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Abstract

High levels of security often imply that the computation time should be inde-
pendent of the value of involved secrets. When the expected answer of the solver
is either a solution or unsatisfiable, then the previous assumption leads to algo-
rithms that take always the computation time of the worst case. This is particularly
disturbing for NP-hard combinatorial problems.

In this work we start from the observation that sometimes (specially for hard
problems) users find it acceptable to receive as answer either a solution, the answer
unsatisfiable or a failure with meaning don’t know. More exactly users accept
incomplete solvers. As argued in [Sil05b], for certain problems privacy reasons
lead users to prefer having an answer meaning don’t know even when the secure
multi-party computation could have proven unsatisfiable (to avoid revealing that all
alternatives are infeasible). While the solution proposed in [Sil05b] is slower than
complete algorithms, here we show secure stochastic solutions that are faster than
complete solvers, allowing to address larger problem instances. Two new refined
concepts of privacy are introduced, namely requested t-privacy that factors out
treatment of knowledge of the protocol in t-privacy, and a slightly weaker version
called non-uniform requested t-privacy. In the last section we discuss arithmetic
circuits for complete and stochastic solutions to constraint optimization problems.

∗The update on Jan 28, 2006 introduced the comments about how the constant round primitive first-in-
array can replace certain computations. The last section, on Optimization Problems, was added during a
September 2005 update, and contains material from [SPF05]. A subsequent more complete description of
that section appears in [SFP06]. The section on the new privacy concept from [Sil05a], is further extended
on Dec 31, 2006.
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1 Introduction
Typical examples of combinatorial problems are meeting scheduling, resource alloca-
tion, time-tabling, auctions with several possible winners. Such a problem is typically
defined by a set of variables and constraints on the satisfiable assignments to these
variables. The set of all (satisfiable and unsatisfiable) simultaneous assignments of val-
ues to all variables defines the search space of the problem. An element of the search
space is also referred to as an alternative to be considered as a solution to the problem,
or simply alternative.

A complete solver is one that reports a solution whenever a solution exists. The
answer of such a technique is either a solution or unsatisfiable. Combinatorial problems
can be very hard and therefore we no not have efficient complete secure multi-party
computation solvers. Several complete secure solvers were proposed in the past for
such problems, and high levels of security always require a computation time that is
given by the worst possible case (over all possible values of the secrets).

It was shown that for problems that are solved only once, minimization of privacy
loss often requires that the solution be picked randomly, preferably with a uniform
distribution among the existing solutions [SR04]. Such a random selection can be
achieved if the problem is shuffled prior to solving [Sil03, Sil04]. Two families of
techniques were proposed for shuffling a shared description of a combinatorial prob-
lem,one based on mix-nets and one based on arithmetic circuits [Sil05c].

Sometimes, the security requirements themselves require an incomplete solver
(when the proof of unsatisfiability of the problem leads to unacceptable privacy loss,
by revealing that all alternatives are infeasible) [Sil05b]. The answer of such a solver
is either a solution or unsatisfiable. However, the solution proposed in [Sil05b] is actu-
ally slower than complete solutions. It first computes a solution with a complete secure
solver and then it hides the solution with some small probability.

In this work we show how the shuffling performed on problem descriptions prior to
solving allows to build an incomplete secure stochastic multi-party solver where a high
level of privacy is offered. The answers of the solver consists in either a solution or in
don’t know, and nothing is revealed about the set of alternatives that were not explored
(except for its size). Notably, these algorithms are strictly faster than the corresponding
complete versions and are parametrized with the percentage of the search space to be
explored (the search space is the set of all alternatives that may or may not satisfy the
combinatorial problem).

By specifying the percentage of the combinatorial problem to be explored, one
practically specifies the exact amount of computation (time) that the solver should
perform. The proposed techniques are different for shuffling with mix-nets and for
shuffling with arithmetic circuits. Arithmetic circuits for optimization problems are
discussed in the last sections.



2 Privacy Concept that Explicitely Factors out Knowl-
edge about the Protocol

We refine a concept of privacy that allows to formally identify losses of privacy due to
certain multi-party computation protocols. Namely, previous privacy concepts suggest
that a protocol is secure if everything leaked by its execution can also be inferred from
prior knowledge and obtained result. However, in this article we stress the need to
classify the information leaked due to the knowledge of which protocol is employed
as being leaked by its execution rather than solely by prior knowledge and obtained
result. This distinction is non-trivial, as proven by the fact that several recent articles
present algorithms designed according to the aforementioned privacy concept and still
failing our test of security.

The implications of the two ways of accounting privacy loss becomes easily clear
for problems where several solutions are possible (optimal). For such problems, the
knowledge of the algorithm used to select the solution may leak information about
where the other (optimal) solutions may or may not be located. While these implica-
tions were underlined in our previous work, the new concept of privacy shown here
offers a formal way to evaluate solutions proposed in the past for this problem. This
allows to motivate protocols leaking less information for applications such as auctions.

Different privacy concepts and levels of privacy were identified for multi-party
computations [BOGW88, FMW01], and they are relevant for different computational
models and assumptions. The t-privacy concept introduced in [BOGW88] is very well
known and is applicable to many types of assumptions:

Definition 1 A multi-party computation is t-private if an attacker controlling any at
most t participants cannot learn anything from the computation, except for what can
be inferred from its outputs and prior knowledge.

Security of a t-private scheme can be computational (if breaking it is computation-
ally intractable for the attacker) or information theoretical (if even infinite computation
power cannot infer anything about secrets since no information about it is contained in
the data obtained by the attacker).

Given secret inputs σ, the prior knowledge Γ of the t colluders and a multi-party
computation process Π with answer α, the technique is t-private if the probability distri-
bution of the secrets is conditionally independent on Π given answer α and knowledge
Γ.

P (σ|α,Γ,Π) = P (σ|α,Γ) (1)

However, many algorithms provide answers α that contain more information than
what is actually needed. We typically decompose α in a desired data α∗ and an al-
gorithmic dependent unrequested data α. For example1 the desired data can be an
assignment of some variables satisfying secret constraints, and the unrequested data is
what can be obtained from peculiarities of the used algorithm A (e.g., the solution is
the first/last in some known order on alternatives).

