NOVEMBER 1982

M. S. LONGUET-HIGGINS

1283

On the Skewness of Sea-Surface Slopes

M. S. LONGUET-HIGGINS

Department of Applied Mathematics and Theoretical Physics, Cambridge, England
and Institute of Oceanographic Sciences, Wormley, Surrey

(Manuscript received 1 December 1981, in final form 6 July 1982)

ABSTRACT

Sunlight reflected from a wind-roughened sea surface produces a glitter pattern in which the region of
maximum intensity tends to be shifted horizontally by an apparent angle A, depending on the wind speed.
It is shown that A is related directly to the skewness of the distribution of surface slopes. From the observed
data of Cox and Munk (1956) it is possible to deduce a simple correlation between A and the wind

stress 7.

The physical mechanism underlying slope skewness is investigated. The skewness which results from
damping of individual waves is shown to be negligible. A two-scale model is proposed, in which damped
ripples or short gravity waves ride on the surface of longer gravity waves. The model is found to give skewness
of the observed magnitude. The sign of the skewness depends on the angle between the wind maintaining
the ripples and the direction of the longer waves, in agreement with observation.

Certain theoretical relations between A and the phase v of the short-wave modulation may be of interest
in interpreting observations of the sea surface by other types of remote sensing.

1. Introduction

The glitter-pattern of reflected sunlight has been
used by Cox and Munk (1956) to study the distri-
bution of sea-surface slopes, in relation to the local
wind speed. Among the effects that they observed was
that the location of the most intense reflection
tended to be shifted horizontally, relative to its po-
sition in the absence of wind or waves. The angular
displacement was evidently associated with a skew-
ness in the measured distribution of the surface slope.
Since an angle is easier to measure, in general, than
an intensity, the question arises: can we use such a
measurement to obtain information on the slope dis-
tribution, and hence the wind stress?

Some encouragement for this view can be derived
from a theoretical demonstration (Longuet-Higgins,
1963) that in the absence of applied surface forces or
viscous stresses, the distribution of surface slopes is
highly symmetric; the coefficient of skewness is at
most or order o> where ¢ is the rms slope. Hence any
actual surface skewness may be a sensitive indicator
of wind stress.

The questions to be addressed in this paper are the
following:

1) How precisely is the observed angular displace-
ment A of the maximum optical intensity related to
the slope distribution? This is answered by Egs. (2.13)
and (2.14).

2) Is there an empirical relation between A and
the horizontal wind stress? This is answered in the
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aﬂirnllative by Eq. (3.12), for wind speeds up to 15
ms .

3) What is the physical explanation for the ob-
served skewness? We show first in Section 4 that al-
though a simple phase shift in the first harmonic of
a travelling wave causes no slope skewness, any shift
in the bound second harmonic does tend to cause
such a skewness [see Fig. 4 and Eq. (4.6)]. In free but
undamped waves, such a phase-shifted harmonic oc-
curs only in a transient state, which can lead to
breaking.

Section 5 treats damped waves, where it is shown
by a simple argument that viscous dissipation also
gives rise to a phase-shifted second harmonic and
hence to a skewness in the slopes. However, the mag-
nitude of this effect is too small to account for the
observations.

Accordingly in Section 6 we propose a different,
two-scale model in which short ripples, or capillary-
gravity waves, are assumed to ride on the surface of
much longer gravity waves, the shorter waves being
modulated by the presence of the longer waves. It is
shown that this gives rise to a slope skewness [Egs.
(6.10) and (6.13)] of the same magnitude and sign as
is actually observed.

These results enable us to discuss in Section 7 a
fourth underlying question, namely whether there is
any necessary, fundamental relation between slope
skewness and wind stress, and to answer it in the
negative.

On the other hand, some of the simple relations
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FIG. 1. The reflection of rays from the sun $ towards an
observer O, when wind and waves are in the same direction.

derived in the course of the paper may well be of use
in the interpretation of radar backscatter at centi-
meter wavelengths. In particular, we may mention
Eq. (6.10), which relates A to the steepness s of the
longer waves, the phase angle v of short-wave mod-
ulation, and the depth of modulation 6. These rela-
tions follow from the geometry of the model, and are
independent of any particular dynamical assump-
tions.

2. Geometry

Throughout this paper we shall restrict the discus-
sion to the two-dimensional situation when the di-
rection of the sun, wind and swell are all in line. This
suffices to elucidate the main principles, and the
reader will readily supply the appropriate generaliza-
tions to the case of arbitrary relative directions.

