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Abstract. When developing secure, high-performance cryptographic soft-
ware, the programmer is presented with a wide range of problems. Not
only must they be conversant with pertinent scientific results, they must
efficiently translate said results into a practical context. Unlike when
writing normal programs, they are given little help from either the lan-
guage or compiler: both are typically too general purpose to offer domain
specific optimisation or analysis that would save the programmer time
and reduce the potential for error. As a step toward solving this problem
we present CAO, a cryptography-aware domain-specific language and as-
sociated compiler system. Rather than being a panacea, we pitch CAO
as a mechanism for transferring and automating the expert knowledge of
cryptographers into a form which is accessible to anyone writing security
conscious software.

1 Introduction

1.1 The Problem

A Performance Perspective The basic purpose of a compiler is to translate
a program written in some language, typically containing high-level constructs,
into a low-level or executable form. Essentially this mechanises the processes
that an expert programmer might perform by hand and, as a result, removes the
associated tedium and error. To allow successful translation, the programmer
specifies the program using a precise list of operations and variables of known
type on which those operations act. Since the compiler is empowered with knowl-
edge of what these operations and types mean, it can manipulate and translate



the program into a high-quality result while allowing the program specification
to exist in a form which is natural to the programmer.

However, consider the situation where one writes a program containing types
the compiler knows nothing about. For example, when writing cryptographic
software it is common to use finite field types which are implemented in a library,
typically as a class or set of functions that encapsulate the data and operations
involved. Although from a programming perspective the class or functions allow
a programmer to easily manipulate finite fields, the compiler still knows nothing
about them or their operational semantics. Even if we allow operator overloading
to allow easy expression of the program, an example code sequence such as:

gfp a, b, c, d;

a = a + a;

b = a * 2;

c = a * a;

d = power( a, 2 );

suffers from a number of problems. The variables are not automatically allocated
registers, or temporaries if they are non-native; we need to manually allocate
them in order to minimise the space they occupy. Standard strength reduc-
tion techniques cannot be applied; we must manually translate multiplication
by small constants into an appropriate addition chain. Common sub-expression
elimination cannot be performed; we must manually detect and share inter-
mediate results which further complicates the minimisation use of temporary
variables. The prescribed use of functions to represent operations not native to
the language means analysis and transformation is harder for the compiler; it
knows nothing about the meaning of the function and inter-function analysis is
typically much harder then intra-function analysis.

In short, all the optimisations you would expect if the type of variables were
native to the compiler are unavailable when the types are not native. The pro-
gram is essentially written in a pseudo-high-level language: there are structured
control flow statements but operations are otherwise at the level one would ex-
pect in a low-level language. This situation presents a clear problem for the
programmer in that they are again burdened with a lot of hard work. Addition-
ally, optimising the program partly obfuscates the it since the result no longer
describes the original algorithm, but the form required for efficient implementa-
tion.

A Security Perspective Although there is clearly some overlap in definition,
security related problems in software are generally harder to diagnose and solve
than their functional equivalent. Firstly, security problems fail to follow the
often quoted programming commandment that errors should be forced to present
themselves in a noticeable rather than subtle way so they can more easily be
eradicated. While functional problems will generally cause a program to crash
or execute incorrectly, security problems only become an issue when someone



exploits them, by which time it is too late. Secondly, an attack on security will
deliberately search for and pick on an operation that the programmer has not
considered, rather than the bug being triggered through normal patterns of use.
In this sense, they are harder to detect since they require second guessing the
ability and focus of an attacker who will search every avenue to achieve their
unknown goal, rather than a user who interacts with the program to achieve a
pre-determined task. Finally, the problems differ in that a single security problem
is catastrophic, since an attacker need only target the weakest link in the security
chain to achieve their goal, while functionality problems are generally less severe:
even if an error is terminal, it is possible the program will function correctly aside
from the operation that cause the error.

To address the problem of solving security problems, it is obviously attrac-
tive to offer a programmer automatic assistance in the same vein as the use of
compiler systems to help solve functional problems by issuing error and warn-
ing messages. Such a mechanical approach is less error prone and offers a more
satisfactory, although clearly not perfect, level of quality assurance. This sort
of approach is becoming an increasingly common method for dealing with the
threat of buffer overflow attacks. Resigning themselves to the fact that human
programmers will inevitable produce vulnerable programs, researchers have de-
veloped systems that use compile-time [32, 39, 62] and run-time [10, 25] methods
to detect and prevent attack. Investigation into many other security vulner-
abilities has followed, with work to detect problems through programming er-
rors [8]; combined static and dynamic analysis to prevent format, race and buffer
overflows [17–20]; and even for intrusion detection systems [61]. Although it is
difficult to quantify how successful these methods are in the field, it is clearly
advantageous to use mechanical tools to assist the programmer in addressing
security vulnerabilities within a large corpus of source code.

Although their remit is substantially different from that of classical cryptog-
raphers, researchers in the field of formal methods have developed techniques
which allow automated or partly automated detection of security vulnerabili-
ties [56]. Using these techniques, detectable problems lie within programs which
describe protocols; the programmer describes the protocol, typically in some
process algebra [1, 2, 31, 45], and then executes model checking software to prove
that the description is secure. Such a proof, using the Spi Calculus for exam-
ple, might demonstrate that a protocol is secure if one can demonstrate that
two functions are indistinguishable for all input messages or keys. As noted and
partly addressed by Boreale [14], with the key and message spaces potentially
being very large by design, this is difficult to actually check mechanically. Even
so, there is an increasing number of good tools to support this methodology. In
particular, the Jif [51] system seems attractive since it allows program descrip-
tion in a dialect of Java rather than a process algebra which can be prohibitively
hard to use. Other examples include the CPPL language of Guttman et al. [29],
which offers a special purpose language focused on describing cryptographic pro-
tocols, and the library system of Backes et al [11] which is constructed in a way
that allows automated proofs on protocols that link against it.



Despite the fact that automatically providing security proofs for crypto-
graphic software is some way off, the formal analysis of programs has at least
started to address one area that has been overlooked elsewhere: security against
side-channel attack [3, 60]. Formally proposed by Kocher et al., side-channel anal-
ysis is the art of externally monitoring a device while it executes some algorithm
that includes secret information. By careful profiling of time [36], power [37] or
electromagnetic emissions [4, 5] and correlation of said profiles with the target
algorithm, an attacker can often uncover the secret information. Although sound
defence techniques have been well investigated in recent years they are typically
implemented in an ad-hoc manner under sole control of the programmer: there
is no way to provide assistance in diagnosing areas of the software that need
protection or to actually implement said protection. Since attack and defence
techniques are becoming increasingly well understood, it seems important to
transfer this knowledge into automated tools that can make the programmers
job easier and catch subtle but potentially catastrophic errors.

A Maintenance Perspective Given that the programmer of cryptographic
software must manually optimise the performance and validate the security his
programs, the final problem they encounter is one of maintenance. Even from a
naive viewpoint, the problem is obvious: making even small changes might de-
mand labour intensive re-optimisation and re-validation of the previously sound
program. This is further complicated by the fact that in order to cope with a
diverse range of targets, several synchronised versions of the same program may
need to be maintained either in different source files or via some form of con-
ditional compilation. For example, if the cost of addition versus multiplication
is different on one machine than another, it might make sense to replace mul-
tiplication by small constants with an addition chain on one machine but not
the other. Furthermore, consider the case where one machine has some security
enhanced architectural support, such as an execute-only-memory (XOM) [44,
43] or a split stack to prevent buffer overflow [48], but another does not. The
threat model against the software will differ and demand different analysis of
each program version.