1With DisCSPs[Sil04].



Definition 2 We say that an algorithm A achieves requested t-privacy if the probability
distribution of the secrets is conditionally independent on Π,A and α given requested
data α∗ and prior knowledge Γ.

P (σ|α,Γ,Π,A) = P (σ|α∗,Γ) (2)

Examples of algorithms designed to be secure, according to Equa-
tion 1 [BOGW88], but insecure according to the definition introduced in Equation 2
are proposed in [YSH02a, Sil03, YS04, NZ05].

For problems with several solutions, requested t-privacy typically implies the re-
turn of uniformly random selected solutions whenever the problem may have more
than one solution. Examples of techniques secure according to the introduced concept
are [Sil04, Sil05a]. Sometimes uniform randomness in selecting the solution requires
very expensive computations. Non-uniform randomness in selecting the solution, while
shown to be often clearly better then deterministic approaches and often achievable
with significantly reduced computation effort, is less secure [Sil04]. The level of pri-
vacy achieved in that case is nevertheless interesting and worth its own definition. We
propose to call it non-uniform requested t-privacy, and can be describes by the prop-
erty:

Definition 3 We say that an algorithm A achieves non-uniform requested t-privacy if
for any secret σ ∈ σ that is not deterministically revealed given requested data α∗ and
prior knowledge Γ, it is also not deterministically relealed given Π,A and α.

∀σ ∈ σP (σ|α∗,Γ) < 1⇒ P (σ|α,Γ,Π,A) < 1 (3)

3 Background
Combinatorial problems have been often discussed in Computer Science and many ex-
amples are known to be very hard. For example SAT was the first proven NP-complete
problem and Constraint Satisfaction Problems are largely addressed with stochastic
and incomplete solvers.

A Constraint Satisfaction Problem (X,D,C) is defined by a set of variables X =
{x1, ..., xm}, a set of domains D = {D1, ..., Dm} where Di is the domain for xi,
and a set of constraints C = {φ1, ..., φc}. Each constraint φj specifies the acceptable
combinations of assignments of values to a subset Xj of the variables. A tuple is a
vector of assignments of values to distinct variables. A solution of the CSP is a tuple
of assignments of values to all the variables and that satisfies all the constraints. The
search space of the CSP is defined by the Cartesian productD1× ...×Dm. An element
of the search space is called an alternative. The ith alternative is denoted by εi.

A distributed CSP is a CSP (X,D,C) where a set of participantsA = {A1, ..., An}
have secret shares of C, none of them knowing the whole set C.



3.1 Shuffling an array of shared secrets
Secure multi-party computations can simulate any arithmetic circuit [BOGW88] or
boolean circuit [Kil88, Gol04] evaluation. An arithmetic circuit can be intuitively
imagined as a directed graph without cycles where each node is described either by
an addition/subtraction or by a multiplication operator. Each leaf is a constant.

The secure multi-party simulation of arithmetic circuit evaluation proposed
in [BOGW88] exploits Shamir’s secret sharing [Sha79]. This sharing is based on the
fact that a polynomial f(x) of degree t−1 with unknown parameters can be recon-
structed given the evaluation of f in at least t distinct values of x, using Lagrange
interpolation. Absolutely no information is given about the value of f(0) by reveal-
ing the valuation of f in any at most t−1 non-zero values of x. Therefore, in order
to share a secret number s to n participants A1, ..., An, one first selects t−1 random
numbers a1, ..., at−1 that will define the polynomial f(x) = s+

∑t−1
i=1(aix

i). A dis-
tinct non-zero number τi is assigned to each participant Ai. The value of the pair
(τi, f(τi)) is sent over a secure channel (e.g. encrypted) to each participant Ai. This
is called a (t, n)-threshold scheme. We will assume that all computations are per-
formed in a field Zq for some prime number q. Once secret numbers are shared with a
(t, n)-threshold scheme, evaluation of an arbitrary arithmetic circuit can be performed
over the shared secrets, in such a way that all results remain shared secrets with the
same security properties (the number of supported colluders, t−1) [BOGW88, Yao82].
For [Sha79]’s technique, one knows to perform additions and multiplications when
t ≤ (n− 1)/2. Since any bn/2c participants cannot find anything secret by colluding,
such a technique is called bn/2c-private [BOGW88]. It is also known how to evaluate
with computational securely any arithmetic circuit on additively shared secrets.

Shuffling with mix-nets In [Sil03, Sil04, Sil05c] it is shown how a mix-net can
shuffle a vector of shared secrets and can unshuffle a vector of the same size using
the inverse permutations. Each participant encrypts his share of each secret using a
(+ mod q,X) public encryption scheme for which it holds the secret key, and sends
a vector holding each encrypted share to A1. The vectors with the encrypted shares
are passed along each participant in A, each of the applying the same secret permu-
tation on all vectors. A shared 0 is also added to each sharing of a secret using the
homomorphism of the encryption. Each participant will provide the others with a zero-
knowledge proof for the correctness of his shuffling (respectively unshuffling).

Shuffling with arithmetic circuits Assume that we have composable multi-party
computations [Kil05, DFNT05] for computing:

• δK(x, y): Kronecker’s delta returning a shared 1 when x = y and 0 otherwise

• cmp(x, y) returns 1 when x < y and 0 otherwise

• RS(m,M): random secret generator, generating a shared secret in the interval
m,M .

• ∨`k=1xi: computes a shared secret equal to the result of applying logic ∨ on the
vector x1, ..., x` with values {0, 1}.



3.2 First in Array

The primitive first([a[1..m]]
F
,m) can be applied on a vector of m shared secrets

[a[1..m]]F = [a[1]]F,...,[a[m]]F, in {0, 1}, and replaces all its elements with 0, except
for the first occurence of a 1. A version of the implementation in [DFNT05], requiring
a constant number of rounds, namely 17, and 20m multiplications, is described in the
following. Implementations with less multiplications but linear or logarithmic round
are straight-forward and are shown in [Sil03, Sil04].