Suppose then that the direction of the wind is in
the vertical plane containing the sun S and the ob-
server O, and is towards the observer, as in Fig. 1. If
the sea surface were calm, the rays would be reflected
from near a specular point P, say, where SP and PO
make equal angles with the horizontal. When the
wind blows, the region of most intense reflection
(after allowing for reflectance and background radia-
tion) is from the neighborhood of a point Q, say,
shifted downwind from P by an apparent angle A.
Accordingly, the mode of the slope distribution must
be shifted by a positive angle 2A.

If we take axes as in Fig. 1 with the x-axis hori-
zontal in the plane OPQS, and if the surface elevation
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F1G. 2. Schematic diagram of the distribution of upwind slope.
Compare with Fig. 15 of Cox and Munk (1956).
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is {(x, 1) with downwind slope ¢, then the probability
density p({,) has a maximum when

§x = A, 2.1

This is shown experimentally in Fig. 2, which is
a downwind section through a typical joint distri-
bution p({,, {;) as observed by Cox and Munk (1956).
The distribution is normalized by dividing {, by the
rms downwind slope u,'/2.

We now derive a simple expression for A in terms
of the moments of p({,).

Suppose that the distribution of {, is approximately
Gaussian, and may be represented by the Gram-Char-
lier series! . :

D5 = i exp(—= AL + YeHs

2wk,y)'?
+ ChaaHy + oN?He) + - - -],

in which «, is the nth cumulant of p({,), i.e., if

2.2)

B = f &Gp(E0dSy (2.3)
then
K = K
K2 = pp— pi
, 2.4)
K3 = u3 — 3y + 2y
Also
An = Kknfk3"2, 2.5)-
f= (&~ k), (2.6)
and H, is the nth Hermite polynomial:
Hy = f* - 3f
H,=f*"—6f*+3 2.7

In deep water we can assume that the sea surface has
a negligible mean tilt, so 4, = 0 and hence

k=0, (2.8)

K2 = u2,

f= &/ (2.9)

Then to order f?, and if we neglect A, and A3 com-
pared to 1,

P(S) = Qo) VA1 = af2)(1 — Vadsf).  (2.10)
Hence p({,) has a maximum when

= —lh\g = —Yaks/k3?,

K3 = M3 .
Also

(2.11)
this is when

! A theoretical justification for this form, which differs slightly
from Cox and Munk (1956), was given by Longuet-Higgins (1963).
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$e = —Yakafky . (2.12)
From (2.1) and (2.12) it follows that
A = —k3fk , (2.13)

where «, and x; are equal to the second and third
moments, respectively, of the distribution of p({).
This can also be written

A=Yt (2.14)
in which a bar denotes the ensemble average.

Three comments are in order. First, it does not
appear from Fig. 2 that the mean slope u, is zero.
However, this is because only the central part of the
distribution is shown, the tails not being measured
accurately. In Fig. 2, the rightward shift of the dis-
tribution over the central range, say =2 < f < 2, is
actually compensated by a leftward shift in the “tails”
of the distribution, when |f| > 2.

Likewise it would appear from Fig. 2 that the third
moment y; is positive. But the compensation from
the tails of the distribution is relatively greater for
p3than for p,, so that in fact u; turns out to be negative.

In the actual evaluation of the coeflicients in the
series (2), Cox and Munk (1956) found it convenient
not to calculate the moments of p({,) directly, but to
use a method of curve-fitting to the central, accurately
determined, range of slopes.
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3. The wind stress: an empirical result

Regardless of the cause of the skewness, we may
use the results of Section 2, combined with the field
observations of Cox and Munk (1956), to derive an
empirical relation between the angle A and the hor-
izontal wind stress, at moderate wind speeds.