Even with the support of a revision control system, human programmers
are typically bad at this sort of maintenance. Inconsistencies and oversights will
start to exist between program versions with error and inefficiency being the
inevitable result. At first glance, it seems naive to assume one can construct
a universal language for naturally describing all programs and compiling them
efficiently to all targets. For example the demands of hardware and software
implementation typically demand designs are written using radically different
programming metaphors. However, working within the constrained domain of
cryptographic software, and given they typically have quite a rich mathematical
structure, it seems entirely possible to approximate such a language, see for
example [7]. As a result, the issues of maintenance are at least partly solved: we
need describe our cryptographic kernel only once, leaving the tedious work of
re-optimisation and re-validation to automated phases of the compiler.



1.2 Toward a Solution

To address the dual goals of being able to write programs that can be anal-
ysed for security problems and compiled into a high-performance executable, we
present CAO, a domain specific language (DSL) for describing cryptographic
software, and an associated compiler system. The CAO language allows practi-
cal description of cryptographically interesting programs which can be analysed
by the compiler that instruments a number of security conscious analysis, trans-
formation and optimisation phases. The central principle behind the design of
CAO is the promotion of notions central to the description of such programs to
first class features in the language which are then supported by the compiler.

Unlike languages such as Magma [46] or Maple [47] which allow the de-
scription of high-level mathematical constructions, we restrict our focus to the
implementation of cryptography kernels such as block ciphers; hash functions;
and sequences of finite field arithmetic used to implement systems such as elliptic
curve cryptography (ECC). By constructing compiler tool-chains that perform
analysis and instrument defence techniques on such kernels, we hope to derive
similar benefits to those experienced by programmers switching from low-level
assembly languages to higher-level programming languages. That is, by express-
ing their programs in a more natural manner, a programmer will improve their
productivity, reduce their rate of error and generally produce software of a higher
quality.

We stress that CAO is not intended as a panacea or silver-bullet. It would be
exceptionally hard to build an automated tool to discover new attack or defence
techniques, neither is it realistic to assume that we can generate code which
will always outperform a hand-written, highly optimised assembly language al-
ternative. Equally, it is hard to imagine someone totally trusting the compiler
output. In the same way as bugs in normal software occur, bugs in compil-
ers can cause them to operate incorrectly: because of this, security conscious
programmers might typically perform some final, manual validation checks and
optimisation before CAO generated code is shipped. We also stress the differ-
ence between secure software and compilers that address security problems, and
cryptographic software. The two inhabit entirely different domains, are suscep-
tible to very different classes of attack, and demand vastly different means with
which to describe programs within those domains. In this respect, we view CAO
as complementary to rather than competitive with languages like Fortress [6].

Our aim is simply to move toward a situation where a novice programmer is
assisted in constructing cryptographic software: the basic premise is that CAO
should enable the transfer of knowledge from expert programmers and cryp-
tographers into an automatic tool that can assist everyone else. High on our
list of goals is that of practicality; we want programmers to write programs in
CAO as easily, or more easily, as they can in C to combat the problem with
formalisms like the Spi Calculus which are hard to use. To accommodate this
need, our language design philosophy is somewhat ad-hoc rather than being for-
mally exact. However, on the whole we have attempted to be minimalist in those



Fig. 1. A CAO.

elements added to the language and somewhat agnostic towards security so that
the language is more generally useful.

1.3 History

The acronym CAO was originally used to describe the idea of taking C and
merging it with the good bits of occam to give C And Occam. This seemed
like a nice, easy to pronounce name so it stuck; also since we were interested in
finite fields, the cow-field relation seemed amusing. However, like most modern
languages CAO borrows things from many other sources as well: parts of it
are pseudo-functional; parts of it are pseudo-HDL; some parts are even totally
novel. When it was adopted to investigate issues of security the acronym CHAOS,
standing for C, Haskell And Occam for Security, was suggested. This name was
taken by some other project and it also hinted at the chaotic nature of the
language design and compiler implementation so was rejected.

1.4 System Overview

The general design of the CAO compiler is such that it translates between the
CAO language and some target language which is either executed directly by the
target platform or compiled further. In both cases, the executable is supported
by a run-time library which manages operations on non-native types such as
finite fields. The tool-chain is shown in Figure 2.

For example, we can target JavaCard smart-cards by generating Java byte-
code directly from the compiler. To target a desktop computer, we might gener-
ate C from the compiler and then use GCC to translate this into an executable.
Since the CAO compiler is performing the translation, the programmer need not
be knowledgeable about either the target platform or run-time library. This is
clearly advantageous; we can compile the same CAO program onto multiple tar-
get platforms using different run-time libraries with minimal intervention from



Fig. 2. A block diagram illustrating the CAO tool-chain.
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the user. For example, from a CAO program we might generate several target
programs in C which can be linked to NTL [58], LiDIA [30] or nuMONGO [9]
depending on the preference of the user. From this point of view, cryptographic
libraries can be selected purely on their performance, memory footprint and
feature sets rather than on how easy they are to use.

This architecture is also advantageous in the sense that by decoupling the
various stages of the CAO compiler from each other, it is entirely possible to
have a proprietory back-end for some commercially sensitive processor yet still
benefit from the analysis and transformation phases in the front-end.

1.5 Document Overview

In this document, we introduce the CAO language and present a number of the
more interested features of the CAO compiler. To limit our scope, we concentrate
on the description of public key primitives and their compilation from CAO to
C source code which is linked to the NTL [58] library. In Section 2 we describe
various performance and security oriented compiler phases and how they operate
on an example program which implements ECC point multiplication. We then
discuss how this example program is translated into C code in Section 3. Finally,
we present some concluding remarks in Section 4, offering a fairly comprehensive
language overview in Appendix A and a tentative list of potentially interesting
research directions that relate to CAO in Appendix B.



Listing 1.1. A CAO implementation of the double-and-add algorithm.

1 pmul ( Px : f, Py : f, d : int : { secret } ) : f, f

2 {

3 Qx : f;

4 Qy : f;

5 i : int;

6

7 Qx := 0;

8 Qy := 0;

9

10 for ( i := sizeof ( d ) - 1; i >= 0; i := i - 1 )

11 {

12 ( Qx , Qy ) := pdbl ( Qx , Qy );

13

14 if( d[i] == 1 )

15 {

16 ( Qx , Qy ) := padd ( Qx , Qy , Px , Py );

17 }

18 }

19

20 return Qx , Qy;

21 }

Listing 1.2. A CAO implementation of point addition assuming global curve
parameters A and B.

1 padd ( x1 : f, y1 : f,

2 x2 : f, y2 : f ) : f, f : { observable := A, sameas := pdbl }

3 {

4 l : f;

5 x3 : f;

6 y3 : f;

7

8 l := ( y2 - y1 ) / ( x2 - x1 );

9 x3 := l**2 - x1 - x2;

10 y3 := ( x1 - x3 ) * l - y1;

11

12 return x3 , y3;

13 }



Algorithm 1: The double-and-add method for scalar point multiplication.

Input: point P , integer d

Output: point Q = d · P

Q← O1

for i = |d]− 1 downto 0 do2

Q← 2 ·Q3

if di = 1 then4

Q← Q + P5

end6

end7

return Q8

Algorithm 2: An algorithm for point addition.

Input: curve parameters A and B, points P = (x1, y1) and Q = (x2, y2) with
P 6= Q

Output: point R = (x3, y3) = P + Q

λ← y2−y1

x2−x1
1

x3 ← λ2 − x1 − x22

y3 ← (x1 − x3)λ− y13

return x3, y34

2 Code Analysis

Our current implementation of the CAO compiler is typical of a research
compiler in that we have concentrated on the elements which are interesting to
us and hence neglected many others. Although the system is far from being ready
for use in earnest, we already have a number of interesting security conscious
analysis phases in development which act as an example of what is possible.
Thus far, we have concentrated on public key systems, in particular ECC [12,
13]. Although this avoids issues relating to primitives such as block ciphers,
we stress that this is for the purposes of exposition only: the CAO language
includes several features which permit their efficient description, we simply have
not focused on implementing these features yet.

