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Abstract
Let Π be a projective plane coordinatized by a ternary ring (R, T ). Using
the notations of [1], three operations +, · and ∗ defined by a + b = T (1, a, b),
a·b = T (a, b, 0), a∗b = T (a, 1, b), ∀a, b ∈ R, where (x, y)◦[m, k] ⇔ T (m, x, y) = k,
∀m, x, y, k ∈ R. In this paper, we give two configurational characterisations for
(R, ∗) to be Abelian group, using involutory perspectivities.
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§1. Introduction
In 1959, Pickert [3] proved that if the Pappus Theorem holds in the projective

plane for two fixed base lines, then the plane is Pappian. In 1966, Buekenhout [4]
proved that if Pascal′s Theorem holds for a single oval in a projective plane, then the
plane is Pappian. In [1], he exploited the analogy between these two results by using
Buekenhout′s methods to prove Pickert′s Theorem. This result was achieved in [1,
Chapter III], through in a slightly weaker form than that obtained by Pickert. Basic
definition and theorems on projective planes may be found in [2] or [9].

Let Π = (P,L) be a projective plane and coordinated by a set R (0, 1 ∈ R)
with respect to a coordinatining quadrangles (X,Y, O, E). That is for any two points
A,B ∈ P the line joining A and B is denoted by A ∨B or AB and for any two lines
u, v ∈ L, the intersection point is denoted by u∧ v or uv. The points on XY (distinct
from Y ) are coordinatized as (m),m ∈ R, the points not on XY as (x, y), x, y ∈ R.
So we may say O = (0, 0), E = (1, 1) X = (0). Let us say Y = (∞), ∞ /∈ R.
The lines through Y (distinct from XY ) are coordinatized as [a], a ∈ R. Let us
say XY = [∞]; the lines not passing through Y , as [m, k],m, k ∈ R. Thus (a, b) ∈
[a], [m, k] = (m) ∨ (0, k). Using the notations of [1], a ternary operation T may be
defined on the set R as the following [1] :

(x, y) ∈ [m, k] ⇔ T (m,x, y) = k, for all x, y,m, k ∈ R.

The system (R, T ) is called a ternary ring on π and π can be coordinatized by this
ternary ring. Three different binary operations denoted by +, ., ∗ may be defined on
R as follows [9]

a + b = T (1, a, b), a.b = T (a, b, 0) and a ∗ b = T (a, 1, b) for all a, b ∈ R.
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In this paper, we give two configurational characterization for (R, ∗) to be Abelian
group, using involutory perspectivities.

A (P, l) perspectivity (or central colineation), is a perspectivity with centre P and
axis l, that is, a colineation which fixes all the lines through P and all the points on
l. A projective plane is a said to be (P, l) transitive if the perspectivities of the plane
with centre P and axis l are transitive on the points of one line through P (and hence
every line through P ), excluding P itself and the points of l.

(Pappus′ Theorem). If u, v and w are distinct lines of a projective plane Π,
then the (u, v, w)-Pappus′ Theorem states that if A,B, C ∈ u and A′, B′, C ′ ∈ v in
such a way that

AB
′
∧A

′
B, AC

′
∧A

′
C ∈ w then CB

′
∧ C

′
B ∈ w.

Although this statement is not at first sight symmetric in u, v, w, it is easy to
see that the (u, v, w)-Pappus′ Theorem implies the (a, b, c)-Pappus′ Theorem, where
(a, b, c) is any permuted arrangement of the lines u, v and w.

Definition. Let u and v be any two lines of a projective plane Π, for every point
P (/∈ u ∨ v) of the plane Π, we define the involutory permutation σP of the point set
u ∨ v by

(i) P, X, σP (X) colinear, for all X ∈ u ∨ v,

(ii) X ∈ u ⇒ σP (X) ∈ v, Y ∈ v ⇒ σP (Y ) ∈ u.

(iii) X ∈ u ⇒ σP (X) = (P ∨X) ∧ v, Y ∈ v ⇒ σP (X) = (P ∨ Y ) ∧ u

Lemma 1. ([1], Theorem 3.1) The following statements are equivalent:

(a) the (u, v, w)− PappusTheorem;

(b) (σXσY σZ)2 = 1 for any three points X,Y, Z ∈ w(/∈ u, v)

(c) σXσY σZ = σT for some T ∈ w, where X, Y, Z ∈ w(/∈ u, v).

Lemma 2. ([1], Theorem 3.3) The ([0, 0], [0], [∞])-Pappus Theorem holds in Π
if and only if (R\{0}, ·) is an Abelian group.

Lemma 3. ([1], Theorem 3.6) Provided that a + b = T (a, 1, b), for all a, b ∈ R,
the ([0], [1], [∞])-Pappus Theorem holds in Π if and only if (R, +) is an Abelian group.

§2. Main Results

Theorem 1. The ([0] , [∞] , [1])-Pappus Theorem holds in Π if and only if (R, ∗)
is an Abelian group.