Fig. 3 shows a plot of the coeflicient of skewness

A3 = K3/K%/2 a3.n

as a function of «3/%, calculated from their data (see
Table 1) (cf. also Longuet-Higgins, 1963, Fig. 2). In
their notation

— 2
Ky = 0
’ } ; (3.2)
A3 = —60,’(ai + a3)
in other words, we take a one-dimensional section
through their two-dimensional slope distribution.
From Fig. 3 it would appear that

. Ay = —4563? (3.3)
approximately. Hence
k3 = —45¢3 , (3.4)
and so from (2.13)
A = 4545 . (3.5)

But Cox and Munk also found (see their Fig. 13)
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FIG. 3. The observed coefficient of skewness A; plotted against (rms slope)®
from the data of Cox and Munk.
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TABLE 1. Calculated values of A and s cosy, from the
data of Cox and Munk (1956).* .

w H T, ¢

(ms™) (ft) (s) (deg) K2 A3 A s cosy

11.6 35 4 — 0.0390 -0.163 0.072 —_
13.3 6 5 6 0.0484 -0.463 0.217 0.10
13.8 6 5 6 0.0452 -0.220 0.101 0.10
13.7 6 5 6 0.0404 —0.345 0.155 0.10
072 15 3 9 0.0005 +0.100 -0.015 0.07
858 2 3 19 0.0230 -0.165 0.064 0.09

089 — — — 00153 -0.004 0.001 —_—
393 1 2 0 0.0098 +0.003 -—0.001 0.11
8.00 2 3 6 00191 -0.156 0.213 0.10
630 4 3 5 00170 -0.143 0.052 0.19
644 4 3 5 0.018 -0.148 0.055. 0.19
492 4 3 10 0.0174 -0.080 0.029 0.18
183 3 4 120 0.0090 +0.043 -0.013 -0.04
139 3 4 176 0.0087 +0.033 -0.010 -0.08
335 5§ 4 85 0.0125 -0.053 0.018 0.01
10.2 4 4 0 0.0357 -0.283 0.123  —-0.11
11.7 5 4 0 0.0374 -0.105 0.046 0.14
545 2 3 90 0.0137 -0.046 0.016 0.00
979 4 3 6 0.0264 -0.180 0.075 0.19
9.74 4 3 8 0.0322 -0.491 0.208 0.19
10.5 5 3 12 0.0365 —0.598 0.261 0.24

* Notes: W was measured at 41 ft, H, denotes significant wave
height, T; denotes period of significant waves.

k2 =~ 0.0032W, 3.6)

where W denotes the wind speed (m s™}). Combihing
(3.5) and (3.6) yields

A~ 4.6 X 107*W2, - (3.7

This relates the angle of deflection A directly to the
wind speed W, when W < 15 m s™!

On the othet hand, the shear stress 7 exerted by

the wind is given approximately by
7 = Cpp(100WY, (3.8)

where Cp = 1.5 X 1073 is a drag coefficient, and
pa ~ 1.2 X 1073 g/cm™3 is the density of air. Com-
paring (3.7) and (3.8) we see that

7 ~ 39A dyn cm™2 (3.9)

In other words, the wind stress is directly proportional

to the angular displacement of the glitter maximum.
To express Eq. (3.9) in dimensionless form it is

convenient to introduce the basic shear stress

To = PaCanin » (3.10)
where ¢, denotes the minimum phase speed of cap-
illary-gravity waves, i.e., :

Cmin = (28T)"* = 23 cm s~ (3.11)

(see Lamb 1932, Section 267); thus 7y = 0.53 dyn
cm~2. As a result Eq. (3.10) may be written

7/T0 = T4A. (3.12)
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4. Skewness of individual waves

We consider first the skewness of the slope distri-
bution that may arise from the individual waves,
illustrated in Fig. 4. Let

¢ = a cosf + O(a*k) cos20 + b sin28,
where

“4.1)
0=kx—ct), b<a. 4.2)

In other words suppose there is a second harmonic
b sin26 phase locked to the fundamental wave, but
in quadrature with the ordinary second harmonic in
a steady surface wave. If b > 0, the effect will be to
steepen slightly the forward face of the wave and to
correspondingly flatten the rear slope, as in Fig. 4. In
fact, the slope ¢, is given by

& = —ak sind + O(ak)? sin20 — 2bk cos20, (4.3)
so that to lowest order
K = Fx? 0
K, = 2 a?k? sin?0 = Yaa?k? , (4.9)

K3 = E = 6a2bk 3 sinZ0 cos20 = —3%a?bk3 J

where a bar denotes the average with respect to x.
Therefore

s = k3/k32 = —3V2b/a (4.5)

and from (2.13)

A= —I(:;KE1 = 3/2bk. (4.6)

It is then possible for the asymmetric second har-
monic to exist? If linear theory is applicable, the free
speed of a gravity wave with wavenumber 2k is not
¢ but ¢/V2. To maintain the harmonic as a forced
wave with speed ¢ requires the application of a surface
pressure p' given by

p'le =—¢:— gf’, 4.7)
where
&, = —che® cos20
. (4.8)
¢’ = bsin20
and ¢? = g/k. This yields )
p' = pgb sin26 = O(\3pga), 4.9)

from (4.5). However, the surface pressures due to the
wind are probably of order 10~® pga, considerably
smaller.