Restricting ourselves to working over the field K = Fp, where p is a large
prime, our elliptic curve is defined by:

E(K) : y2 = x3 + Ax + B

for some parameters A and B. The set of rational points P = (x, y) on this
curve, together with the identity element O, form an additive group. ECC based
public key cryptography typically derives security by presenting an intractable
discrete logarithm problem over this curve group. That is, one constructs a secret
integer d and performs the operation Q = d · P for some public point P . Since
reversing this operation is hard, one can then transmit Q without revealing
the value of d. There are a wide range of efficient algorithms to perform point



Algorithm 3: An algorithm for point doubling.

Input: curve parameters A and B, point P = (x1, y1)
Output: point R = (x3, y3) = 2 · P

λ←
3x2

1
+A

2y1
1

x3 ← λ2 − 2x12

y3 ← (x1 − x3)λ− y13

return x3, y34

Listing 1.3. A CAO implementation of point doubling assuming global curve
parameters A and B.

1 pdbl ( x1 : f, y1 : f ) : f, f : { observable := D, sameas := padd }

2 {

3 l : f;

4 x3 : f;

5 y3 : f;

6

7 l := ( 3 * ( x1 **2 ) + A ) / ( 2 * y1 );

8 x3 := l**2 - ( 2 * x1 );

9 y3 := ( x1 - x3 ) * l - y1;

10

11 return x3 , y3;

12 }

multiplication. The most basic of these is the binary or double-and-add method,
described by Algorithm 1 and in CAO by Listing 1.1, which we use to illustrate
our analysis phases. Note that we use affine points and slightly simplify the
addition and doubling algorithms to ease discussion. Specifically, in a complete
implementation we should check and resolve conditions such as performing an
addition where P = Q or where either P = O or Q = O.

We begin by assuming we have defined and subsequently initialised a field
type and associated curve parameters:

typedef f := gf[ 2**192 - 2**64 - 1 ];

A : f;

B : f;

so we can work on NIST-P192, a NIST standard curve defined over a 192-bit
prime field. The back end of the compiler can spot that the field is defined by
a non-general prime, in this case a generalised Mersenne prime, and utilise spe-
cialise arithmetic within the run-time to improve performance over the general
case. Further, since each defined field type is distinct, if the run-time library
supports it the compiler can manage operations on multiple fields at once. In



Table 1. A table describing liveness properties of temporary variables while computing
an affine point addition.

Operation Live In Live Out

x1, y1, x2, y2

λ1 ← y2 − y1 x1, y1, x2, y2 x1, y1, x2, λ1

λ2 ← x2 − x1 x1, y1, x2, λ1 x1, y1, x2, λ1, λ2

λ3 ← λ−1
2 x1, y1, x2, λ1, λ2 x1, y1, x2, λ1, λ3

λ4 ← λ1 · λ3 x1, y1, x2, λ1, λ3 x1, y1, x2, λ4

λ5 ← λ2
4 x1, y1, x2, λ4 x1, y1, x2, λ4, λ5

λ6 ← λ5 − x1 x1, y1, x2, λ4, λ5 x1, y1, x2, λ4, λ6

x3 ← λ6 − x2 x1, y1, x2, λ4, λ6 x1, y1, x3, λ4

λ7 ← x1 − x3 x1, y1, x3, λ4 x1, y1, x3, λ4, λ7

λ8 ← λ4 · λ7 x1, y1, x3, λ4, λ7 y1, x3, λ8

y3 ← λ8 − y1 y1, x3, λ8 x3, y3

x3, y3

ECC however, this ability is not utilised. Note that usually one would defined
a point structure and utilise instances of this structure rather than separate co-
ordinates; although possible, we deliberately avoid this so as to minimise the
amount of new syntax introduced.

2.1 A Performance Perspective

Register Allocation One of the most tedious parts of implementing sequences
of operations on types not supported by the compiler is finding an allocation of
temporary variables which is efficient, i.e. uses the least amount of memory. For
example, when implementing Algorithm 2 we start with a list of field operations
that use an unbounded number of temporaries, say λ1 . . . λn, and are required
to fit them into the memory available on the target platform.

Register allocation of native types is often achieved by performing liveness
analysis of the temporaries involved; constructing an interference graph which
describes overlapping liveness ranges; and performing graph colouring on where
the colours are register names [50, Chapter 16]. This process is illustrated by
Table 1 and Figure 3 which show the calculation of liveness and interference
between intermediate variables in Algorithm 2. From this, we can see that aside
from the parameter and return values which are implicitly assigned their own
space, we need only two temporary registers in order to compute the algorithm
correctly.

Since we are currently targeting C code which is linked to NTL via a further
compilation stage, we do not consider the case where we run out of temporaries
and need to spill some to memory. However, adding this capability is a natural
extension along the same lines as conventional compilers.



Fig. 3. A graph of interference built from the liveness properties of temporary variables
while computing an affine point addition.

x1 x2 x3 y1 y2 y3

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

Strength Reduction In a typical implementation of Algorithm 3, multiplica-
tion of field elements by small constants is typically unrolled into an efficient
addition chain since addition is far less costly than multiplication. In the ter-
minology of compilers this is a type of strength reduction [50, Chapter 12]. For
example the computation from Line 2 which computes 2x1 can be replaced by
x1+x1 since we know that addition is less expensive than multiplication. Clearly
we apply the same technique to exponentiation.

From a purists perspective, performing this optimisation manually obfuscates
the program; early optimisation like this is a poor choice since it limits both
understanding of the algorithm and portability of the program which implements
it. In the example above, we have made an assumption about the cost ratio
between addition and multiplication and hard coded it into our implementation.
If this assumption is false for some platform, we must re-evaluate the implications
of our optimisation and maybe replace it with something more appropriate.
Within CAO however, this potential disadvantage is eliminated since we describe
a program in the most natural form and rely on automated optimisation. More
precisely, since the back end of the compiler has intimate knowledge of the
target architecture, or can perform experiments to find out this information, it
can evaluate the least costly option and implement it automatically.

In general, the problem of computing optimal addition chains is NP-complete.
However, we typically only need to compute chains for small values and can
get reasonable result using only a basic algorithm, for example the power-tree
method of Knuth [35, Section 4.6.3]. Currently we only consider strength reduc-
tion of operations by replacing them with less costly alternatives; in reality we
would also like to automatically detect and instrument pre-computation of costly
constants. This is an area marked for future work. Another interesting extension
is to consider a method of generating addition chains which interacts with the



register allocator to minimise the amount of space used. For example, one might
use and extend the method of Parker and Plater [54] so that a trade-off between
short addition chains and low memory use is reached. Still further work might
recognise and utilise multi-exponentiation as a means of reducing cost.

Common Sub-expression Elimination Intermediate results which are com-
mon between different parts of the computation and can potentially be shared
without re-computation should there be enough registers to accommodate them.
There is no good example of this in either Algorithm 2 or Algorithm 3. However,
in general if we have an operation such as x1 + x1 twice in the program and the
value of x1 is not altered between the two, we can compute the value just once
and share the result. Clearly such an operation is a trade-off between the spaced
used to store the intermediate value and the time required to recompute it.

In compiler terminology such an optimisation is termed common sub-expression
elimination [50, Chapter 13] and is easily realised for types known to the com-
piler.

2.2 A Security Perspective

The double-and-add algorithm described above is vulnerable to SPA-based side-
channel attack where the attacker monitors the power usage of the host device
while executing the point multiplication by d. Since one is composed from a
different sequence of field operations than the other, the power profiles of point
addition and doubling will be distinguishable. Denoting addition by A and dou-
bling by D, a monitoring phase presents the attacker with a trace detailing the
operations performed during execution of the algorithm. For example, by mon-
itoring the execution of Algorithm 1 using the multiplier d = 10012 = 910, we
get the trace:

DADDDA

Given this trace, the attacker can recover the value of d simply by spotting where
the point additions occur: if an addition occurs then di = 1, otherwise di = 0.