Let λ = d√me. First the elements of a are wrapped in a λ× λ matrix b[i, j], such
that:

[b[i, j]]F =

{
[a[iλ+ j]]F if (i− 1)λ+ j ≤ m
0 otherwise

Then compute [x[i]]F = ∨λj=1[b[i, j]]F and [y[i]]F = ∨ik=1[x[k]]F for i ∈ [1..λ], and
compute the row selector:

[row [i]]F =

{
[y[i]]F if i = 1
[y[i]]F − [y[i− 1]]F if i ∈ [2..λ]

Next one computes the selected row [r[j]]F =
∑λ
i=1[row [i]]F ∗ [b[i, j]]F and the column

selector with [z[i]]F = ∨ik=1[r[k]]F for i ∈ [1..λ], and

[col [j]]F =

{
[z[j]]F if j = 1
[z[j]]F − [z[j − 1]]F if j ∈ [2..λ]

Finally, the changes in the input vector are performed with: [b[i, j]]F = [row [i]]F ∗
[col [j]]F and b is returned as result. Operations can be optimized to disregard the 0
elements added to b at the beginning.

3.3 Shuffling
It is possible to design an arithmetic circuit for shuffling secrets, using the Algorithm 3.
This algorithm uses Algorithm 1 for a permutation of two elements on secret positions
in a vector. The random permutation is defined by a random vector computed with
Algorithm 2. Unshuffling can be done with the Algorithm 4.

function Perm (s,i,r,m,M,k
si =

∑M
j=m(δK(r, j) ∗ sj);

for j ∈ (i, k] do
sj = sj + (si − sj) ∗ δK(r, j);

Algorithm 1: Permuting element si with sr for a secret value r ∈ [m,M ] in vector s
with k shared secrets

This permutation was shown in [Sil05c] to lead to a random shuffling (taken from
a uniform distribution). Note that the random vector defining the permutation could
have been built allowing each element to belong to any value between 1 and k. This
would be computationally more expensive as it would require each call to the procedure
Perm to recompute all the elements of the vector to be shuffled (see Algorithm 5).



function RandomVector(k)
for j = 1 to k − 1 do

r[j] = RS(j, k);

return r;

Algorithm 2: Shuffling a vector s with k shared secrets

function Shuffle(s,k,r)
for j = 1 to k − 1 do

Perm(s,j,r[j],j,k,k);

Algorithm 3: Shuffling a vector swith k shared secrets, and a random vector r obtained
with Algorithm 2

function Shuffle(s,k,r)
for j = k − 1 to 1 do

Perm(s,j,r[j],j,k,k);

Algorithm 4: Un-shuffling a vector s with k shared secrets, when the shuffling was
defined by random secret vector r.

function Shuffle(s,k,r)
for j = 1 to k do

Perm(s,j,r[j],1,k,k);

Algorithm 5: Shuffling a vector s with k shared secrets, and a random vector r where
each element is obtained with RS(1, k).



3.4 MPC-DisCSP4
In [Sil05b] we have proposed a multi-party computation technique, called MPC-
DisCSP4, that extracts a random solution of a distributed CSP. MPC-DisCSP4 uses
general multi-party computation building blocks. General multi-party computation
techniques can solve securely certain functions, one of the most general classes of
solved problems being the arithmetic circuits. A distributed CSP is not a function. A
DisCSP can have several solutions for an input problem, or can even have no solution.
Two of the three reformulations of DisCSPs as a function (see [SR04]) are relevant for
MPC-DisCSP4:

i A function DisCSP1() returning the first solution in lexicographic order, respec-
tively an invalid valuation τ when there is no solution.

ii A probabilistic function DisCSP() which picks randomly a solution if it exists,
respectively returns τ when there is no solution.

For privacy purposes only the 2nd alternative is satisfactory. DisCSP() only reveals
what we usually expect to get from a DisCSP, namely some solution. DisCSP1() in-
trinsically reveals more [SR04]. MPC-DisCSP4 implements DisCSP() in five phases:

1. Share the secret parameters of the input DisCSP using Shamir’s secret sharing.
The value of each publicly possible assignment (allocation) is securely evaluated.

2. The shared DisCSP problem is shuffled in a cooperative way, reordering val-
ues (and eventually variables), with a permutation that is not known to any-
body [Sil05c].

3. A version of DisCSP1() where the operations performed by agents are indepen-
dent of the input secrets (to avoid leaking the secrets), is executed by simulating
arithmetic circuits evaluation with the technique in [BOGW88].

4. The solution returned by DisCSP1() at Step 3 is translated into the initial
problem formulation using a transformation that is inverse of the shuffling at
Step 2 [Sil05c].

5. Construct the solution from its secret shares.

It is also possible and very simple to find all solutions [HCN+01]. However, when
only a single solution is needed, this leaks a lot of information. At Step 3, MPC-
DisCSP4 requires a version of the DisCSP1() function whose cost is independent of the
input, since otherwise the users can learn things like: The returned solution is the only
one, being found after unsuccessfully checking all other tuples, all other tuples being
infeasible. Since the used DisCSP1() has to be independent of the problem details, its
cost is exponential (at least as long as nobody proves P=NP).

Note that other alternative techniques are available, notably MPC-DisCSP1 [Sil03],
MPC-DisCSP2 [SM04], and MPC-DisCSP3 [Sil04]. We call them generically MPC-
DisCSPx. In this paper we only address multi-party computations without trusted
servers. A family of secure solvers based on trusted servers is proposed in [YSH02b].
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Figure 1: MPC-DisCSP4 using mix-nets

3.5 Hiding existence of solution
When no solution is found, all the participants learn that each alternative is infeasible.
For certain problems this leak of secrets may be considered unacceptable and a don’t
know answer is prefered to learning the infeasibility. But the don’t know answer is
believable only if the algorithm may indeed miss some solutions. An algorithm for
missing the solution with some predefined probability p is described in [Sil05b]. It
consists of computing a solution using a MPC-DisCSPx algorithm and then setting the
assignments in the result to the invalid value 0 with a probability p.

3.6 Stochastic algorithms
In the CSP world it is known that complete algorithms are ineffective for hard problem
instances. For large problems, most applications apply stochastic search procedures.
With stochastic search, only a subset of the search space is analyzed. Typical examples
of stochastic search are based on some type of hill climbing. With hill-climbing the
solver starts with a random alternative and searches the neighbouring search space for
solutions.