¢

m | /1—0@ 0
/ \/

FIG. 4. Schematic diagram showing how skewness of individual
waves can arise from a second harmonic.
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However, if the steepness ak of the fundamental
is sufficiently great, the contribution of its orbital ve-
locity to the dynamics of the harmonic {’ becomes
appreciable. Since the orbital velocity is forward at
the crest, where the energy of the harmonic tends to
be greatest, the effective relative speed between the
free harmonic and the fundamental will be reduced.
Hence p' is also reduced. Finally, as shown by precise
calculation (Longuet-Higgins, 1978, Figs. 1 and 4),
the speeds of the free second harmonic and of its
fundamental become equal at ak = 0.436 (less than
the maximum steepness ak = 0.443). At this point
the second harmonic exists as a neutrally stable per-
turbation of the fundamental Stokes wave, and
p' = 0. When ak > 0.436 the perturbation becomes
unstable, that is to say it grows exponentially in time.
This presumably leads very rapidly to an overturning
of the free surface, as was found in a similar case
studied numerically by Longuet-Higgins and Cokelet
(1973).

We conclude that skewness of individual, un-
damped waves can exist, but only in a transient state,
just before breaking.? It might be possible to base a
theory of skewness on the assumption of a supply of
energy from the wind, sufficient to maintain the wave
field in face of losses due to overturning of the free
surface. But since the rates of growth of the instabil-
ities depend strongly on the difference between the
actual steepness ak and the critical value ak = 0.436,
the rate of growth of the skewness is difficult to es-
timate precisely.

This type of skewness may be most important for
records of the sea surface in which the high-frequency
part of the spectrum has been eliminated by a low-
pass instrument or filter.

5. Skewness in damped waves

In the previous section it was assumed that indi-
vidual waves were undamped. We show now that the
action of viscous damping on the otherwise free grav-
ity wave is to induce a slight asymmetry in the wave
profile.

As pointed out by Lamb (1932, Section 348), sur-
face waves in a viscous fluid can be maintained in a
steady state by the application of the appropriate nor-
mal and tangential stresses at the free surface. Let
these be denoted by 7,, and 7,,, respectively. In the
absence of these applied stresses, there develops a thin
boundary layer, as if fictitious stresses —7,,, and —7,;
were applied to an otherwise inviscid fluid.

Now in a steady wave, with symmetric profile, the
normal stresses —7,, are symmetric also, and so pro-
duce no asymmetry. However, the tangential stress
—7,s 18 asymmetric, and so produces some asym-
metry. By a very simple argument it may be shown

2 For capillary-gravity waves this conclusion must be modified.
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F1G. 5. Thickening of the boundary layer due to variable
tangential stresses on a surface wave.

(see Longuet-Higgins, 1969) that any tangential stress
7 acting at the surface of the wave produces a local
thickening of the boundary layers given by

oH 1

o e’ (5.1)
where H is the boundary-layer thickness (see Fig. 5).
This produces an excess pressure pgH at the surface
which generally is in quadrature with 7, and does
work on the fluid in a way entirely equivalent to an
applied normal stress.

To prove (5.1) we note that if M is the excess mass
flux or momentum within the boundary layer then

oM _
o
and if (¥', v") denote the components of the excess

velocity in the directions (s, 7) tangential and normal
to the surface, then

0H _ J‘y
o vl on dn

7, (5.2)

ow, oM
as ds p’
since M = [ pu'dn. But if the motion is (approxi-

mately) progressive with phase speed ¢, then correct
to second order in ak

oy

(5.3)

a3 140
——— 5.4
as c ot (5-4)
Hence H e
i) 1
a pc o’ -3)

from which (5.1) follows.
In fact by applying (5.4) again, Eq. (5.1) can be put
in still more convenient form

dH 7
_— = 5.6
as pC (5-6)

In the present case we have
T = —Tps = ~2Ups .7

where pu is the coeflicient of viscosity and ¢ denotes
the velocity potential of the irrotational flow just be-
yond the boundary layer. To first order in the wave
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FIG. 6. A modulated train of short waves riding on
the surface of longer waves (C > 0).

steepness ak, this stress produces a thickening of the
boundary layer on the forward slopes of the wave as
indicated in Fig. 5, but no change in the slope dis-
tribution, because the surface is still sinusoidal,
though shifted slightly in phase.