Simple Indistinguishability Tests The crux of the problem described above
is that an observable operation is conditionally executed based on information
that should remain secret. In the case of the double-and-add algorithm, this
conditional statement is glaringly obvious and so spotting the vulnerability is
simple once the programmer is aware of the issues. However, in more complex
systems consisting of composite algorithms and where the secrecy of data is not
as obvious, spotting such conditionals is much harder.

We can easily equip the compiler with the ability to locate this sort of vul-
nerable operation. We simply require a mechanism to communicate the privacy
status of variables to the compiler and some simple analysis to determine if two
code sequences are indistinguishable from each other. In Listing 1.1 we mark the
multiplier d with the secret attribute to show that it should not be revealed to



Fig. 4. The control flow graph of the double-and-add algorithm.

i← |d| − 1

Q← O
i← i− 1

Q← 2 ·Q
Q← Q + P return Q

i 6= 0

i = 0

i > 0

di = 0

i > 0

di 6= 0

i = 0

i > 0

i = 0

an attacker. Using this extra information, the CAO compiler issues the following
warning message when the program is compiled:

warning [pmul.cao:14:7-16] : branch based on secret condition

if( d[i] == 1 )

^

This is essentially telling us that the branch condition has been marked as secret
and hence if the executed content is observable, may be leaked.

As suggested by Coron [16], one way to avoid this problem is to employ a
double-and-add-always method whereby a dummy addition is executed if the
real one is not. Although this significantly reduces the performance, it acts to
mask when the real addition occurs and hence leaks no information about the
multiplier bit being used. More generally, if we can balance both sides of the
branch in terms of observable operations, it will leak no information even if the
condition is secret. An area of further work is to improve our simple indistin-
guishability test to cater for this possibility. Currently we simply spot where
branches based on secret information are used. If we can tell where the two sides
of a branch are balanced, such a test will more accurately predict actual security
problems. We leave this as an area for future work.

This can be extended to more general operations whose execution is somehow
dependent on secret information. For example, some attacks against use the fact
on certain processors, bitwise shift and rotate operations take different amounts
of time to complete depending on the shift distance. If the distance is secret, this
can leak information to the attacker; in CAO we can detect and warn against
this problem at compile-time.

Automatic HMM Analysis A common method for defending point multipli-
cation against side-channel attack is to introduce some form of randomisation.
This can either be done as part of the actual algorithm or as an exponent recod-
ing phase, for example see the work of Oswald and Aigner [53]. However, previous



Fig. 5. A HHM description of the double-and-add algorithm. Nodes are marked with
a node name si and an observable event, ε denotes no observable. Edges are marked
with transition probabilities.

s0 : ε s1 : D s2 : A s3 : ε
0.5

0.5

0.25

0.25

0.5

0.5

0.5

research has shown that by modeling such algorithms as Hidden Markov Models
(HMM), one can take the randomised side-channel information and reconstruct
the original trace hence defeating the countermeasure. Oswald [52], Karlof and
Wanger [34] and then Green, Noad and Smart [28] have all shown that this
method is very effective in attacking systems that otherwise seem secure.

Once the HMM for a given algorithm has been constructed, the analysis
is automatic: one feeds the algorithm and a number of captured randomised
side-channel traces to the system and it recovers the genuine trace. Since at
some point the algorithms are written as program code, it seems obvious to
attempt a further step in terms of automation by constructing the HMM from the
program code. In fact, this is fairly easily achieved since the HMM is essentially
a distilled version of the program control flow graph with probabilities attached
to the branches. The calculation of these probabilities is eased by the fact that
randomisation is a first class concept in CAO but otherwise can be achieved
using similar analysis phases as branch prediction would be in a conventional
compiler. The observable events that occur are derived from attributes placed by
the programmer: notice that the point addition and doubling implementations
in Listing 1.2 and Listing 1.3 are both marked with the observable attribute
to specify that they should be viewed as observable by an attacker.

As an example, consider the double-and-add method from previous discus-
sion. Constructing the control flow graph from this algorithm is simple; we do
this as part of other analysis phases, the result is shown in Figure 4. We can
then translate this control flow graph into a HMM representation as shown in
Figure 5. Using this graph, we can perform a similar form of automated analysis
as Green, Noad and Smart to produce some idea of how secure the algorithm is.

Several problems prevent this being a trivial task. First, the double-and-add
algorithm is an exception simple example; we use it here because of exactly
that fact. More complex control flow graphs demand more involved translation.
Second, in order to perform the automated analysis of the constructed HMM
we need a trace generator which will give us example runs of the algorithm.
In fact, this is not too much of a problem since we have the algorithm in an
intermediate form within the compiler; we simply need to embed an interpreter



in the compiler to execute the model and produce traces or execute the actual
HMM itself.

Automatic Construction of Indistinguishable Operations Considering
the double-and-add method for point multiplication as described above, one
method of defending against the basic SPA attack is to construct the point
addition and doubling formula so that they are indistinguishable from each other.
This is generally achieved by splitting the more expensive point addition into
two parts, each of which is identical in terms of the operations it performs to a
point doubling. Put more simply, instead of recovering an operation trace such
as:

DADDDA

from the SPA analysis, an attacker gets:

DDDDDDDD

from which they can get no useful information. This methodology has been
successfully constructed in several vanilla ECC implementations [59, 26]. It is
this basic form of analysis that we consider; we simply reorganise the formulae
so they are indistinguishable rather than performing more complex manipulation
of the formulae or curve representation [42, 33]. The problem with the approach is
that reorganising the formulae to make them indistinguishable while minimising
any overhead is still non-trivial. This is especially true when the arithmetic
sequences are more complex than in ECC, as is the case in systems like XTR, or
HECC. We aim to utilise standard compiler techniques to automate this process
and hence to some extent automatically produce SPA resistant implementations.

Put a little more formally, our starting point is a set of N functions Fi,
with 0 ≤ i ≤ N − 1. Each function is a list of instructions from a finite and
usually small instruction set L. For concreteness one can think of the simplest
case of two functions F1 and F2 performing ECC point addition and doubling.
Basic instructions will then be additions, multiplications, squarings and other
operations over elements of the base field.

Let |Fi| denote the size of function Fi, and Fi[j] ∈ L denote instruction j of
function Fi, with 0 ≤ j ≤ |Fi| − 1. We aim to manipulate the original functions
into new versions F ′

i such that the execution trace of all of them is some multiple
of the execution trace of a pattern P . That is, running F ′

i is indistinguishable
from running P a given number of times, or more exactly that:

{

|F ′

i | = 0 (mod |P |) 0 ≤ i ≤ N − 1
F ′

i [j] = P [j (mod |P |)] 0 ≤ i ≤ N − 1, 0 ≤ j ≤ |F ′

i | − 1

Clearly we might need to add some dummy instructions to the original func-
tions, as well as reordering their instructions, so that the above relations on the
manipulated functions will hold. To allow for instruction reordering, we must ex-
tend our problem definition to include information on the dependencies between



Algorithm 4: An algorithm for Diffie-Hellman key exchange.

Input: Public modulus p and primitive root g modulo p.
Output: Both players compute the shared key k.

Agent a Agent b

x
R
←− {0 . . . p− 1} y

R
←− {0 . . . p− 1}2

gx (mod p)
−→3

gy (mod p)
←−4

k = (gy)x (mod p) = gxy k = (gx)y (mod p) = gxy
51

instructions within each function. We represent these dependencies as directed
graphs.

The goal is to find P and matching F ′

i whose cost overhead compared to the
original programs is minimised. This problem is similar in concept to that inves-
tigated by Chevallier-Mames et al. [15] who look at reordering processor level
instructions to achieve a similar goal. Intuition on the hardness of this prob-
lem comes from noticing similarities with well-known NP-complete optimisation
problems such as the Minimum Bin Packing, Longest Common Subsequence and
Nearest Codeword problems [21]. Our approach to solving this problem uses an
adaptation of a generic optimisation algorithm called Threshold Accepting [24].
We do not aim to find the optimal solution, but to find a good enough approxi-
mation of it that can be used in practical applications.