4 Simulated Annealing for Secure Optimization
Once the secret constraints of a distributed CSP are shared and shuffled with the tech-
nique of MPC-DisCSP1 [Sil03, Sil05c], one can try to search a feasible solution of the
shuffled problem using some hill-climbing. The same considerations and procedures
apply if the problem is shuffled with a mixnet obtained from the one in [YSH02b] by
replacing the encryption scheme with a (+,×)-homomorphic version (E.g., Paillier
with shared secret key, or the version of ElGamal of the form Ea,y,g,p(m, r) = 〈gr
mod p, amyr mod p〉).



The quality of an alternative will normally be evaluated securely (since we do not
tipically want to reveal individual constraints even if they were shuffled - as it would
lead to an important privacy loss). The total weight (or number of conflicting con-
straints) for an alternative ε is computed with q(ε, P ) =

∑
c∈C c(ε). The revelation of

the quality will be relatively expensive for both versions (based on either secret shar-
ing or homomorphic encryption). Therefore, this suggests to use stochastic algorithms
that are lazy in evaluating the qualities of new tuples. Such a technique is Simulated
Annealing (Algorithm 6).

procedure SSA do
Shuffle DisCSP using secret sharing or additive encryption homomorphism;
Select random alternative (tuple) t;
for decreasing ’temperature’ T do

change randoly the value of one variable obtaining t′;
compute securely and then reveal ∆ = q(t′)− q(t);
/*alternatively reveal q(t’) to detect termination when the optimum is
known*/;
/*or securely compute and reveal only cmp(q(t′), q(t)), if it returns 1*/;
if ∆ < 0 then

t=t’
else

t=t’ with probability e−
∆
T

Unshuffle the results;

Algorithm 6: Secure Simulated Annealing (minimization)

Similar to the technique in [Sil02, YSH02b], the Secure Simulated Annealing al-
gorithm may reveal undesired statistical information about some secrets via the knowl-
edge of the shuffle search space. However, specific exact information about a secret
may only be inadvertently revealed only for problems with very special patterns. In the
following we concentrate on algorithms guaranteed not to reveal anything else besides
the solution.

5 Secure Stochastic Search
Let us finally detail our proposed techniques for tractable secure stochastic search,
allowing to address hard problems. The idea is that only a subset of T alternatives
from, the search space will be explored. This could be achieved by adding a public
constraint that removes the remaining search space. However, to ensure privacy in case
of failure (that the infeasibility of this particular sub-space is not revealed), we propose
to take advantage of the shuffling of the whole problem. We select the subspace to
be explored from the shuffled problem. This hides the exact search subspace that is
analyzed and the only secret leaked in case of failure is that there are T infeasible
alternatives (but they are not known).



5.1 Secure Stochastic Search with Mix-nets
Each MPC-DisCSPx solving algorithm using mixnets can be modified into a corre-
sponding secure stochastic search protocol that will be called Stochastic Multi-Party
Computation for Distributed CSPs (SMPC-DisCSPx). Each SMPC-DisCSPx differs
from the corresponding MPC-DisCSPx by the fact that only the first T tuples of the
shuffled search space are used to compute the shuffled solution. Each stochastic solver
is parametrized by the number T of alternatives to be explored (T beeing smaller or
equal to the size of the search space). To be noted that a stochastic solver can be seen
as a generalization of the corresponding complete solver, which is obtained when T
equals the size of the search space.

SMPC-DisCSP4 For example, SMPC-DisCSP4 is shown in Algorithm 7. A version
that explicits how to exploit an efficient “first in array” primitive is given in Algo-
rithm 8.

function SMPC-DisCSP4(T,(X,D,C))
for i=1 to k do

S[i]=
∏
φ∈C φ(εi);

SHUFFLE(S) //using the mixnet;
h[1]=1;
for i=2 to T do

h[i]=h[i-1]*(1-S[i-1]);
S[i]=S[i]*h[i];

7.1 /* S[i]=S[i]*cmp(RS(0,q-1),p*q)// fine tuning*/;
7.2 /* S[T]=S[T]*cmp(RS(0,q-1),p*q)// fine tuning*/;

UNSHUFFLE(S);
7.3 set solution S to 0 with probability p; //optional;

return S // the solution can be extracted from S as in [Sil05b];

Algorithm 7: SMPC-DisCSP4 for solving a CSP (X,D,C) with k alternatives allowed
by the public constraints, and exploring T alternatives.

function SMPC-DisCSP4(t,(X,D,C))
for i=1 to k do

S[i]=
∏
φ∈C φ(εi);

Shuffle(S) //using the mixnet;
first(S, t); // call “first in array” primitive;
Un-Shuffle(S);
// the solution can be extracted from S as in [Sil05b];
return S;

Algorithm 8: SMPC-DisCSP4 for solving a CSP (X,D,C) with k alternatives allowed
by the public constraints, and exploring t alternatives.



SMPC-DisCSP4 requires k(c − 1) multiplications of secrets to build the vector
S and 2T multiplications of secrets to select the solution. Also, the shuffling and
unshuffling require each O(kn2) expensive operations, O(kn) for each participant.
While SMPC-DisCSP4 leads to a reduction with up to 2k multiplications of secrets,
the complexity remains the same, dictated by the shuffling.

One can allow agents to avoid revealing if that there exist T alternatives that are
not solutions, by enabling the optional cancelation of the solution with probability p at
Line 7.1. This cancelation of solution can be done with the technique in [Sil05b]).

It can be noted that the probability that a solution is lost can be fine tuned (e.g.
for the application in [Sil05b]) by discarding the alternatives with probability p. This
can be done by uncommenting either Line 7.1 or Line 7.2 in the Algorithm 7. In Al-
gorithm 8 this can be done more efficient by multiplying each element [x[i]]F in the
algorithm “first in array” with cmp(RS(0, q − 1), p ∗ q) in one round and λ multipli-
cations.