To second order, it is easy to show (see Appendix
B) that

®ns = ak*c cosd + a*k3c(cos®d — 2 sin’f). (5.8)

The nonlinear terms now give rise to a term in cos26:
& = ha*k3c cos26, (5.9)

and so from (5.7) the releyant contribution to the
stress is

7 = —3ua*k3c cos26, (5.10)

which is greatest at the wave crests. By (5.6) this pro-
duces a small change {' = H to the surface elevation,
the change in the surface slope ¢, being

oH '

& o~ s 3(aky’va/(c? cos26), (5.11)
where

g=ck (5.12)

and » = u/p is the kinematic viscosity.
The formula (4.6) for the angle A now applies, so
that we have

A= % (ak)*va/c?. (5.13)
Also 9

A3 =— -2-\{—5 (ak)*vo/c? (5.14)
from (4.5).

However, it will be seen that for gravity waves the
effect is. quite small. For if we take

»y =0.013cms™!

o= 10rads™ ,

€ = Cmin=23cms™

then
vo/c2< 25X 107°

and so A is O(10™*) at most, while A; is O(1073),
generally much smaller than in the observations of
Fig. 3.
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For capillary or capillary-gravity waves similar con-
clusions will apply.

6. Skewness due to ripples: a two-scale model

It was shown experimentally by Cox (1958) that
a significant proportion of the variance of surface
slope may be contributed by short gravity-capillary
waves and ripples, rather than by longer gravity
waves. Moreover, the ripples are found preferentially
on the forward faces of the steep gravity waves, even
in the absence of wind.

Theoretically, the spontaneous generation of cap-
illary waves at the crests of steep gravity waves was
analyzed by Longuet-Higgins (1962). Furthermore,
Phillips (1981) ‘has shown that capillary waves of
whatever origin can be trapped on the forward face
of a gravity wave, by convergence of the orbital mo-
tion. '

Even if the shorter waves are not trapped, however,
viscous damping of the short waves, combined with
the action of the radiation stresses, may tend to pro-
duce a greater steepening of the short waves on the
forward slopes of the longer waves than on the rear
slopes. A theoretical example is-given below in Ap-
pendix A.

Accordingly we consider a simple two-scale model
of the sea surface in which short (capillary or gravity-
capillary) waves ride on a random sea of much longer
waves, as in Fig. 6. The steepness of the shorter waves
is assumed to be modulated by the longer waves, and
in such a way that the short waves are steeper, on the
average, when riding on the forward faces of the lon-
ger waves. Thus we let

¢ = acost + a’ cost, 6.1)

where a and 8 denote the amplitude and phase func-
tion for the longer waves, with wavenumber

k = 06/dx. 6.2)

Here a and k are assumed to be slowly varying func-
tions of x and ¢. Primed symbols a’, &, etc., will denote
corresponding quantities for the short waves, and we
assume’

a'k' = a + Bak cos(d — v), (6.3)

where «, 8 and v are constants. We expect 0 <
< 90°.

Since by-hypothesis k' > k, the surface slope {, is
found from (6.1) to be

¢ = —ak sinf — [a + Bak cos(@ — v)] sinf’. (6.4)

From this we may calculate the moments of p({,) by
averaging {7, first with respect to the fast phase ¢ and
then with respect to the slower phase 6. In this way
we obtain _

K= §6=0 (6.5)
as required. Next
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k2 = {2 = Yas? + (o + aB2s2), (6.6)

where 52 = (ak)?, twice the mean-square slope of the
longer waves. Finally,

k3 = 3 = —3(ak sinf) - 2aBak cos(d — v)-

= —%afBs? siny. 6.7)

If the maximum ripple slopes occur on the forward
faces of the longer waves, then o8 siny > 0, and so
k3 is negative. To interpret this, we .note that on the
rear slopes of the waves, where the ripple slopes are
smallest in magnitude, the effect of the longer waves
is to shift the slopes in the positive sense. Hence the
central part of the distribution tends to be shifted to
the right, as in Fig. 2. On the other hand, where the
magnitude of the ripple slopes is greatest, i.e., on the
forward face of the longer waves, the slopes are shifted
negatively. Hence the tails of the distribution are
shifted to the left. Because of the predominant effect
of the tails, the third cumulant x; becomes negative.