Notice that the the point addition and doubling implementations in List-
ing 1.2 and Listing 1.3 are both marked with the sameas attribute to specify
that they should be paired and made indistinguishable by the compiler. Using
this approach we have been able to produce results equivalent to the small hand-
made solution presented by Gebotys and Gebotys in [26] for elliptic curve point
addition and doubling; to construct indistinguishable squaring and multiplica-
tion over a degree six extension of a finite field as used in several torus based
constructions [27, 23]; and to produce indistinguishable versions of point addition
and doubling over hyper-elliptic curves of genus 2 based on the explicit formulae
presented by Lange in [38]. We are currently preparing a paper describing in
detail our approach to generating indistinguishable operations and the results
we have obtained.

Distillation to Models for Formal Methods One of the drawbacks to de-
scribing programs in languages typically used by the formal methods community
is that they are difficult to use and generally disjoint from those one would use
to describe executable programs. This presents a number of serious programs
from a practical point of view. The emphasis in formal methods is on checking
of a protocol rather than the implementation of that protocol. Clearly if the two
are described in different programs, there is potential for differences between the
two and hence errors.



Listing 1.4. A CAO implementation of Diffie-Hellman key exchange.

1 a( ba : input chan of int ,

2 ab : output chan of int ) : void

3 {

4 y : f;

5 x : f : { secret };

6 t : f;

7 k : f : { secret };

8

9 x := ?; // compute random x

10 t := g ** x; // compute t = g^x

11

12 ab := t; // send t to b

13 y := ba ; // read g^y from b

14

15 k := y ** x; // compute key k

16 }

17

18 b( ab : input chan of int ,

19 ba : output chan of int ) : void

20 {

21 x : f;

22 y : f : { secret };

23 t : f;

24 k : f : { secret };

25

26 y := ?; // compute random y

27 t := g ** y; // compute y = g^y

28

29 x := ab ; // read g^x from a

30 ba := t; // send t to a

31

32 k := x ** y; // compute key k

33 }

34

35 inst () : void

36 {

37 ab : chan of int:

38 ba : chan of int:

39

40 par

41 {

42 a( ab , ba );

43 b( ba , ab );

44 }

45 }



Algorithm 4 and Listing 1.4 describe the basic Diffie-Hellman key exchange
protocol [22] whereby two agents a and b agree a shared key k. The basic model
for parallelism in CAO is derived from occam and hence from CSP; the imple-
mentation is composed from a number of parallel processes and channels which
allow them to communicate. From the implementation in CAO, we can clearly
produce an executable form by mapping the processes onto the different process-
ing devices involved in the protocol. However, we can also apply a fairly natural
translation of the program into a CSP [55, 45] or Spi Calculus [1, 2] model that
can then be verified by model checking systems. Further, we could replace our
run-time support library with something similar to that of Backes et al. [11] so
that automated proofs are possible by fitting into their model.

Ideally, we would want to embed the model checking software within the com-
piler so that the programmer is offered a single-shot solution. That is, they need
not worry about multiple phases of security analysis, the analysis is managed
automatically by the compiler which either issues error messages or produces a
secure executable. This transformation or analysis is not currently implemented
in the compiler; we leave it as an area for future work.

3 Code Generation

Listing 1.5 shows the compiled output of the CAO source code in Listing 1.1
for ECC point multiplication while Listing 1.6 and Listing 1.7 show the compiled
addition and doubling functions, all ready for linking against NTL and a driver
program to form an executable. Remember that by this stage we have already
warned the programmer that the source code is vulnerable the SPA attack;
we present the original distinguishable versions of the addition and doubling
functions for clarity, in reality we might also have transformed them to address
the issued warning.

Note that we employ a copy-back mechanism for implementing each function
call. This essentially demands that the function return values are generated
into spare temporaries and then copied to their final destination. Although this
typically results in a marginal increase in the number of temporaries required,
it allows us more freedom inside the actual function we are calling. Specifically,
we can always write to the return values without any danger of overwriting one
of the arguments which we need at a later date. In a hand coded program one
typically avoids this problem by leaning on the fact that the entire call structure
is known. Although we could also investigate inter-function analysis to do this,
and hence marginally reduce the number of temporaries required, using the copy
back mechanism to guarantee correctness seems an attractive alternative for now.

The performance of the CAO generated NTL code matches that written by a
human programmer. Indeed, with this simple example there is very little margin
to be either better or worse. More generally, with programs of this type, that is
programs essentially consisting of sequence of finite field operations, we expect
this match to remain as a result of our relying on the run-time library for the
performance critical segments. For example, the overhead in the CAO generated



Listing 1.5. Compiled ECC point multiply.

1 void pmul ( ZZ_p & __ident_anon0 ,

2 ZZ_p & __ident_anon1 ,

3 ZZ_p & Px ,

4 ZZ_p & Py ,

5 ZZ& d )

6 {

7 ZZ_p __t53;

8 ZZ_p __t52;

9 int __t40;

10 ZZ_p __t50;

11 ZZ_p __t51;

12 char __t20;

13 __t53 = 0;

14 __t52 = 0;

15 __t40 = NumBits ( d );

16 __t40 = __t40 - 1;

17 __label141 :

18 if ( __t40 < 0 )

19 goto __ident_break ;

20 pdbl (__t50 ,__t51 ,__t53 ,__t52);

21 __t53 = __t50;

22 __t52 = __t51;

23 __t20 = bit( d, __t40 );

24 if ( __t20 != 1 )

25 goto __label144 ;

26 padd (__t50 ,__t51 ,__t53 ,__t52 ,Px ,Py);

27 __t53 = __t50;

28 __t52 = __t51;

29 __label144 :

30 __t40 = __t40 - 1;

31 goto __label141 ;

32 __ident_break :

33 __ident_anon0 = __t53;

34 __ident_anon1 = __t52;

35 }



Listing 1.6. Compiled ECC point addition.

1 void padd ( ZZ_p & __ident_anon0 ,

2 ZZ_p & __ident_anon1 ,

3 ZZ_p & x1 ,

4 ZZ_p & y1 ,

5 ZZ_p & x2 ,

6 ZZ_p & y2 )

7 {

8 ZZ_p __t50;

9 ZZ_p __t51;

10 sub ( __t50 , y2 , y1 );

11 sub ( __t51 , x2 , x1 );

12 inv ( __t51 , __t51 );

13 mul ( __t51 , __t50 , __t51 );

14 sqr ( __t50 , __t51 );

15 sub ( __t50 , __t50 , x1 );

16 sub ( __ident_anon0 , __t50 , x2 );

17 sub ( __t50 , x1 , __ident_anon0 );

18 mul ( __t50 , __t50 , __t51 );

19 sub ( __ident_anon1 , __t50 , y1 );

20 }

Listing 1.7. Compiled ECC point doubling.

1 void pdbl ( ZZ_p & __ident_anon0 ,

2 ZZ_p & __ident_anon1 ,

3 ZZ_p & x1 ,

4 ZZ_p & y1 )

5 {

6 ZZ_p __t50;

7 ZZ_p __t51;

8 ZZ_p __t52;

9 sqr ( __t50 , x1 );

10 add ( __t51 , __t50 , __t50 );

11 add ( __t50 , __t51 , __t50 );

12 add ( __t50 , __t50 , A );

13 add ( __t51 , y1 , y1 );

14 inv ( __t52 , __t51 );

15 mul ( __t52 , __t50 , __t52 );

16 sqr ( __t50 , __t52 );

17 add ( __t51 , x1 , x1 );

18 sub ( __ident_anon0 , __t50 , __t51 );

19 sub ( __t50 , x1 , __ident_anon0 );

20 mul ( __t50 , __t50 , __t52 );

21 sub ( __ident_anon1 , __t50 , y1 );

22 }



code for performing function call copy-back is marginal compared to the cost
of a finite field multiply so this perceived lack of code quality is not actually
important. However, the situation with other program types is far different.
Ultimately, we would like to compile other cryptographic kernels such as the
block ciphers DES and AES. In these cases, we can no longer rely on the cost
of library operations to overshadow our inefficiencies since all the operations are
more basic, operate on native types and hence do not use the run-time library.
Addressing this issue is our next immediate goal in terms of code generation with
the aim being high performance or small sized block cipher implementations from
the same natural, high-level description in CAO.

