and Günaltılı, İ., On the connection between ternary rings and some configurational propositions-I, Tr. Jour. of Math, 18 (1994), 302-310.
[9] Günaltılı, İ. and Olgun, Ş., On some configurational propositions connected with the minor forms of Desargues, Commun. Fac. Univ. Ank., Series A1, v. 46 (1997), 153-163.
[10] Olgun, Ş and Günaltılı, İ., On the connection between ternary ring and some configurational proposition-II, Jour. Inst. Math. and Comp. Sci. (Math. Ser.), v. 7 (1994), n.2, 147-154.

Authors' address:
İbrahim Günaltılı and Pınar Anapa University of Osmangazi, Faculty of Sciences, Department of Mathematics, Eskisehir-TURKEY,

Email: igunalti@mail.ogu.edu.tr

