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ABSTRACT

The hypothesis that variations in eddy diffusivity may account for some aspects of the observed distri-
butions of oceanic scalars is examined by generating solutions to the diffusion equation with spatially variable
and/or anisotropic eddy diffusivity. In particular, the solutions generated here demonstrate how a purely
diffusive field, with variable and anisotropic diffusion, can itself generate tongue-like property distributions.
Although tongues of various oceanic properties have often been interpreted as due primarily to advective
effects, such interpretations must be viewed with caution when the gradients of eddy diffusivity are com-

parable to, or greater than, the local velocity field.

1. Introduction

The hypothesis that variations in eddy diffusivity
may account for some aspects of the observed dis-
tributions of oceanic scalars was suggested in an ear-
lier paper (Armi, 1979). Further study, primarily
with a numerical model, is the subject here.

Motivation for this study comes from the growing
observational evidence for large and fairly rapid spa-
tial variability of the eddy energy field of the oceans
(cf. Fuglister, 1954; Wyrtki et al., 1976; Dantzler,
1977; Schmitz, 1977); similar variations are also seen
in eddy resolving numerical simulations (Holland,
1978; Schmitz and Holland, 1982). Although as yet
only very qualitative prescriptions exist for relating
the isopycnal diffusivity field to the eddy energy field
(cf. Price, 1981), there are striking similarities be-
tween property distribution maps and eddy field
maps as can be seen in Figs. 1 and 2 [see also Armi
(1979) Figs. 5, 6]. One of our goals here has been
to generate solutions to the diffusion equation with
a variable diffusion coefficient in an attempt to model
the salinity distribution shown in Fig. 1 with a dif-
fusivity field similar to that shown in Fig, 2.

An additional complication studied here is the ef-
fect of anisotropy in the diffusivity field. This is sug-
gested by the dynamical constraint due to the vari-
ation of planetary vorticity in the north-south di-
rection and no such constraint in the east-west
direction. Freeland et al. (1975) also present obser-
vational evidence from the dispersion of SOFAR
floats for a small anisotropy of the horizontal dif-
fusivity.
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The result of this study is primarily a catalog of
solutions to the steady diffusion equation showing the
effects of particularly simple distributions of diffu-
sivities and anisotropy. These solutions illustrate
quantitatively as well as qualitatively the simple ef-
fects of each. Although the classical interpretation
of tongues of various properties, for example, the
Mediterranean tongue of the North Atlantic, has
been as an advective-diffusive attribute (cf. Needler
and Heath, 1975; Richardson and Mooney, 1975),
the catalog of purely diffusive solutions shown here
suggests that any interpretation of tongue-like prop-
erty distributions need be put forth with caution
when little is known about the degree of anisotropy
or variability of the supposed Fickian diffusivity field.

2. The diffusion equation with nonhomogeneous an-
isotropic diffusion

The two-dimensional steady advective-diffusive
equation for a nonhomogeneous anisotropic medium
can be written as

@-VC—-V-(KVC)=0. (1)

The tracer concentration C is affected by a velocity
field 7 and a diffusivity assumed to have the form

ey e

where the subscripts x and y represent principal di-
rections. For horizontal isopycnal distributions, these
principal directions are east and north, respectively,
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F1G. 1. Salinity (%) on the density surface chosen to represent Mediterranean outflow water, from Reid (1979).
The approximate average depth of this surface is 1 km.

along isopycnals. This form of the diffusivity tensor
is also the case of a non-crystalline anisotropic ma-
terial or orthotropic solid described by Carslaw and
Jaeger (1959, p. 41).

With the diffusivity term (2) expanded, the ad-
vection-diffusion equation can be written as

( aKx) aC ( 8K,) aC
u—-—)—=+lv-—2)=
ox ] ox ay J oy
' ¥C 4°C
-K.—S-~-K,—=0. (3
axt TV P )

Eq. (3) illustrates how variations of the diffusivity

act much like an additional advective field in the.

direction from high to low eddy diffusivity.

Problems of interest here will be those for which
the role of advection by the velocity field is weak,
particularly in comparison to the advective-like
variation in eddy diffusivity, i.e., u < dK,/dx and
v < 9K, /dy. For the cases treated it will also be as-
sumed that the anisotropy of the diffusivity tensor
remains constant, i.e.,

Kdx, y) _
K,(x, p)

The effects of anisotropy are then equivalent to a

(4)

stretching in one direction of the coordinate space
(cf. Carslaw and Jaeger, 1959, p. 42). Letting
C x =AY

()
and assuming advection to be weak yields the dif-
fusion equation
0K, 9C K, IC ¥C ¥C_
K dx'dx' K@y dy dx? &

