
On High-Rate Cryptographic Compression
Functions?

Richard Ostertág and Martin Stanek

Department of Computer Science
Faculty of Mathematics, Physics and Informatics

Comenius University
Mlynská dolina, 842 48 Bratislava, Slovak Republic

{ostertag, stanek}@dcs.fmph.uniba.sk

Abstract. The security of iterated hash functions relies on the proper-
ties of underlying compression functions. We study highly efficient com-
pression functions based on block ciphers. We propose a model for high-
rate compression functions, and give an upper bound for the rate of
any collision resistant compression function in our model. In addition,
we show that natural generalizations of constructions by Preneel, Gov-
aerts, and Vandewalle to the case of rate-2 compression functions are not
collision resistant.

Key words: Hash functions, compression functions, block ciphers, prov-
able security.

1 Introduction

Cryptographic hash functions are basic building blocks in many security con-
structions – digital signatures, message authentication codes, etc. Almost all
modern hash functions are built by iterating a compression function according
the Merkle-Damg̊ard paradigm [3, 5]. Moreover, these compression functions are
often based on some underlying block cipher. Even dedicated hash function like
SHA-1 is based on a block cipher called SHACAL-1 [4].

The first systematic study of 64 block cipher based hash functions was done
by Preneel, Govaerts, and Vandewalle [6]. Subsequently, Black, Rogaway, and
Shrimpton [2] analyzed these constructions in black box model and proved that
20 of them are collision resistant up to the birthday-attack bound.

An important property of a hash function is performance. Therefore, one
would like to maximize the rate of hash function – the number of message blocks
processed with one block cipher transformation. Another way to design fast hash
functions is the usage of keys from a small fixed set of keys in all block cipher
transformations, thus enabling a pre-scheduling of keys. Classical constructions
[6] are rate-1 and require rekeying for every message block. Recently, Black,

? We appreciate any comments and suggestions.

Cochran, and Shrimpton [1] shown, that it is impossible to construct (block
cipher based) provably secure rate-1 iterated hash function that use small fixed
set of keys.

Our contribution. We analyze the existence of high-rate compression func-
tions. Our contribution is twofold:

1. We propose a general model of (block cipher based) high-rate compression
functions, and show an upper bound for rate of provably secure compression
functions.

2. We show that generalizations of rate-1 constructions by Preneel, Govaerts,
and Vandewalle [6] to the case of rate-2 compression functions are not colli-
sion resistant.

Remark 1. We focus solely on collision resistance as the “most problematic”
property of cryptographic hash functions. Moreover, the results of our analysis
are mostly negative, so there is no need to study other properties.

The paper is structured as follows. Section 2 contains notions and definitions
used in the paper. In addition, we present our model of high-rate compression
functions. In Section 3 we give an upper bound for rate of collision resistant
compression functions in the model. The analysis of rate-2 compression functions
is presented in Section 4.

2 Background and Definitions

The notation used in the paper follows closely the notation introduced in [1, 2].
Let Vm be a set of all m-ary binary vectors, i.e. Vm = {0, 1}m. Let k and n be
positive integers. A block cipher is a function E : Vk × Vn → Vn, where for each
key K ∈ Vk, the function EK(·) = E(K, ·) is a permutation on Vn. Let Bloc(k, n)
be the set of all block ciphers E : Vk × Vn → Vn. The inverse of block cipher E
is denoted by E−1.

A (block cipher based) compression function is a function f : Bloc(k, n) ×
(Va × Vb) → Vc, where a, b, and c are positive integers such that a + b ≥ c. An
iterated hash of compression function f : Bloc(k, n) × (Va × Vb) → Va is the
hash function H : Bloc(k, n) × V ∗

b → Va defined by HE(m1 . . .ml) = hl, where
hi = fE(hi−1, mi) and h0 is a fixed element from Va. We set HE(ε) = h0 for
empty string ε. We often omit superscripts E to f and H. If the computation of
fE(h,m) uses e queries of E then f (and its iterated hash H) is rate-r, where
r = (b/n)/e. Often n | b, and the rate represents the average number of message
blocks processed by single E transformation. For example, for b/n = 3 and e = 2
we get compression function of rate-(3/2).

The experiment of choosing a random element x from the finite set S will be

denoted by x
$←− S.

Black-box model. An adversary A is given access to oracles E and E−1 where
E is a block cipher. We write these oracles as superscripts, i.e. AE,E−1

. We
omit the superscripts when the oracles are clear from context. The adversary’s
task is attacking the collision resistance of a hash function H. We measure the
adversary’s effort of finding collision as a function of the number of E or E−1

queries it makes. Notice that we assume information-theoretic adversary, i.e. the
computational power of the adversary is not limited in any way.