SMPC-DisCSP1 The stochastic algorithm obtained from MPC-DisCSP1 is more
successful, and is sketched in Algorithm 9.

function SMPC-DisCSP1(T,(X,D,C))
SHUFFLE(X,D,C) //using the mixnet;
for i=1 to T do

S[i]=
∏
φ∈C φ(εi);

F=DisCSP1(T,(X,D,C),S);
UNSHUFFLE(F); // Unshuffle each vector in F separately;
set solution F to 0 with probability p; //optional;
return F;

Algorithm 9: SMPC-DisCSP1 for solving a CSP (X,D,C) with k alternatives and
exploring T alternatives.

DisCSP1 (Figure 2) is the arithmetic circuit proposed in [Sil03], with the only
modification that function satisfiable() only integrates the first T tuples (rather
than the whole search space). The result F returned by DisCSP1 is a set of vectors,
one for each variable. A vector contains shared 0s on all positions, except for a 1 on
the position corresponding the the value of the corresponding variable in the found
solution. If there is no solution, then all elements of the vectors are 0.

The cost of SMPC-DisCSP1 is only O(T (md + c)) multiplications of secrets. Of
these, T (c−1) are used to compute S. DisCSP1 computes satisfiablemd times,
each of them requiring at most O(T ) multiplications. The cost of shuffling in SMPC-
DisCSP1 can be small even for large and hard problems, if the maximum constraint
arity (number of involved variables) is small.

The stochastic techniques can be adapted to the corresponding secure optimiza-
tion techniques based on secure distributed weighted CSPs, MPC-DisWCSPx [SM04],
leading to algorithms that we will denote SMPC-DisWCSPx. When using such opti-
mization techniques for applications like Generalized Vickerey Auctions (GVA), one



p(ε, P ) =
∏

c∈C
c(ε)

satisfiable(P ) = cmp(0,
∑

εi∈[ε1...εT ]

p(εi, P ))

gi,j(P ) = satisfiable(P ∪ {xi = j} ∪k<i (xk = fk(P )))

fj(P ) =

|Dj |∑

i=1

i ∗ (gj,i(P ) ∗ δK(0,
∑

k<i

gj,k(P )))

Figure 2: Arithmetic circuit DisCSP1 for a CSP P = (X,D,C). The result is the
vector of vectors {{δK(fi, j)}j∈[1..|Di|]}i∈[1..m]. Versions with other primitives appear
in [Sil03, Sil04]

needs to make sure that the same subset of the search space is explored by each instance
of the optimization algorithms. Remember that in GVA one computes the Clarke taxes
using the value of the best allocation for several different settings (excluding each bid-
der in the computation of his tax).

Remark 1 Therefore the same shuffling has to be used for all these instances of opti-
mization. Also the same parameter T has to be used for each instance optimization (at
each given total weight of the solution).

At each optimization instance that excludes a bidder one only needs the weight of
the optimal solution, and only satisfiable(P) is computed there for each given
total weight.

5.2 Constant round primitives in SMPC-DisCSP1
Constant round primitives can improve SMPC-DisCSP1. Namely symmetric functions
can be used for reducing the number of rounds for the function satisfiable, first
in array can be used to get rid if the t iteration, and unbounded fan-in multiplications
can be used to compute S (needed in p()) in constant rounds. The obtained changes are
depicted in Figures 3,10

procedure satisfiable(t,P) do
return ∨tk=1[p(εk, P )]F

Algorithm 10: Function satisfiable: returns 0 or 1 function on whether at least
one of the first t tuples in the search space of P is a solution to P , where εk is the kth

tuple.



Fj [k] = first([gj,1(P )..gj,|Dj |(P )], |Dj|)
p(ε, P ) =

∏
φ∈P φ(ε)

gi,j(P ) = satisfiable(P ∪ Λji ∪
k<i

Λ∗k,P , t)

Λji (ε)
def
=

{
1 if xi = vij in valuation ε
0 if xi 6= vij in valuation ε

Λ∗k,P (ε)
def
= Fk[ε|xk ] =

{
1 if xk = vkfk(P ) in valuation ε
0 if xk 6= vkfk(P ) in valuation ε

Figure 3: DisCSP1(t, P ): arithmetic circuit for MPC-DisCSP1. It returns the set of
vectors Fj , ∀j ∈ [1..m]. ε|xk stands for the value of xk in ε.

5.3 Secure Stochastic Search with arithmetic circuits
The secure stochastic algorithms based on mix-nets suffer from the fact that the cost
of shuffling remains the same as for the non-stochastic complete approaches. This was
particularly negative in the case of SMPC-DisCSP1 where the cost of the shuffling is
the main cost.

This problem is reduced in algorithms with shuffling based on arithmetic circuits.
Namely, with shuffling based on arithmetic circuits one does not need to compute the
whole shuffling. With SMPC-DisCSP4, it is possible to only compute the first T ele-
ments of the shuffled problem (see Algorithms 11, 12), and 13).

function Shuffle(s,k,r,T)
for j = 1 to T do

Perm(s,j,r[j],j,k,k);

Algorithm 11: Shuffling a vector s with k shared secrets, and a random vector r ob-
tained with Algorithm 2

function Shuffle(s,k,r,T)
for j = T to 1 do

Perm(s,j,r[j],j,k,k);

Algorithm 12: Un-shuffling a vector s with k shared secrets, when the shuffling was
defined by random secret vector r.

It can be noted that in secure stochastic algorithms based on arithmetic circuits we
succeed to reduce the cost of shuffling and unshuffling from O(k2) to O(kT ) mul-
tiplications of secrets. With this improvement the complexity of SMPC-DisCSP4ac
decreases, but remains high since k is large for hard problems (can be exponential in
the problem size).



function SMPC-DisCSP4ac(T,(X,D,C))
for i=1 to k do

S[i]=
∏
φ∈C φ(εi);

R=RandomVector(T);
SHUFFLE(S,k,R,T) //using the mixnet;
first(S, t); // “first in array” algorithm;
for i=T+1 to k do

S[i]=0;

UNSHUFFLE(S,k,R,T);
set solution S to 0 with probability p; //optional;
return S// the solution can be extracted from S as in [Sil05b];

Algorithm 13: SMPC-DisCSP4ac, solving a CSP (X,D,C) with k alternatives al-
lowed by the public constraints, and exploring T alternatives.