4 Conclusions

Writing secure software is becoming an increasingly difficult task and yet with
the rise of pervasive, networked computing, it is increasingly more important to
get right. In the face of this difficulty, researchers have started to investigate and
implement compiler based techniques for detecting and resolving issues such as
buffer overflow vulnerabilities. Such techniques are attractive since automated
program analysis and transformation can be applied to a large corpus of source
code and provide a high level of quality assurance.

However, despite these advances in technology that helps to manage the com-
plexity faced by programmers, until now there have been few aids for developers
of cryptographic software. Since it represents a very distinct domain, this is un-
fortunate given the fact that demands on performance and security are perhaps
even more important than in the general setting. To this end we have introduced
CAO, a language and compiler that we claim is cryptography-aware and offers
a step toward solution of these problems.
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Appendix A: Language Reference

1 Comments

Annotation of code with a natural language description of functional and de-
sign issues is an important part of programming. Adding comments to the code
ensures that subtle meaning is made obvious and that readers can more easily
understand design and functional decisions made by the programmer. Comments
are to aid human readability only: they are discarded by the compiler and have
no impact on the function or performance of the program.

CAO adopts the same syntactic method of commenting as Java and C++ .
That is, one can specify block comments using:

/* comment */

whereby everything between the /* and */ markers is deemed a comment. Al-
ternatively, single line comments are made easier by using the form:

// comment

which means that everything between the // marker and the end of the line is
a comment.

2 Types, Constants and Symbols

Any useful CAO program will use variables and constants to represent basic
data items that are being operated on. The programmer describes these objects
in a way that enables the compiler to know their name and type. The type of a
variable or constant is exactly that: the variety of object or, more formally, the
set of values the object can take and how operations are defined on it. These
notions are somewhat awkward to explain but will certainly be familiar to those
who have programmed in another language such as C .

Types in CAO comprise of two main varieties: scalar or primitive types that
describe the most basic objects in a program, and derived or constructed types
that build more complex types from basic ones.

2.1 Scalar Types

There are several basic types in CAO :

– The void type is something of a place-holder since it represents an unknown
or empty type. It doesn’t normally make sense to define variables with void

type, but is commonly use to show that a function doesn’t return a value or
take arguments.

– The int type represents objects that take on signed, whole number, integer
values. The range of values that an object of integer type can represent is
determined by the size of the type, a subject discussed below.



– The boolean or bool type, i.e. the type of object that take the values true
or false, is first-class in CAO . One might view this as a specialisation of the
integer type which can only take two values.

Unlike the type system in other languages where the size of a type is largely
pre-determined, we allow user-defined type sizes. For example, in C one might
use:

short x;

int y;

to declare a 16-bit integer x and a 32-bit integer y. The problem with this method,
in C at least, is that on some architectures the types may be represented by a
different size than on others: an int on a PIC micro-controller for example is
likely to be smaller than 32-bits if the hardware can not manage native 32-bit
arithmetic. CAO allows the programmer to specify the required size of such types
using:

x : int[16];

y : int[32];

to declare the same 16-bit and 32-bit integer variables x and y. This might be a
little confusing for C programmers who would expect this syntax to declare an
array whereas in fact we are defining the size of the basic type. In some sense it
still is an array: an array of bits, the syntax being partly drawn from hardware
description languages like Verilog and VHDL. Note that specifying the size of
some basic types does not make sense. Specifically, one can not meaningfully
change the size of void or bool types.

There are several advantages to allowing this ability to explicitly define the
size of basic types. Firstly, it allows us to be more clear about what types mean
rather than simply trusting that the target architecture supports our intuition.
The additional semantic information such sizes give us has the further benefits
of allowing more accurate type checking and the potential for aggressive optimi-
sations not possible otherwise. Secondly, the facility to have odd sizes allows us
to more easily specify programs that can efficiently be compiled to both software
and hardware platforms. For example, when compiling to hardware it is clearly
possible to create actual 5-bit values that could save valuable silicon space com-
pared with defaulting to 8-bit values. Finally, it allows us to eliminate problems
of portability since there is no longer any ambiguity about what a type means,
a 32-bit integer type is always a 32-bit integer type.

Aside from this, the biggest difference from languages such as C is that a
standard int type with no size qualifier is assumed to be an arbitrary precision
value. The frequent use of large integer values in cryptography is such that
having this type allows the compiler to generate and optimise code with complete
semantic knowledge rather than forcing the programmer to do all the work.
In cryptography, the maximum size of such an object is fixed; by using some
range analysis, the compiler can determine this upper bound and constrain the
arbitrary size to something finite.



2.2 Symbols and Scope

In the previous section, without much explanation, we introduced the syntax for
variable declaration. As mentioned previously, variables represent the objects
within a program that are manipulated in order to produce the required result.
Before they are used in any operation, variables must be declared so that the
compiler knows about their properties and hence how such operations work.
Such declarations provide the name, or identifier, and type of the variable.

Variable definitions are performed within a scope and their definition is only
valid within this scope. Sometimes this concept is called the visibility of a variable
and this describes the concept fairly well: the scope of a variable is simply the
part of the program where the variable can be read from or written to. For
example, consider two functions f and g:

f() : void

{

x : int;

y : int;

...

}

g() : void

{

x : int;

y : int;

...

}

The definitions of x and y in each function are distinct – they define different
variables whose scope is limited to the function each definition is within. Equally,
one can use compound statements as a scope:

f() : void

{

x : int;

y : int;

for( x := 0; x < 10; x := x + 1 )

{

y : int;

y := x + 1;

}

...

}



In this case, the definition of y within the for loop is valid since it is within a
different scope to the first and hence causes no conflict. If it were within the same
scope, the compiler would be unable to know which variable a given reference
was referring to. Here, the assignment to y within the for loop refers to the y

defined in that scope.

2.3 Attributes

C compilers have long allowed programmers to pass options to and control the
compiler using the pragma directive. Although compiler-specific behavior is usu-
ally an unattractive feature, allowing the programmer to bypass the language
and specify richer semantic information can be useful. To this end, CAO permits
use of attributes directive which are used to mark types, symbols and constants
with domain-specific information. This information is attached to the item in
question and carried with it through the compiler transformations. The rational
behind this mechanism is simple: we want the compiler to do analysis of security
related programs and so knowing which variables represent, for example, secret
keys is vital. In a conventional program, this information is only really known
by the programmer – the compiler can not easily infer it automatically.

Since attributes are invisible to all analysis phases aside from those that
look for them, one can easily construct inter-operable phases that work together
to enhance the basic, security-agnostic language. Attributes are attached to a
symbol by using a third section in their declaration. As a concrete example,
consider the follow code fragment:

key_public : int : { public };

key_secret : int : { secret };

modulus : int : { public };

rsa_enc( x : int ) : int : { encrypt }

{

return ( x ** key_public ) % modulus;

}

rsa_dec( x : int ) : int : { decrypt }

{

return ( x ** key_secret ) % modulus;

}

From a practical standpoint, this isn’t a very good implementation of RSA but
it serves as an excellent demonstration of how symbols are tagged with differ-
ent semantic information. The public and secret keys named key_public and
key_secret are tagged with information that lets the compiler know they are
public and secret: the exponentiations by these values might be instantiated us-
ing different algorithms as a result. The encryption and decryption functions
rsa_enc and rsa_dec are tagged with even higher level attributes that specify



their provable security properties: the compiler might be able to prove that the
implementation matches the semantics dictated by such properties.