Attacks in this model treat the block cipher as a black box. The only struc-
tural property of the block cipher captured by the model is the invertibility. The
model cannot guarantee the security of block cipher based hash functions in-
stantiated with block ciphers having significant structural properties (e.g. weak
keys). On the other hand, the black-box model is stronger that treating the block
cipher as a random function, because the adversary’s ability to compute E−1.

We define the advantage of an adversary in finding collisions in a compression
function f : Bloc(k, n) × (Va × Vb) → Vc. Naturally (h,m) and (h′,m′) collide
under f if they are distinct and fE(h,m) = fE(h′,m′). We also take into account
a collision with empty string, i.e. producing (h,m) such that fE(h,m) = h0. We
look at the number of queries that the adversary makes compare this with the
probability of finding a collision.

Definition 1 (Collision resistance of a compression function [2]). Let f
be a block cipher based compression function, f : Bloc(k, n)×(Va×Vb) → Vc. Fix
a constant h0 ∈ Vc and an adversary A. Then the advantage of finding collisions
in f is the probability

Advcomp
f (A) = Pr

[
E

$←− Bloc(k, n); ((h,m), (h′,m′)) ← AE,E−1

:

(h,m) 6= (h′,m′) ∧ fE(h,m) = fE(h′,m′) ∨ fE(h, m) = h0

]

For q ≥ 0 we write Advcomp
f (q) = maxA{Advcomp

f (A)} where the maximum is
taken over all adversaries that ask at most q oracle (E or E−1) queries.

Definition 2 (Collision resistance of a hash function [2]). Let H be a
block cipher based hash function, and let A be an adversary. Then the advantage
of finding collisions in H is the probability

Advcoll
H (A) = Pr

[
E

$←− Bloc(k, n); (M, M ′) ← AE,E−1

:

M 6= M ′ ∧HE(M) = HE(M ′)
]

For q ≥ 0 we write Advcoll
H (q) = maxA{Advcoll

H (A)} where the maximum is
taken over all adversaries that ask at most q oracle (E or E−1) queries.

The following theorem forms a basis for construction of iterated hash func-
tions (Merkle-Damg̊ard paradigm). It shows that the collision resistance of com-
pression function is sufficient for the collision resistance of its iterated hash
function.

Theorem 1 (Merkle-Damg̊ard [3, 5]). Let f : Bloc(k, n)× Vn × Vn → Vn be
a compression function and let H be an iterated hash of f . Then Advcoll

H (q) ≤
Advcomp

f (q) for any q ≥ 1.

Remark 2. Birthday attack is a generic collision-finding attack on a compres-
sion/hash function. The advantage of birthday attack is Θ(q2/2n), where q is
number of evaluations of the function and n is the length of output. Usually, a
compression function f (hash function H) is called collision resistant up to the
birthday-attack bound, or simply collision resistant if Advcomp

f (q) = Θ(q2/2n)

(Advcoll
H (q)) = Θ(q2/2n)).

2.1 A Model of High-Rate Compression Function

We define a model of high-rate compression function f : Bloc(k, n)×(Va×Vb) →
Va. The model assumes following:

– The evaluation of compression function f uses a single query E to compute
f(h,m).

– The length of m is an integer multiple of the E’s block length n, i.e. b = rn
where r ≥ 1.

According to the second condition the compression function is rate-r. Let f1 :
Va × Vrn → Vn, f2 : Va × Vrn → Vk, and f3 : Va × Vrn × Vn → Va be arbitrary
functions. The computation of the compression function f : Bloc(k, n) × (Va ×
Vnr) → Va is defined as:

function fE(h,m) :

X ← f1(h,m)

K ← f2(h, m)

Y ← E(K, X)

return f3(h,m, Y)

When convenient we express m as a concatenation of n bit blocks. These
r blocks are denoted by m(1), . . . ,m(r). Our model of high-rate compression
function used in iterated hash is depicted in Fig. 1.

hi−1

m(1), . . . ,m(r)

key

E hif1

f2

f3

Fig. 1. Model of high-rate compression function

The model is quite general – it covers all compression functions that takes r
blocks of a message and process them using exactly one encryption transforma-
tion E. Notice that all rate-1 schemes from [6] (we call them PGV) are special
instances of the model.