Further, if the ripples make a preponderant con-
tribution to the slope variance, so that o? > 52, we
have from (6.6)

Ky = Y2a(1 + 48%), (6.8)
where

6 = Bs/a 6.9)

represents a “‘depth of modulation” of the shorter
waves. Finally from Eq. (2.13) we have

o .
T‘/zaz § sinvy. (6.10)
In other words, the apparent angular displacement
A of the mode is independent of the mean-square
ripple steepness, and depends only on the rms steep-
ness of the longer waves, together with the relative
depth of ripple modulation é and the phase shift .
Since §/(1 + '28%) is monotonic in the range 0 < §
< 1, the first factor in (6.10) has as its upper bound
the value taken when 6 = 1, so we have always

A < 25 siny. (6.11)
Hence it follows immediately that
A < 2s. (6.12)

We have supposed the direction of the ripples to
be the same as that of the longer waves. If, on the
other hand, the direction of the longer waves is op-
posite to that assumed, i.e., it is away from the ob-
server, the sign of the right-hand side in (6.10) would
be reversed (regardless of the ripple direction).

Are these results consistent with the observations
shown in Fig. 3?7 In those observations, which are
summarized in Table 1, the wind direction, which
presumably determines the direction of the ripples,
generally differed from that of the significant waves
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by an angle ¥ < 90°. There were two exceptions,
marked by arrows, which happen both to correspond
to positive values of As;. The only other positive values
are the plot very close to the horizontal axis at
«¥? = 0.0010, for which |\;| was only 0.003, and the
plot at k3> = 0.00034, which was in a wind speed
< 1 m s, and for which the determination of A; was
probably less accurate. This has been marked with
square brackets.

The simplest generalization of (6.10) to a situation
in which the longer waves travel at an arbitrary angle
¢ to the wind is

A = F(b) sinvy - s cosy, (6.13)

where F(8) denotes the first factor on the right of
(6.10). The counterparts of the inequalities (6.12) are

|A] < |2 siny - 5 cosy| (6.14)
and

|A| < 2sicosy|. (6.15)

To test whether (6.14) is satisfied, we have plotted
in Fig. 7 the values of

A = —k3/kp = —k¥?N;

(6.16)

against the corresponding values of s cosy, where
s = ak is estimated from the relation

a= H,/2.83, (6.17)

and H, is the significant wave height. Also k = ¢%/g
where ¢ is the radian frequency of the longer waves,
taken equal to 2#/7.

The inequality (6.15) corresponds to the sectors
bounded by the diagonal line in Fig. 7 and the hor-
izontal axis. It will be seen that the plots do in fact
lie more or less in this region, apparently confirming
our simple model. (It should be borne in mind, how-
ever, that some of the measured parameters, partic-
ularly for the swell, are not given very accurately.)

We note that for points lying close to the diagonal
line in Fig. 7 both é and |[siny| must approach 1.
Hence the ripple modulation must be a maximum,
and it must be nearly in quadrature with the elevation
of the longer waves.

7. Discussion

We have suggested three possible mechanisms for
producing skewness of the surface slopes, and have
shown that one of them—modulation of short waves
riding on longer waves—predicts a skewness agreeing
with observation in both magnitude and sign. One
other mechanism—viscous damping of individual
waves—gives an effect that is too small, and does not
conform with the observed change of sign when wind
and swell are in opposite directions.

We have also demonstrated an empirical relation
between the skewness and the mean horizontal wind



\

1290 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 12
/
A / °
/
V4
8/
0-21- / °
/
/
/
el
/
7/
4 o
/
01— / °
/
// ° )
/ ° 8
/
/ [=}
//
| / | 1
o‘-\ o\ O/'O )] 01 0-2 s cos ¥
/
/
/
4
/
/
S
F1G. 7. A plot of A vs s cosy, from the data of Table 1.
stress, which however is valid only when wind and is the corresponding group velocity. Also
swell are in the same direction. Thus there seems to U = ao cosf (A4)
be no necessary connexion between skewness and
windstress. This conclusion is confirmed by the il- is the horizontal orbital velocity in the long waves,
lustrative model discussed in Appendix A. 3
: o . S =%E (A5)
It appears that, if we are to gain information on

wind stress from the observed skewness, we must rely
on the empirical correlation of Fig. 3. Moreover, the
direction of the underlying swell relative to the wind
is a factor to be taken into account.
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APPENDIX A
On Ripple Dynamics

We show by an example that the phase vy of cap-
illary waves riding on the surface of longer gravity
waves may well be positive.