Note that this system is basically similar to that of Myers [51] as implemented
in Jif, however we currently adopt a more ad-hoc approach without the formal
semantics of his labeling mechanism. The semantics of attribute inheritance are
that when an operation acts on a number of operands to produce a result, the
attributes of the result are unioned with the attributes of the operands. That is,
when we write:

f() : void

{

a : int : { public };

b : int : { public };

c : int : { secret };

a := b + c;

}

the attributes of a end up being the set { public, secret } since b is { public }

and c is { secret }. It is then left up to individual analysis phases to resolve
any ambiguities this could present.

2.4 Type Synonyms

CAO allows the programmer to define new names for types in the same way as
the typedef construct in C . The purpose of such type synonyms is two-fold.
Firstly, it reduces the amount of work required by the programmer in terms
of actual typing effort, which may be considerable when large compound types
are constructed. The second and perhaps most important purpose is to make
programs more clear and easier to read. For example it is far more instructive
to see the type name des_key than unsigned int[64].

The mechanism for using type synonyms in CAO is somewhat cleaner than
in C . To implement the example above, one would use the following statement:

typedef des_key := unsigned int[64];

This upgrade of typedef from part of the actual type declaration in C to a
first-class statement in CAO , makes the definition much clearer and means that
the parser can be more simply designed and implemented. In addition, note
that since a type synonym is an actual statement, it might generate code in the
target program to, for example, initialise or register the type within the run-time
library.

Using this typedef mechanism, CAO automatically defines several type syn-
onyms that are simply convenient names for often used basic types:

– The byte type is used to represent a byte or group of eight bits. It is therefore
a synonym for using the type int[8] : { unsigned }.

– The char type is used to provide some level of compatibility with C pro-
grams, representing the int[8] : { signed } type.



2.5 Derived Types

The basic types are augmented with a number of derived types that represent
ordered collections of contained values. The first of these are the vector and
matrix types that represent vector and matrix objects as one might see them in
mathematics. These container types are used as one might expect, employing a
similar syntax as basic types to denote size. For example, to declare ten by ten
element matrix x and a twenty element vector y, both containing integer values,
the following statements could be used:

x : matrix[10][10] of int;

y : vector[20] of int;

The vector type is like an array in C , although since there are no pointers in
CAO it can be viewed as a more first-class notion. The matrix type is not like a
two-dimensional array in C since it is representation neutral. That is, there is no
specification as regards row or column-wise ordering in memory, the compiler is
free to decide which is most appropriate.

CAO also allows compound types called structures. Structures are just like
the concept of a struct in C – they are a collection of objects of potentially
different basic type which are referenced by name. Due to their syntactic size,
a structure type is generally defined using a typedef. The following fragment
declares a structure s with three integer members named x,y and z:

typedef point := struct{ x : int;

y : int;

z : int; };

This type can then being use to define a variable v whose contents is accessed
using the member selection operator:

p : point;

p.x := 0;

p.y := 1;

p.z := 0;

2.6 Mathematical Types

Finite fields are used extensively in cryptography and in the same way as CAO
allows arbitrary precision integers as first-class types, we introduce a field type.
The addition of the field as a native type derives similar benefit as having ar-
bitrary sized integers: the compiler is able to perform optimisations that would
not be possible without this knowledge.

Currently, the way these types are defined is insufficient for some problems to
be specified, for example situations which need a modulus supplied at run-time
using a variable rather than a constant; extension fields; and composite moduli
which do not defined fields. One should view this as a first attempt and as such



is the one area we expect to change in a backward incompatible way: we are in
the process of revising the language, see Section 6 for more details.

CAO currently restricts fields to being of the form Fpe where p is the char-

acteristic of the field and e is the extension degree. Using this format, one can
construct elements in simple binary and ternary extension fields, as used in ECC
for example, as follows:

x : gf[2 ** 8];

y : gf[3 ** 9];

In this case, x is an element in the field F28 while y is in F39 . However, one
can also create more basic field types, such as gf[7], by omitting the extension
degree. For large primes, it is common to use a typedef to create a new field
type:

typedef f := gf[ 0xE69B959FA53FD3DE3818860FBDDD726F ];

Finally, we allow an empty field definitions:

x : gf[];

At first glance, this seems pointless. However, the rational behind this construct
is that often we work with a field whose size is not known until run-time. For
example, maybe we generate or load a prime number, perhaps an RSA key,
and work with that as a modulus: the value is not known until run-time but
we know enough to compile the program. Since we are dealing with describing
cryptographic kernels within some larger application, we rely on this application
to initialise the field for us prior to invoking any CAO generated functions.

2.7 Constants

One problem of having such a diverse type system is that we need to be able
to define constant values for each type. The integer and boolean types are no
problem and follow C and C++ with true and false being first-class keywords
to define boolean constants. CAO allows the specification of integer constants in
decimal, hexadecimal and binary notation. For example, all three of the following
assignments are equivalent and set the value of an integer x to the value ten:

x : int;

x := 10; // decimal

x := 0xA; // hexadecimal

x := 0b1010; // binary

Note that since the normal int type represents arbitrary sized integer values,
constants can also be much larger than in a language like C .

Constant field elements are slightly more troublesome. For a given field, there
may be a number of different ways to represent the elements, for example using
a normal or polynomial basis. As such, specifying constant values is difficult



since their specification is defendant on the representation. CAO currently takes
the approach of defining field elements as abstract polynomials such as in this
definition of the element e:

typedef f := gf[2 ** 8];

e : f := $ ** 2 + $ + 1;

Note the use of a special symbol $ to denote the indeterminate of all poly-
nomials to avoid ambiguities with actual symbols in the program. As such, in
mathematical parlance we have that e ∈ F28 and in fact that e = x2 + x + 1.

Related to this is the potential need to allow the programmer to specify an
irreducible polynomial to define a field. It is attractive to abstract this away and
let the compiler select one from a list or generate a suitable one at compiler
or run-time. However, there might be occasions when the programmer needs

to specify one, to comply with a predetermined specification for example. The
definition of such field polynomials is performed with an extension to the type
definition as follows:

typedef f := gf[2 ** 8] over $ ** 8 + $ ** 4 + $ ** 3 + $ + 1;

e : f := $ ** 2 + $ + 1;

In this case, we have that e ∈ F28 defined with the irreducible polynomial x8 +
x4 + x3 + x + 1.

2.8 Type Elasticity

The type of some expressions, constants or symbols in a CAO program will not
be determined by the object themselves but by the context they are used in.
Consider the following example:

a : int;

b : matrix[4][4] of int;

a := 0;

b := 0;

The first assignment sets the integer a to the integer value 0 while the second
sets the matrix b to the zero matrix. However, in both cases the constant 0 is
used with no idea of what type it is associated with. This demands the concept
of type elasticity: the ability for an expression, constant or symbol to have a
different type in different contexts. As far as possible, the rules that determine
which type an object of elastic type eventually has are based mainly on what
one would intuitively expect.

2.9 Type Qualifiers

One can add further meaning to basic types by attaching qualifiers to them.
A type qualifier is used by including a list of predefined attributes in the type



definition. Note that one might view the type sizing mechanism as a form of
qualifier since it adds information to a basic type. A more relevant example is
where one wants to specify that an integer type is unsigned rather than signed
so that arithmetic using variables of that type is performed correctly.

Type qualifiers come in two varieties that we term storage modifiers and type

modifiers. A storage modifier tells the compiler where and how variable of a given
type should be stored and how they are treated when linking the program. As
such, they do not change the behavior of the type but do alter how it interacts
with other elements of the program:

– A variable defined with a type containing an extern qualifier has its storage
allocated in some other part of the program. That is, the variable is only
defined so the symbol is in scope rather than to allocate space for it.