3 An Upper Bound for the Rate of Compression Function

In the following theorem, we present an attack on collision resistance of com-
pression function. This attack works on any compression function belonging to
the model. As a by-product we obtain an upper bound for rate of any collision
resistant compression function.

Theorem 2 (Upper bound for rate of a compression function). Let E ∈
Bloc(n, k). Let f1 : Va×Vrn → Vn, f2 : Va×Vrn → Vk, and f3 : Va×Vrn×Vn →
Va be arbitrary functions. Let f : Va×Vrn → Va be a compression function defined
as f(h,m) = f3(h,m, Ef2(h,m)(f1(h,m))). Let r > 1+k/n. Then Advcomp

f (1) =
1.

Proof. We describe an adversary A that asks exactly one oracle query. For any
X ∈ Vn, and K ∈ Vk we denote by DX,K the set of all pairs (h,m) such that
f1(h, m) = X, and f2(h,m) = K, i.e. DX,K = f−1

1 (X) ∩ f−1
2 (K). Adversary A

proceeds as follows:

1. A finds such X ∈ Vn, and K ∈ Vk that |DX,K | is maximal.
2. A computes Y = EK(X).
3. A finds a collision in the set DX,K , i.e. (h,m), (h′,m′) ∈ DX,K : (h,m) 6=

(h′,m′) ∧ f3(h,m, Y) = f3(h′,m′, Y).

One can easily check that (h, m) and (h′,m′) form a collision for compression
function f :

f(h,m) = f3(h,m, Ef2(h,m)(f1(h,m))) = f3(h,m, EK(X)) =

= f3(h′, m′, EK(X)) = f3(h′,m′, Ef2(h′,m′)(f1(h′,m′))) = f(h′,m′)

Now, we argue that A succeeds in the third step of the attack. First, we show that
|DX,K | ≥ 2a+n(r−1)−k. Let us assume the opposite holds: |DX,K | < 2a+n(r−1)−k

for all X ∈ Vn, K ∈ Vk. Then
∑

X∈Vn, K∈Vk

|DX,K | < 2n+k · 2a+n(r−1)−k = 2a+nr.

On the other hand
∑

X∈Vn, K∈Vk

|DX,K | =
∑

X∈Vn

∑

K∈Vk

|f−1
1 (X) ∩ f−1

2 (K)| =
∑

X∈Vn

|f−1
1 (X)| = 2a+nr,

a contradiction. Thus, the adversary selects X, K with |DX,K | ≥ 2a+n(r−1)−k

in the first step of the attack. Since the range of compression function f has 2a

elements (the range is the same as the range of f3), the adversary succeeds in
finding collision if |DX,K | > 2a. The inequality is satisfied if 2a+n(r−1)−k > 2a,
or equivalently r > 1 + k/n.

Adversary A produces a collision in compression function f with probability
1 (assuming r > 1 + k/n). Moreover, the adversary asks exactly one oracle (E)
query during the attack. Thus, Advcomp

f (1) = 1. ut
Remark 3. Recall that the adversary was not computationally limited and the
attack has exponential time complexity (more precisely, steps 1 and 3).

The theorem gives an upper bound 1 + k/n for the rate of collision resis-
tant compression function. Compression functions with higher rate cannot be
collision resistant (at least compression functions in our model). However, the
theorem says nothing about collision resistance of compression functions with
rate r ≤ 1 + k/n. A natural question is whether this upper bound for collision
resistant compression functions can be achieved. A negative answer for a class
of compression functions is given in the following section.

4 PGV-like Rate-2 Compression Functions

The constructions of compression functions from block cipher often assume equal
key and block lengths [6], i.e. k = n. Then the upper bound from Theorem 2
simplifies to r ≤ 2. Similarly, the output of compression function has usually
the same length as the block, i.e. a = n. Thus, we consider rate-2 compression
functions of the form f : Vn × V2n → Vn.

Preneel, Govaerts, and Vandewalle [6] studied rate-1 compression functions.
They considered all 64 compression functions f of the form f(h,m) = Ea(b)⊕ c
where a, b, c ∈ {h,m, h ⊕ m, v} (v is a fixed constant). As showed in [2], 12
compression function are collision resistant, and additional 8, though not collision
resistant, form collision resistant hash functions.

A natural extension of above constructions to the case of rate-2 compression
functions is the following scheme:

f(h, (m(1),m(2))) = Ea(b)⊕ c, (1)

where a, b, c ∈ {h,m(1),m(2), h⊕m(1), h⊕m(2),m(1)⊕m(2), h⊕m(1)⊕m(2), v}.
This way we obtain 512 compression functions.