Within the approximations of Section 3, an equa-
tion for the short waves can be written as

dE 9 U
=+ —[Ec+UN+S=—+D=G, (Al
o  dx [E(c ]l ox G, (Al
where
E=%T(a'k) (A2)

denotes the energy density for capillary waves (7 is
surface tension), and

3 (Tk'\"?
Cg = E o

(A3)

is the radiation stress for the short waves (see Lon-
guet-Higgins and Stewart, 1964, Section 3);

D= NE, N =4vk'? (A6)

is the energy dissipation due to the kinematic vis-
cosity v (see Lamb, 1932), and G is the direct input
of energy from the wind. We assume that

G = KE, (A7)

that is, the input of energy to the short waves is di-
rectly proportional to the local short-wave energy it-
self. .

Owing to the horizontal convergence of the long-
wave orbital motion, the wavenumber &’ of the short
waves is greatest at the long-wave crests; in fact to
order ak

k' = k)1 + ak cosh). (A8)

The grohp—velocity ¢, given by (A3) varies accord-
ingly, that is

¢z = Cgol1 + Yaak cosb). (A9)
Similarly
N = Ny(1 + 2ak cosb). (A10)
Now writing
E = Ey + E\ak cost + E *ak sinf  (All)

and substituting in Eq. (A1) we find, from the terms
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independent of 6, that

OE,
=0 = (K= NyE, .
Ey (K — No)Eo

Likewise from the terms in cosf and sinf we find
(K - No)E1 + (O’ - kCg)Ex* = 2N0.E0

(G’ - kCg)E] - (K - No)El* - (5/2(7 + l/zkcg + K)E() .
(A13)

If K and N; were both zero we should have the
solution: Ey = constant, E,* = 0 and

_(5ctc)
C2c—c)

In this situation the steepness of the ripples fluctuates
in-phase with the elevation of the long waves and vy
= 0. (Note the “resonance” when ¢, = c.)

Suppose on the other hand K and N, do not both
vanish, but that we have a quasi-steady state in which
the short-wave energy is saturated. (Since the dissi-
pation may be due partly to breaking or turbulence,
the kinematic viscosity » must be replaced by an ef-
fective coefficient Ny/4k{%.) Then in (A12) we have
dEy/ot = 0, hence

(A12)

E, (A14)

No=K (AiS)
and from (A13)
2KE,
f G ——. A
E, | € — ok’ (A16)

with E, being given by (A14) as before. Hence the
phase angle v is given by

E¥ 4K
tany = —- =

E,  k(5¢c+c¢)’

When (5¢ + ¢) > 0 the angle v will lie between 0°
and 90°, and when ¢, < ¢ we have simply

(A17)

tan'y=ﬁE. (A18)
S5¢

Similar conclusions would apply if the short waves
were assumed to be not pure ripples but short gravity-
capillary waves.

If the underlying swell is in a direction opposite to
that of the short waves, then the signs of ¢ and o are
reversed. Eq. (A18) then indicates that the phase-an-
gle v lies between —90° and 0°.

In the limit when the rate of energy dissipation in
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the ripples is large compared with the long-wave fre-
quency o, then (A18) implies that tany will be large
and that v will be near 90°.

APPENDIX B
Evaluation of ¢,

Let e denote the angle of inclination of the free
surface, hence the angle between the coordinates
(s, n) and (x, z). We have then

Ons = PxAcos?e — sin%e) + (¢, — Px)cose sine.  (Bl)
Since tane = {, and ¢, + ¢.. = 0 we have, to second
order in ak,

¢ns = d)xz - 2§‘x¢xx > (Bz)

or if we expand the right-hand side in a Taylor series
about z = (,

¢ns = (d’xz + §¢xzz - 2§‘x¢xx)- (B3)
For gravity waves in deep water
— kz o: 313
¢ = ace* sinf + 2O(a k c)} ’ (B4)
¢ = acosf + O(a’k)

with § = kx — ¢r. Substitution into (B3) gives Eq.
(5.8).
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