In conclusion the most appropriate algorithm for Stochastic Search is SMPC-
DisCSP1 which has polynomial space requirements and whose computational (time)
complexity can be bounded to low values being linear in T and in the problem size.

SMPC-DisCSP4ac (with arithmetic circuits) has a time complexity significantly
smaller than MPC-DisCSP4 (O(k(T + c)) versus O(k2)). This implies that the size
of the problems solvable with SMPC-DisCSP4’ is larger than the size solvable with
MPC-DisCSP4, which had the best complexity among complete algorithms.

Remark 2 (SMPC-DisCSP1ac) Arithmetic circuit shuffling for SMPC-DisCSP1
works by separately permuting each domain (with a separate random vector for each
of them). The improvement that can be brought is to only compute the permuted con-
straint elements that are part of the first T tuples.

The shuffling for SMPC-DisCSP1 is not expensive. Therefore possible improve-
ments in versions based on arithmetic circuit shuffling are less significant, not changing
the time complexity.

6 Optimization Problems
It is known that, in general, Constraint Optimization Problems (COP) are NP-hard.
Existing arithmetic circuits for secure protocols solving such problems are exponential
in the number of variables, n. Using variable elimitation techniques [Dec90] COPs
can be solved with computation that is exponential only in the induced-width of the
Depth First Search tree (DFS) of the constraint graph [PF05b], i.e. smaller than n. We
show how to construct an arithmetic circuit with this property and solving any COP.
For forest constraint graphs, this leads to a linear cost secure solver.

Combinatorial optimization is an important operation in many problems. One im-
portant formalism for modeling combinatorial optimization is the constraint optimiza-
tion problem (COP). A constraint optimization problem (X ,D,C) is defined by a set
of variables, X = {x1, ..., xm}, with domains from D = {D1, ..., Dm}, and a set of



weighted constraints C = {φ0, ..., φm}, each such constraint φi specifying a distinct
cost associated with each assignment of values to a subset Xi of X .

An assignment is a pair 〈xi, v〉 where v ∈ Di. A solution of the COP is a tuple
of assignments ε with values for each variable in X such that the sum of the weights
associated by the constraints in C to ε is maximized (minimized). Without loss of
generality we assume that by optimal solution we understand the solution with maximal
weight. If we denote the projection of a tuple ε on a set of variables Xi by ε|Xi , then
the solution is:

argmax
ε

∑

φi∈C
φ(ε|Xi)

A distributed COP (DCOP) arises when some constraints are functions of secrets
own by some agents from a set A = {A1, ..., An}. Without loss of generality we
assume that φ0 is the only public constraint and that Xm, the set of variables in φm,
contains besides xm only variables xi with i < m. Note that such a formulation can be
obtained from any DCOP by building a Depth First Search (DFS) tree, introduced later
and combining the constraints such that there remains a single constraint per variable
(with his ancestors in the tree).

Our work employs the following secure multi-party computation techniques:

• polynomial secret sharing [Sha79]: Each participant k out of n participants re-
ceives 〈s〉tk = s+

∑t
i=1 aik

i, where ai is a secret random number. The secret can
be reconstructed with the collaboration of t+1 participants using s =

∑t+1
k=1 lk,t,

where lk,t are the corresponding Lagrange coefficients.

• addition of shared secrets [BOGW88]: 〈s1 + s2〉tk = 〈s1〉tk + 〈s2〉tk
• resharing shared secrets: To reshare a secret 〈s〉t with another threshold t′, each

share 〈s〉tk is shared with (t′ + 1, n)-polynomial sharing scheme.

• multiplication of shared secrets [BOGW88]: 〈s1 ∗ s2〉2tk = 〈s1〉tk ∗ 〈s2〉tk
• arithmetic circuit evaluation with additive secret sharing [Gol04]: Each partic-

ipant k, k > 1 out of n participants receives [s]k = ai where ai is a random
number. Participant 1 gets [s]1 = s −∑n

i=2 ai. The secret could be recon-
structed with s =

∑n
k=1[s]k. Addition of additively shared secrets is done

with [s1 + s2]k = [s1]k + [s2]k. Multiplication is done using oblivious trans-
fers [Gol04].

• secure test [DFNT05]: δ(x) returns 1 if x = 0 and 0 otherwise.

• secure Kronnecker’s δ [Kil05]: δK(x, y) = δ(x − y) returns 1 if x = y and 0
otherwise.

• secure comparison [DFNT05]: cmp(x, y) returns 0 if x < y and 1 otherwise.

• secure max: max(x, y) = cmp(x, y) ∗ (x− y) + y.



6.1 Optimization Background
DCOPs have been addressed with various techniques that differ both in efficiency and
in their privacy guarantees. The former techniques seeking the strongest privacy guar-
antees are based on secure multiparty computation and scan several times the whole
search space, i.e. Cartesian product of domains in D, once for each possible total
weight [SM04]. An optimization protocol specialized on generalized Vickrey auc-
tions and based on dynamic programming is proposed in [YS04] and is significantly
more efficient, but does not randomize the selection of the solution, needed for reach-
ing the highest level of privacy [SR04]. DPOP, a dynamic programming algorithm
for solving (D)COPs was proposed in [PF05b] and consists of a Viterbi-like combina-
tion of a maximization and decoding [Vit67]. The algorithm in [PF05b] can also be
seen as a clever heuristique for variable elimination [Dec90], or as a parallelization of
ADOPT [MTSY03], and is based on a different concept of privacy [SF02].

6.1.1 Variable Elimination

Variable Elimination is a principled technique for complexity reduction in COPs. It
consists of replacing all the constraints (objective functions) linked to a variable chosen
for elimination by the projection of their composition on the remaining variables. A
heuristique for selecting the variables to be eliminated next is provided by the DFS
tree [PF05b].

6.1.2 DFS tree

The primal graph of a COP is the graph having the variables as nodes and having an arc
for each pair of variables linked by a constraint [Dec03]. A Depth First Search (DFS)
tree associated to a COP is a spanning tree generated by the arcs used for visiting
once each node during some depth first traversal of its primal graph. DFS trees were
first successfuly used for Distributed Constraint problems in [CDK00]. The property
exploited there is that separate branches of the DFS-tree are completely independent
once the assignments of common ancestors are decided.