Remark 4. Notice that the compression functions instantiated in the scheme fall
in our model – f1(h,m) = b, f2(h, m) = a, and f3(h,m, Y) = Y ⊕ c.

We show that no compression function of the form (1) is collision resistant
(for any function there exists an adversary that finds a collision and asks at most
two queries). We partition these functions into distinct classes according attacks
that find (at least one) collision. Summary of the classes is given in Table 1. For
each class the table shows the number of compression functions in the class, and
the number of oracle queries needed in collision finding attack.

Table 1. Collision classes of rate-2 compression functions

class functions queries

1 – Superfluous Variables 169 0
2 – Balanced Combinations 133 0
3 – Compensations 150 2
4 – “Hard” Core 60 2, 0

Remark 5. There are compression functions that are vulnerable to multiple at-
tacks using e.g. superfluous variables or balanced combinations. In such situation
we assign particular function to the class with lowest number.

4.1 Class 1 – Superfluous Variables

First class contains all those compression functions that do not depend on all
input vectors, i.e. at least one of h, m(1), m(2) is not required for computing the
function. Examples of such compression functions are Eh(h⊕m(1))⊕h, Em(2)(v)⊕
m(1)⊕m(2), or Ev(h⊕m(2))⊕h⊕m(2). Trivially, one can find many collisions in
compression functions from this class. It suffices to vary the superfluous variable.
Moreover, no oracle queries are needed to produce collisions.

4.2 Class 2 – Balanced Combinations

Our second class consists of those compression functions that are not in class 1,
and have a balanced combination of two input vectors. Let x1, x2 ∈ {h,m(1),m(2)}
be two distinct input vectors, i.e. x1 6= x2. We call a combination x1 ⊕ x2 bal-
anced in compression function f , if every occurrence of x1 in f ’s parameters a,
b or c implies x2 occurrence in the same parameters (and vice versa). Examples
of compression functions in this class are:

Eh⊕m(1)⊕m(2)(m(1) ⊕m(2))⊕ v,

Em(2)(h⊕m(1))⊕ h⊕m(1),

Eh⊕m(2)(h⊕m(1) ⊕m(2))⊕ h⊕m(1) ⊕m(2).

It can be easily seen that collisions can be find without any oracle queries.
Balanced combination x1 ⊕ x2 allows choosing 2n values pairs (x1, x2) without
changing parameters a, b, and c. Hence, the value of f does not change either.

4.3 Class 3 – Compensations

Third class of compression functions contains those functions (not in classes 1
and 2) that have some input vector solely in either parameter b or parameter c.

Let x ∈ {h,m(1),m(2)} be such input vector. Let x appears only in f ’s parameter
b, i.e. input of block cipher transformation. An adversary can find collision in the
following way. He sets the output of f to some fixed value z. Similarly he sets the
values of all input vectors except x randomly. Using a query to E−1 oracle the
adversary can compute “suitable” x value. Repeating this procedure for different
random choice of input vectors values and the same fixed z, the adversary obtains
a collision for f . The situation for x appearing solely in parameter c is treated
analogously.

Examples of compression functions in this class are:

Em(2)(m(1))⊕ h⊕m(2),

Em(1)(m(2))⊕ h⊕m(1) ⊕m(2),

Eh⊕m(1)(m(1) ⊕m(2))⊕ v.

4.4 Class 4 – “Hard” Core

There are 60 compression functions left after sorting the functions into classes
1, 2, and 3. Let us denote this set C. We call two functions f1, f2 permutation-
equivalent, if f1 can be obtained from f2 by some permutation of its inputs. It
can be easily observed that Advcomp

f1
(q) = Advcomp

f2
(q) for any permutation-

equivalent compression functions f1, f2, and any q ≥ 0. Therefore the set C
can be partitioned to equivalence classes. Since every equivalence class has 6
members, it suffices to analyze the collision resistance of any 10 permutation-
nonequivalent compression functions (each one drawn from different equivalence
class). One selection of these 10 functions is shown in Table 2.