(6)

in which the anisotropic effects have been absorbed
in the stretched coordinate x’. . :

If the variation of the diffusivity is assumed to be
in only one direction, and this variation is assumed
to have the form

dk,
= 7
K,dy a, (7)
then Eq. (6) becomes
aCc  ¥C dC
— 4+ =0. 8
* oy ax? 3 0 ®)

When « is a constant, Eq. 8 is also the equation for
diffusion in the presence of uniform advection for
which analytical solutions exist (cf. Carslaw and
Jaeger, 1959, p. 266). For the rectangle with north-
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FIG. 2. Estimated potential energy per unit mass arising from mean-squared displacements in the thermocline, from Dantzler (1977).

south length scale L and boundary conditions C
= 0 at y = 0, L, the analytical solution has the form

C = e”’¢(x, y), (92)

#(x, y) = sin[(nwy/L)g,], (9b)

g, = A, sinh(g,x) — B, cosh(g,x), (9¢)
211_2 2

ai-(Z5+%), (9d)

where A,, B, are constants which must be chosen to
satisfy boundary conditions on the remaining north-
south boundaries. Inspection of (9d) shows the ef-
fects of variable diffusion will dominate the x dis-
tribution when

o Vi

> > I (10a)
and from (9a), the y distribution when

a 1

2 > I {(10b)

A Peclet number can be formed using the “gra-

dient eddy diffusivity velocity” dK,/dy. In terms of
this Peclet number, the effects of variable diffusivity
become important for x and y distribution when

Pe

L > 27 or 2, respectively. (1la,b)

= ¥
K,dy

For nonconstant values of o [Eq. (7)], if we define
an average Peclet number as

— L (dK
Pe = J; (Ed-y)dy’ (12)
integration of (12) gives
—  [K(L)
Pe = ln[_K(O)] . (13)

Hence the effect of variable diffusivity is logarithmic
with the ratio of diffusivities.

For oceanic applications, we may expect a north-
south ratio of diffusivities in the range of 10 to per-
haps 100 based on eddy kinetic energy level maps.
This range gives average diffusivity Peclet numbers
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between 2.3 and 4.6. From Eq. (11), we may antic-
ipate an effect on north-south property distributions
and little effect on east-west distributions for a
purely north-south variability of the diffusivity field.

3. Model equation, boundary conditions and solution
technique

To investigate directly the potential effects of sim-
ple inhomogeneous and/or anisotropic diffusivities
on steady-state property distributions, we have ex-
amined solutions to the model equation

42, 7C, (4 oK ac
ax* 3 \K, ax /) ox

I 9K,\ aC
+ (L)
(Ky dy s dy 0 a4

on the rectangular region 0 < x < 1l and -0.5 < yp
< 0.5, where the anisotropy A4, here assumed con-
stant, is defined by (4). The model problem [Eq.
(14)] is closed by one of two sets of boundary con-
dition assumptions:

either .
C=0 x=0
y ==x0.5 , (15)
acC
I 106(yy) x=1
or
C=0 y = =05
?_C_'= 106(yp) x=1 R (16)
dx
aC
ax x=0

where the delta function (source term) §(3,) is equal
to 1 at the “injection point” y,, and zero elsewhere.
Both sets of boundary conditions prescribe absorbing
boundaries (C = 0) at the northern and southern
walls, and a property source (3C/dx = 10) along the
eastern wall at some y,. The western wall is treated
either as a property sink [C = 0, (15)], or as insu-
lating boundary [dC/dx = 0, (16)]. The actual ef-
fective boundary constraints on steady-state property
distributions in the ocean are, of course, expected to
be much more complicated than those posed here.
However, boundary conditions (15) and (16) are eas-
ily understood in physical terms, and straightfor-
wardly implemented numerically. A comparison of
the effects of the two alternate western boundary
prescriptions provides some indication of the range
of solutions attainable with (14) and, therefore, the
sensitivity to the diffusive character of the bounding
surfaces (see below).
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Model equation (14), with boundary conditions
(15) or (16), has been solved for a variety of inho-
mogeneous diffusivities K,(x, y) and anisotropies 4

on the CRAY 1 system at the National Center for

Atmospheric Research (NCAR). The solutions were
obtained to fourth-order accuracy on a 65 X 65 fi-
nite-difference grid using the NCAR elliptic equa-
tion solving package LIPTIC, [Briefly, an initial sec-
ond-order solution is determined on the finite-differ-
ence grid by an efficient LU decomposition of the
resulting sparse (block tridiagonal) matrix equation.
A fourth-order solution is found thereafter by the
method of deferred corrections—see, for instance,
Haidvogel and Zang (1979).] A variety of analytic
test problems were performed to evaluate the accu-
racy of the numerical solutions thus obtained. These
analytic tests gave very small relative errors (107¢
or less).