Definition 4 (neighbor nodes) The nodes directly connected to a node in a primal
graph are said to be its neighbors.

In Figure 4.a, the neighbors of x3 are {x1, x5, x4}.

Definition 5 (ancestor nodes) The ancestors of a node are the nodes on the path be-
tween it and the root of the DFS tree, inclusively.

In Figure 4.b, the ancestors of x2 are {x5, x3}, while x3 has no ancestors.

Definition 6 (descendants nodes) The descendants of a node are its children in the
DFS tree, as well as the children of any other of its descendants.

In Figure 4.c, the descendants of x3 are {x1, x4, x2}, while x2 has no descendants.
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Figure 4: For a COP with primal graph depicted in (a), two possible DFS trees are (b)
with induced width with 2 and (c) with induced width 2.

A neighboring ancestor of a node is any node that is both a neighbor in the primal
graph and an ancestor in the used DFS tree. The induced width of a DFS tree is given
by the the number of ancestors that are neighboring him or some of its descendants
Two examples of DFS trees for a COP primal graph are shown in Figure 4. It can
be noted that trees with different induced widths can be obtained. Several heuristiques
had been used in the past for building DFS trees with reduced width, a prefered optimal
technique consisting of a branch & bound procedure.

The ancestors of xi are all the nodes of the path between root of the tree and xi,
inclusively the root. The descendants of xi are all the nodes for which xi is an ancestor.
We use the following notation. Let:

• Fx be the parent of x (in Figure 4.b Fx5
= x3)

• Sx be the children of x (in Figure 4.c Sx3
= {x1, x4})

• Px be the neighbor ancestors of x (in Figure 4.c Px2
= {x1, x5})

• Gx be the induced parents of x, i.e., ancestors that are neighbors for x or for
some descendant of x (in Figure 4.cGx1

= {x3, x5}, since x5 is the neighboring
ancestor of the descendant x2)

In this work we do not address heuristiques for building DFS trees, but consider
that such a tree is provided.

6.1.3 DFS-based Variable Elimination

A heuristique for selecting the order to eliminate variables based on exploiting the
DFS-tree is proposed in [PF05b]. The idea is that before eliminating a node in the DFS
tree one should first eliminate its children. In a centralized approach, such an order
could be generated by either a postorder traversal or a reversed level-order traversal.
This heuristiq guarantees that the arity of the largest constraint that will be added to



the problem (and therefore the complexity of the algorithm) is bounded by the distance
between two neighbors in the DFS tree. This is bounded by the depth of the tree and
potentially much smaller than n. The advantage of this heuristique is that the quality
of an elimination order can be easily evaluated.

6.1.4 Secure Optimization

A secure optimization algorithm for DCOP is proposed in [SM04]. It chooses ran-
domly one of the values with the optimal value and reveals the total weight of the
solution and the corresponding assignments only if desired and only to agreed partic-
ipants. To ensure random selection of the solution, shuffling of values is done prior
to solving. The result of the computation will be unshuffled. In [Sil04] it is shown
how to make the selection with a uniform random distribution. However, the complete
versions of these techniques are always exponential in the size of the search space (as
defined by the public constraints).

Remark 3 The fact that a mix-net leads to a random solution only hold for an agent
(or a set of agents) if the ’other’ agents shuffle all variables.

If at least one agent does not shuffle a variable, this do not hold for the sub-group
that shuffle, and the benefit of the shuffling is completely lost

Theorem 1 All agents must be involved in shuffling each variable’s domain of a prob-
lem.

Proof. If some agent Ai does not shuffle a variable xj , then all the other agents can make
a coalition, find the order on xj with which the problem was solved, and learn a set of val-
ues of xj for which there is no optimal solution. Eliminating xj for those values leads to a
projection of constraint on the remaining variables, X ′, from which they can infer bounds on
Ai’s costs on those remaining variables X ′ (lower bounds at minimization respectively upper
bounds at maximization). The techniques in [Sil05c] achieve the required type of

shuffling/unshuffling.
In the following we show how to formulate arithmetic circuits for securely comput-

ing an optimal solution of a DCOP using DFS-based Variable Elimination. As in the
non-secure version, the algorithm has two parts, un (upward) dynamic programming
step, and a (downward) decoding step.

6.2 Arithmetic Circuits
The data structure we employ as well as their usage is depicted graphically in Figure 5.
For each node xi there is a separate set of data structures W xi

Fi
,W xi

xi ,Wxi . These
data structures are accessed by indexing with partial assignment of variables (and are
implementable as multi-dimensional matrices).

• W xi
xi holds φi, namely a local costs associated to each assignment of xi and

neighboring ancestors of xi.
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Figure 5: Data structures in the Upward computation.

• Wxi holds the cummulated cost associated by φi and the projection of the con-
straints of all its children to each assignment of xi and induced parents of xi,
Gxi ∪ {xi}.



• W xi
Fi

holds the cummulated cost associated by φi and the projection of the con-
straints of all its children to each assignment of induced parents of xi, Gxi .

On the upward path in the DFS tree, for each node xi one computes for each assignment
S of the induced parents Gx:

W xi
Fi

[S] = max
v∈Di

(W xi
xi [〈xi, v〉 ∪ S|Pxi ] +

∑

y∈Sxi

(W y
xi [(S ∪ {〈xi, v〉})|Gy ])

The value W r
∅ , where r is the index of the root node, is the weight of the optimal

solution. The steps of computation are detailed in the Algorithm 14.

procedure Upward(xi) do
foreach (y ∈ Sxi) do

Upward(y);

foreach tuple ε for Gxi ∪ {xi} do
Wxi [ε] = W xi

xi [ε|{xi}∪Pxi ]+
∑
y∈Sxi

(W y
xi [ε|Gy ];

foreach tuple ε for Gxi do
W xi
Fi

[ε] = max
v∈Di

(Wxi [ε ∪ 〈xi, v〉]);

Algorithm 14: Arithmetic circuit for the upward (dynamic programming) step. At the
first call, the parameter xi is the root, r, of the DFS tree.