Table 2. Permutation-nonequivalent compression functions of “hard” core class

i a b c

1 m(1) ⊕m(2) h h⊕m(2)

2 m(1) ⊕m(2) h⊕m(2) h

3 m(1) ⊕m(2) h⊕m(2) h⊕m(2)

4 m(1) ⊕m(2) h⊕m(2) h⊕m(1)

5 m(1) ⊕m(2) h⊕m(2) h⊕m(1) ⊕m(2)

6 m(1) ⊕m(2) h⊕m(1) ⊕m(2) h⊕m(2)

7 h⊕m(1) ⊕m(2) m(2) m(1)

8 h⊕m(1) ⊕m(2) m(2) m(1) ⊕m(2)

9 h⊕m(1) ⊕m(2) m(1) ⊕m(2) m(2)

10 h⊕m(1) ⊕m(2) m(1) ⊕m(2) h⊕m(2)

Now we show collisions in all 10 permutation-nonequivalent compression
functions. Hence, all 60 functions from set C are not collision resistant. We

refer compression functions from Table 2 as f1, . . . , f10. For brevity, let 0 (1) be
all-zero (all-one) vector in Vn, respectively. Let A be following collision finding
adversary:

1. A sets (h,m(1),m(2)) = (0, 0, 0), i.e. fi(h,m(1),m(2)) = E0(0).
2. A asks two oracle queries and computes x = E0(0)⊕ E1(0).
3. A solves following equations (a′, b′, c′ denote corresponding linear combina-

tions of h′, m′(1), m′(2) for compression function fi):

a′ = 1

b′ = 0

c′ = x

For any solution (h′, m′(1),m′(2)) we have fi(h′,m′(1),m′(2)) = Ea′(b′)⊕c′ =
E1(0) ⊕ E0(0) ⊕ E1(0) = E0(0). Hence any solution different from (0, 0, 0)
yields a collision.

Let us illustrate adversary’s computation on f1. Adversary A solves following
equations in step 3:

m′(1) ⊕m′(2) = 1

h′ = 0

h′ ⊕m′(2) = x

Solution is (h′, m′(1),m′(2)) = (0, 1⊕ x, x) 6= (0, 0, 0), and A obtains a collision.
Adversary A can successfully find collisions for all functions f1, . . . , f10, see

Table 3, except for f3 and f4 due to the linear dependence of a′, b′, and c′. We
produce collisions for these functions separately (moreover, no oracle queries are
needed). It can be easily verified that f3(0, 0, 0) = f3(1, 1, 1), and f4(0, 0, 0) =
f4(1, 1, 1).

Summarizing attacks from this section we obtain following theorem:

Theorem 3. Let E ∈ Bloc(n, k). Let f : Vn×V2n → Vn be a compression func-
tion defined as f(h, (m(1),m(2))) = Ea(b)⊕ c, where a, b, c ∈ {h,m(1),m(2), h⊕
m(1), h⊕m(2),m(1) ⊕m(2), h⊕m(1) ⊕m(2), v}. Then Advcomp

f (2) = 1.

Remark 6. The attacks presented in this section do not use the full strength
of black-box model – a computationally unbounded adversary. These attacks
require just polynomially bounded adversary asking constant number oracle
queries.

5 Conclusion

Many interesting questions arise from the results presented in the paper. We
state two most prominent ones as open problems:

1. Are there any collision resistant compression functions with rate > 1?

Table 3. Collisions for (0, 0, 0) produced by adversary A

i h′ m′(1) m′(2)

1 0 1⊕ x x
2 x 1⊕ x x
3 − − −
4 − − −
5 1⊕ x x 1⊕ x
6 1 x 1⊕ x
7 1⊕ x x 0
8 1⊕ x x 0
9 1 x x

10 1 1⊕ x 1⊕ x

2. Collision resistance of compression function is sufficient, but not necessary
condition for collision resistance of iterated hash [2]. Are there any PGV-like
rate-2 compression functions that result in collision resistant iterated hash
function?

References

1. Black, J., Cochran, M., Shrimpton, T.: On the Impossibility of Highly-Efficient
Blockcipher-Based Hash Functions, In Advances in Cryptology – Eurocrypt ’05,
LNCS 3494, Springer-Verlag, 2005.

2. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based
hash-function constructions from PGV, In Advances in Cryptology – CRYPTO ’02,
LNCS 2442, Springer-Verlag, 2002.

3. Damg̊ard, I.: A design principle for hash functions, In Advances in Cryptology –
CRYPTO ’89, LNCS 435, Springer-Verlag, 1990.

4. Handschuh, H., Knudsen, L., Robshaw, M.: Analysis of SHA-1 in encryption mode,
In Advances in Cryptology – CT-RSA ’01, LNCS 2020, Springer-Verlag, 2001.

5. Merkle, R.: One way hash functions and DES, In Advances in Cryptology –
CRYPTO ’89, LNCS 435, Springer-Verlag, 1990.

6. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
A synthetic approach, In Advances in Cryptology – CRYPTO ’93, LNCS 773,
Springer-Verlag, 1994.