Proof. We denote by σX , the permutation of the points of [0] and [∞] which
interchanges pairs collinear with (1, x), where x ∈ R. Assume that the restricted
Pappus Theorem holds true.
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Let X = (1, x), Y = (1, y), Z = (1, z) and I = (1, 0), x, y, z ∈ R\{0}. Therefore

σXσIσY ((0)) = σXσI(((1, y) ∨ (0)) ∧ [0]) = σXσI((0, y))

= σX(((0, y) ∨ (1, 0)) ∧ [∞]) = σX((y))

= ((y) ∨ (1, x)) ∧ [0] = (0, y ∗ x).

Similarly, σY σIσX((0)) = (0, x ∗ y). By Lemma 1, x ∗ y = y ∗x ∀x, y ∈ R. Thus (R, ∗)
is commutative. Again,

σZσIσY σIσX((0)) = σZσI(0, x ∗ y) = σZ((x ∗ y)) = (0, (x ∗ y) ∗ z)

and
σY σIσZσIσX((0)) = σY σI(0, x ∗ z) = σY ((x ∗ z)) = (0, (x ∗ z) ∗ y).

By Lemma 1, σZσIσY σIσX = σY σIσZσIσX and therefore (x ∗ y) ∗ z = (x ∗ z) ∗ y.
But by the commutativity just proved, this becomes (x ∗ y) ∗ z = x ∗ (y ∗ z), namely
the associative law. So (R, ∗) is an Abelian group.

Conversely, assume that (R, ∗) is an Abelian group. Therefore, ∀p ∈ R,

σXσY σZ((p)) = σXσY ((p) ∨ (1, z) ∧ [0]) = σXσY ((0, p ∗ z))

= σX((0, p ∗ z) ∨ (1, y) ∧ [∞]) = σX(((p ∗ z) ∗ y−1)

= (((p ∗ z) ∗ y−1 ∨ (1, x)) ∧ [0]) = (0, (p ∗ z) ∗ y−1 ∗ x)

and hence

(σXσY σZ)2((p)) = σXσY σZ((0, (p ∗ z) ∗ y−1 ∗ x)

= σXσY ((0, (p ∗ z) ∗ y−1 ∗ x) ∨ (1, z) ∧ [∞])

= σXσY ((z−1 ∗ (p ∗ z) ∗ y−1 ∗ x))

= σXσY ((y−1 ∗ p) ∗ x)

= σX(((y−1 ∗ p) ∗ x ∨ (1, y)) ∧ [0])

= ((0, p ∗ x) ∨ (1, x)) ∧ [∞] = (p).

Thus (σXσY σZ)2 = 1 and the restricted Pappus Theorem holds in Π by Lemma 1.2

Theorem 2. Provided that a ∗ b = T (1, a, b), ∀a, b ∈ R, the ((0), (1), (∞)) dual
Pappus′ Theorem holds in π iff (R, ∗) is an Abelian group.

Proof. We denote by σX , the permutation of the lines through (0) or (1) which
interchanges pairs meeting on [x], x ∈ R\{0}, let σ0 be the corresponding permutation
for [0].

Assuming the restricted dual Pappus′ Theorem, we have:

σY σ0σX([0, 0]) = σY σ0([1, x]) = σY ([0, x]) = [1, y ∗ x].

In this last line we have to appeal to the special assumption T (1, a, b) = a ∗ b.
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Similarly,
σXσ0σY ([0, 0]) = [1, x ∗ y].

By the dual of Lemma 1, x ∗ y = y ∗ x, and

σZσ0σY σ0σX([0, 0]) = [1, z ∗ (y ∗ x)]

σY σ0σZσ0σX([0, 0]) = [1, y ∗ (z ∗ x)]

By the dual of Lemma 1, we have z ∗ (y ∗ x) = y ∗ (z ∗ x). But by the commutativity
just proved, this becomes (y ∗ x) ∗ z = y ∗ (x ∗ z), namely the associativity. Hence
(R, ∗) is an Abelian group.

Conversely, assume that (R, ∗) is an Abelian group. Therefore, ∀k ∈ R,

(σZσY σX)2([0, k]) = σZσY σXσZσY ([1, x ∗ k])

= σZσY σXσZ [0, y−1 ∗ x ∗ k]

= σZσY σX([1, z ∗ y−1 ∗ x ∗ k])
= σZσY ([0, x−1 ∗ z ∗ y−1 ∗ x ∗ k])

= σZ([1, y ∗ z ∗ y−1 ∗ k]) = [0, k].

So, we have (σZσY σX)2 = 1, and by the dual of Lemma 1, the ((0), (1), (∞)) dual
Pappus′ Theorem holds in π. It is easy to see that the ((0), (1), (∞)) dual Pappus
Theorem implies the ((0), (∞), (1)) dual Pappus Theorem since ((0), (∞), (1)) is any
permuted arrangement of the points (0), (1) and (∞). 2
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