6.2.1 Unsecure decoding of solution

If we also want to reaveal the assignment with the optimal value, it can be done with
the following arithmetic circuit, for the downward path (e.g., level-order traversal from
root).

The value of the whole tree, Vr, is the shared secret W r
∅ computed at the upward

step. At variable xi with subtree value Vxi , for each tuple ε with value W’ in the
structureWxi at assignments equal to the ones selected at previous levels, compute and
reveal δK(W,W ′). If the result is 1, the corresponding assignment of xi is selected,
and the corresponding values Vy in W y

xi for each child variable y ∈ Sxi is selected as
value of the subtree with root y.

The problems with this approach, of revealing the solution, is that the algorithm
cannot be used in cases where the solution of the COP is only an intermediary compu-
tation, e.g. [Sil05a]. We fix this in the following algorithm.

6.2.2 Secure decoding of solution

NOTE that a more complete and accurate version of this subsection appears
in [SFP06]! In particular, the version in this subsection does not treat the case
where there are several optimal solutions, which is addressed in [SFP06].



The data structures proposed for the secure downward computation (decoding) are
again similar for each node. At node xi we store:

• dxi is a shared secret vector of |Di| boolean values, each indicating the selection
of the corresponding value of Di. Only one value can be set to true.

• Vxi is the shared secret weight associated to the selected optimal solution by the
subtree with root xi.

After performing the upward computation of dynamic programming, we can de-
code the solution securely during a preorder or level-order traversal of the tree. On
visiting each node xi, a procedure is run to compute securely the shared secret assign-
ment of xi using the shared secret assignments of the induced parents, dp, for p ∈ Gxi ,
and the shared secret selected weight of this variable, Vxi . The procedure also com-
putes the inputs for the next recursive procedure calls, at the descendents of xi, namely
the shared secret selected weight Vy of each child y ∈ Sxi . The following sums are
over all tuples ε of assignments for Gxi ∪ {xi}.

Vy =
∑

ε

(
∏

p∈Gxi

dp[ε|p])δK(Vxi ,Wxi [ε])W
y
xi [ε|Gy ]

dxi [v] =
∑

ε|{xi}=v

(
∏

p∈Gxi

dp[ε|p])δK(Vxi ,Wxi [ε])

procedure Downward(CSP) do
while xi ← get InOrder Next(DFS(CSP)) do

foreach v ∈ Di do
dxi [v] =

∑
ε|{xi}=v

(
∏
p∈Gxi

dp[ε|p])δK(Vxi ,Wxi [ε]);

foreach y ∈ Sxi do
Vy =

∑
ε(
∏
p∈Gxi

dp[ε|p])δK(Vxi ,Wxi [ε])W
y
xi [ε|Gy ];

Algorithm 15: Arithmetic circuit for the downward step.

The computation steps required by the downward phase are detailed in Algo-
rithm 15.

At the end of this computation, the vectors dxi hold a shared unary constraint al-
lowing a single value for xi, namely the one in the optimal solution. These unary
constraints can then be unshuffled [Sil05c].

6.3 Complexity Analysis
The Upward step is called once for each variable xi and the number of operations for
each variable is linear in the number of elements of Wxi , i.e., exponential in |Gxi |+ 1.
The total cost for the upward step is O(ndg+1), where d is the maximum size of a
domain of a variable, and g is the maximum value for |Gxi |, i.e. the induced width of
the used DFS tree.



In the Downward step there exists a while loop for each variable xi and each such
cycle has two summations for each element in Wxi , each term having |Gxi |+ 1 multi-
plications. The total cost for the downward step is O(ngdg+1).

Therefore, the total complexity of the secure version is O(ngdg+1). If the down-
ward version with immediate revelation of assignments in solutions is used, then the
complexity is only O(ndg+1). If shuffling of constraints and unshuffling of solution
vectors dx are used to randomize the selection of the solution, then the cost of the
shuffling is also added [Sil05c].

6.4 Extensions and Applications
A version of Secure Stochastic Optimization can be obtained by trimming the inter-
mediary data structures at each node on the Upward phase. Something similar was
proposed for non-cryptographic techniques in [PF05a].

Remark 4 Note that sorting the set of weigths before trimming (in a beam-search like
approach) is possible, but only for some applications. E.g., in auctions one has to
ensure that the same tuples survive the prunning at each different optimization sub-
problem appearing in the Clarke tax computations [Sil05a].

An immediate application for secure DCOPs is in performing the intermediary op-
timizations steps for Clarke tax in generalized Vickrey auctions, and related auction
clearance mechanisms. If a secure stochastic version is used, then one has to use the
same prunning (with the same surviving tuples) for each different optimization task on
a given problem, as explained in [Sil05a].

7 Conclusions
In this work we have proposed a new family of secure solvers for distributed Constraint
Satisfaction Problems (disCSPs). While most existing techniques were complete and
inapplicable to large instances, the new techniques can be used to address large prob-
lems.

We have proposed stochastic versions for each of the complete secure multi-party
algorithms MPC-DisCSP1 and MPC-DisCSP4, based on shuffling with mixnets or with
arithmetic circuit. MPC-DisCSP1 is remarkable for its polynomial space requirements
while MPC-DisCSP4 for its low time complexity and for the uniform distribution in
selecting solutions.

The new versions only explore a subset of the search space of the problem, subset
whose size is specified as a parameter. We have thus analyzed in detail three newly
obtained versions: SMPC-DisCSP1, SMPC-DisCSP4, and SMPC-DisCSP4ac.

As its complete counterpart, SMPC-DisCSP1 requires only polynomial space. Un-
expectedly, the versions obtained from MPC-DisCSP4 are much less appropriate for
addressing large problems, but maintain the desirable property of selecting solutions
with a uniform distribution. Among SMPC-DisCSP4 and SMPC-DisCSP4ac, the lat-
ter (based on arithmetic circuits) presents the largest speed-up in comparison to its
complete version. The algorithm of choice for tackling large problems are therefore



the ones based on MPC-DisCSP1 (SMPC-DisCSP1 and SMPC-DisCSP1ac), and their
time complexity is linear in the problem size and in a parameter deciding the size of
the explored search space.
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