4. Discussion of results

The catalog of solutions, generated to investigate
potential effects of simple anisotropic and/or inho-
mogeneous diffusivities on steady-state property dis-
tributions, is discussed below. We first look at the
effects of anisotropy in a constant diffusivity field.

The effects of varying the degree of anisotropy of
the diffusion field are shown in Fig. 3. The diffusivity
is kept constant (K, = 1) and only the anisotropy
was varied. Both the upper and lower frames of Fig.
3 show solutions for absorbing boundaries at the
northern and southern walls and a property source
in the center of the eastern wall. The western wall
is treated in one of two ways: in the upper frames
as an insulating boundary, in the lower frames as a
sink. A complete description of the boundary con-
ditions can be found in the previous section. The
effects of anisotropy are equivalent to a stretching
in one direction of the coordinate space [Eq. (5)].
For anisotropies of 5 and 10, clear tongue-like prop-
erty distributions are seen; in the neighborhood of
the source, the aspect ratio of the tongue is given by
A'?[Egs. (5), (6)]. The tongue-like distributions due
to an anisotropy always point in the direction of the
highest diffusivity.

Solutions which include north-south variations of
the diffusivity are shown in Fig. 4. The difference
between upper and lower frame side wall boundary
conditions are as in Fig. 3. The source is at y = 0.25.
No anisotropy was included for these solutions. The
diffusivity varied in the north-south direction ac-
cording to

K, =1+ 165,

< 0.25
Iyl } . (17
K,=1+«,

ly| > 0.25

For the above north-south variation of diffusivity
a the inverse of the diffusivity length scale [Eq. (7)]
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TABLE 1. Diffusivity K|, and normalized diffusivity variation «, at selected positions y,
along with an average Peclet number Pe for five values of X,.
Kk, =0 Ky =2 Ky = 4 ky =9 Ky = 99
Pe=0 Pe = 1.1 Pe=16 Pe =23 Pe = 4.6
y K, P K, P K, @ K, @ K, @
0 1 0 1 0 1 0 1 i} 1 0
0.05 1 0 1.1 3.0 1.2 5.5 1.4 10.6 5.0 31.9
0.10 1 0 1.3 4.9 L6 7.8 2.4 11.8 16.8 18.9
0.15 1 0 1.7 5.6 2.4 7.9 4.2 10.2 36.6 13.0
0.20 1 0 2.3 5.6 3.6 7.2 6.8 8.5 64.4 9.8
0.25 1 0 3.0 5.3 5.0 6.4 10.0 7.2 100.0 7.9
is given by low diffusivity variation solutions. For the two largest
32,y diffusivity gradients, x, = 9 and 99, the average
e 3 Iy <0.25 Peclet numbers (Pe = 2.3 and 4.6) are greater than
1+ 16x,y (18) 2, the minimum needed for an effect on the north-
0, lyl > 0.25 south property distribution [Eq. (11b)].

For the five values of «,, values of K, and o are shown
in Table 1 along with the average Peclet number
Pe [Eq. (13)].

As discussed in Section 2, the effect of a variable
diffusivity on a steady-state concentration field is
approximately logarithmic with the ratio of maxi-
mum to minimum diffusivities present in the field
[Eq. (13)]. In the solutions displayed in Fig. 4, a
considerable difference can be seen in the north-
south distributions of concentration for the largest
diffusivity variations, in comparison to the zero or

Solutions to the steady-state diffusion equation,
with a constant diffusivity, do not depend on the ac-
tual magnitude of the diffusion coefficient [e.g., Eq.
(8) with « = 0]. In Fig. 4, the region with a spatially
non-varying diffusivity at, and north of, the source
at y = 0.25, shows only small changes in the property
distributions with different magnitudes of the dif-
fusivity. The changes are in fact due to the varying
diffusivity in the central region, |y| < 0.25. In this
central region of spatially varying diffusivity, the
effect of the relatively low diffusion in the center is
analogous to a divergent velocity field pointing to-

. Covvonnniininnns o

Aoy

F1G. 5. The effects of varying the point of injection with the variable diffusivity field shown in Fig. 4 (k,=9,4=1).
The western boundary is insulated for the upper set of frames; for the lower set of frames it is a sink.
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ward the low diffusivity at the center line (y = 0)
from the relatively higher diffusivity regions to the
north and south.

The effects of varying the position of the point
source, with a variable diffusivity as in Fig. 4 (x,
=9, A = 1), can be seen in Fig. 5. Again, the dif-
ference in boundary conditions is as in Fig. 3. Start-
ing from the bottom frames, a symmetric distribution
is seen for a source at the center of the eastern bound-
ary and the symmetrically varying diffusivity field.
These two frames can be contrasted with the cor-
responding constant diffusivity field distributions
shown in Fig. 3 (4 = 1). With a varying diffusivity,
a slight point or tip in the property isopleths is seen
at the center line in contrast with the smooth, nearly
circular isopleths in the corresponding frames of Fig.
3. As the position of the source is moved northward,
more asymmetry is introduced into the resultant
property distribution field. The field is also more no-
ticeably warped by the spatially variable diffusion
field.

In Fig. 6 the effects of exclusively east-west dif-
fusivity field variations can be seen. The effects of
this diffusivity distribution are similar to applying
an additional velocity field from the region of high
diffusivity to the region of low diffusivity, in this case
analogous to adding an eastward flowing current.
The source was at the center of the eastern wall, no
anisotropy existed in the diffusion field, and the dif-
fusivity varied in the east-west direction according
to

K, =1+4«(1 — x)%,
K,=1+«k,

(1-x)<05

(1-x)> 0.5} - 19

The three kappas shown (x, = 0, 9, 99) correspond
to_average Peclet numbers defined by Eq. (13) of
Pe =0, 2.3 and 4.6, respectively. A large quantitative

Ky =99
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effect is seen for these diffusivity variations; compare,
for example, the relative positions of the 0.010 iso-
concentration contour. Although there is a large
quantitative effect, the shape of the concentration
field does not change markedly. _

Two solutions for a large («, = 99, Pe = 4.6) one-
sided north-south variation of the diffusion field are
shown in Fig. 7. This particular distribution of dif-
fusivity was chosen to simulate the oceanic case of
the North Atlantic and the Mediterranean outflow.
Hopefully, the eddy potential energy density map of
Dantzler (1977) reproduced here in Fig. 2 represents
at least qualitatively the distribution of oceanic dif-
fusivities of the North Atlantic. The resultant prop-
erty distributions with anisotropics 4 = 1, 2 are seen
for an insulated western boundary and sinks to the
north and south.

The property distributions due to the purely dif-
fusive, but spatially variable, field are in fact qual-
itatively similar to the distributions of salinity on the
density surface corresponding to the Mediterranean
outflow. This distribution is shown in Fig. 1 from
Reid (1979).

5. Conclusions

Tongues of various properties in the ocean have
traditionally been interpreted as due to the combi-
nation of advection and diffusion. Such an interpre-
tation will apply in areas where advection is strong
relative to the gradient of the eddy diffusivity, VK,
an advection-like term in the full advective-diffusive
equation with variable diffusivity [Eq. (3)]. How-
ever, the catalog of solutions generated here suggests
that the interpretation of tongues must be done with
real caution when VK is of the same order as the
velocity field. We have demonstrated how a purely
diffusive field, with spatially variable or anisotropic

i +Ky/2
i*Ky

\;

]

3
25 -]

o -25

-50-

LA SR |

F1G. 7. Property concentrations for one-sided north-south variations in diffusivity. These results should
be compared with observations and potential energy distributions shown in Figs. 1 and 2. Two anistropies

(A = 1, 2) are shown.
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diffusion, can alone generate tongue-like property
distributions.

Unfortunately, an actual prescription for the
oceanic diffusion field is not available and we have
been forced to infer the variability from maps of eddy
potential energy. These maps show variability at
scales of 200 km. Using an eddy diffusivity of 10°
m? s7' (cf. Freeland et al., 1975), a gradient diffu-
sivity velocity of 5 mm s~ is applicable even for the
relatively low energy region of the Sargasso Sea stud-
ied by Freeland et al. At the ~1000 m level of the
salinity distribution shown in Fig. 1, velocities are
rarely larger than 5 mm s™' based on the geopotential
anomaly map of Reid (1979, Fig. 2). In the absence
of more information regarding oceanic velocity and
eddy fields, tongue-like property distributions need
be interpreted cautiously.

Serious doubt has also recently been raised re-
garding the modelling of oceanic diffusion as a gra-
dient transport process. Armi (1978) and McDowell
and Rossby (1978) have shown evidence of anomalies
that have moved as far as 6000 km from their pre-
sumed sources. Recently, Armi (1981) found three
large lenses of anomalously high (0.8%0) salinity
Mediterranean water in thé Canary Basin. These
lenses have diameters of 70-80 km and maximum
thicknesses greater than 800 m. If they are associated
with a significant transport of Mediterranean water
and are not just an occasional event, then a model
for tongue-like property distributions need be adopted
which includes these lenses. The simplest way to treat
them within the existing steady state framework
would be as a distributed source, since each has a
presumably different lifetime or distance travelled
before breaking apart.
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