– A static type means that the defined variable is only visible within the
current file.

In contrast, type modifiers change the functional properties of the type so that
they mean something different when used in a given operation:

– When one needs to declare that a variable is immutable, the const qualifier
can be attached to the type. This signals to the compiler that, aside from
initialisation, the variable will never change value.

– The signed qualifier specifies that a type is able to deal with both positive
and negative values. Note that applying this qualifier is not meaningful to
all types, for example a finite field type can not be signed, and that the
signed-ness may impact on the size of the resulting type.

– An unsigned qualifier has the opposite effect of a signed qualifier, forcing
the type only allow positive values. It has similar constraints in terms of use
as the signed qualifier.

3 Expressions

Generally the arithmetic, bitwise and boolean operators in CAO follow those
in other languages quite closely. This is not a coincidence: one of the main
motivations for selecting much of the syntax has been compatibility with C so
as to ease uptake.

However, there are a range of operations that are first-class in CAO but
normally implemented as libraries within most other languages. By elevating
these features to first-class language entities we enable analyses and transforma-
tions within the CAO compiler that would be impossible to guarantee in other
languages.

3.1 Extent

CAO removes the idea of pointers found in languages such as C and therefore
also removes the need for memcpy type functions to copy data around. That



Precedence Operator Meaning Associativity

0 .. range left to right

1 () function call left to right
1 [] element select left to right
1 . member select left to right

2 ! boolean not right to left
2 ~ bitwise not right to left
2 ++ increment right to left
2 -- decrement right to left
2 + unary plus right to left
2 - unary minus right to left
2 sizeof size right to left
2 (type) cast right to left

3 * multiply left to right
3 / division left to right
3 % modular reduction left to right
3 ** exponentiation left to right
3 @ concatenation left to right

4 + addition left to right
4 - subtraction left to right

5 << left shift left to right
5 <| left rotate left to right
5 >> right shift left to right
5 |> right rotate left to right

6 == equals left to right
6 != not equals left to right

7 & bitwise and left to right

8 ^ bitwise xor left to right

9 | bitwise or left to right

10 && boolean and left to right

11 ^^ boolean xor left to right

12 || boolean or left to right

13 := assignment right to left

14 , list left to right



is, since assignment is aware of all types in a program, it implements the copy
efficiently for the programmer. Even though this is the main use of the sizeof

operator in C , it is still useful for the programmer to inspect the physical extent
of variables and types in a given program. To this end, CAO retains the sizeof

operator but with different semantics to C : the new operator returns the number
of elements in the operand type. Hence, in the following code fragment:

x := sizeof( int[13] );

y := sizeof( int[16] );

the variables x and y are set to 13 and 16 respectively rather than 2 which would
be the number of bytes required to hold them. One might view this as the sizeof
operator returning the extent of a type rather than the physical size of it.

3.2 Selection and Concatenation

In languages such as C and Java , the array subscript operator is used to select a
given element from an array. If a is an array, we use the syntax a[i] to select the
element i from a. CAO allows this operation to be applied in more contexts than
array subscripting; we term the more powerful operation element selection. If a
is a vector, the element selector works as with C style arrays. If a is an integer
type however, the element selector produces bit i of that value. Essentially, we
can select elements from any type so long as the subscript is within range.

The element selector is also a bit more clever that the C array subscript in
a couple of other ways. Firstly, we can select ranges of values so for example if
we require that the variable b contain the lowest four bits of a we can use the
range operator:

b := a[3 .. 0];

This sort of operation can also be performed using the concatenation operator
which allows selected elements to be joined into composite values. We might
write the same bit selection statement as:

b := a[3] @ a[2] @ a[1] @ a[0];

where the concatenation operator acts to join the parts into a whole. Note that
the element selector and concatenation operators can also appear as lvalues so
that:

b[3 .. 0] := 15;

assigns the value 15 to only the lowest four bits of b leaving the rest of the value
intact and

a[1..0] @ b[1..0] := 6



assigns the value of 1 to the lower two bits of a, since this represents the top two
bits of 6, while the lower two bits of b are set to the value 2.

Although veering into the world of functional programming a little, the con-
catenation and element selector allow natural specification of bit-related oper-
ations that are commonly used in cryptography. From this richer than normal
specification, the compiler can formulate the best way to implement the under-
lying operation. Indeed, the fact that we can apply the element selector in such
a general setting means many other operations such as mappings, shifts and
rotations can be represented in a canonical form using these ideas.

3.3 Mapping

A map is a table that describes the translation of elements in a source value
into a target value. The goal is to enable the compiler with enough information
that permutations, such as those in DES, can be efficiently implemented from
natural descriptions.

Consider a code fragment that reverse the elements in a small vector a and
stores the result in an vector b:

b[0] := a[3];

b[1] := a[2];

b[2] := a[1];

b[3] := a[0];

We can describe this translation using a map m:

m : map := { 0 to 3,

1 to 2,

2 to 1,

3 to 0 };

and apply the map to a using the map operator, which appears just like a
function call – essentially the map is a function defined with a different syntax,
so as to replicate our original code fragment:

b := m( a );

There are several important things to notice about this seemingly innocuous,
syntactic convenience. Firstly, since the map is effectively replicating a sequence
of operations built from element selection, the map operator can be applied to
any type that supports element selection. For example, we can apply a map to
integer types in order to permute the bits in a value or to a matrix to reorder the
entries. Secondly, because the map is a native type the compiler can automat-
ically select and implement very efficient methods for realising the translation.
This allows the programmer to describe a translation is a natural way yet still
reap the benefit of high performance in a resulting implementation. For example,
on targets that have bit permutation instructions [63, 57, 64, 40, 41, 49] a map of
bits in an integer might translate directly into one instruction while on another
target a more naive system of shift and masking may be required.



3.4 Rotation

Another side-effect of the element selector is that rotation is much easier to
describe than in languages like C . In C , one might rotate a 32-bit integer right
by four bits using the statement:

a = ( a >> 4 ) | ( a << 28 );

Although this might be the best way to implement the rotation at a machine
level, it is difficult for the compiler to recognise this as a rotation and use that
fact in further optimisations. To combat this, we can use element selection and
concatenation to do the same job in a more descriptive way:

a := a[3 .. 0] @ a[31 .. 4];

However, even this is far from ideal since it demands the programmer knows and
correctly interprets the size of a to select and place bits from the correct location.
To make things easier for the programmer, CAO offers a rotation operator that
looks similar to the shift operator:

a := a |> 4;

3.5 Randomisation

Random values are a native concept in CAO and can be guaranteed backing
from a cryptographically strong random number generator. To assign a random
value to a variable, we use almost the same syntax as with a normal assignment
but replace the rvalue with the random symbol:

a := ?;

Conceptually, ? is a variable whose value is randomly sampled each time it is
accessed, rather than an operator or function that generates the random value.
As a result, ? can be used anywhere in an expression a normal symbol can and
the type is elastic: it matches the type expected by the context it is used in.
In the example above, the type and size of ? matches the type and size of a so
that if a is a 32-bit unsigned integer, ? will be a random integer in the range 0
through 232 − 1.

Since ? can be thought of as a random variable, we can also use it in more
complex expressions:

a := ? * b;

and even perform random coin-flip style decisions:

if( ? )

{

...

}

else

{

...

}



4 Statements

4.1 Conditional Statements

Without some form of conditional execution, our programs will essentially be
straight-line and hence not very useful. CAO offers two main conditional con-
structs: an if/else construct and a computed switch style branch.

The use of if statements is the same as in C . To conditionally execute a
body of statements, we perform a test on a boolean condition. If the condition
evaluates to true, the body is executed but if it evaluates to false it is not. For
example, in the following fragment the value b is set to 1 only if a evaluates to
true:

if( a )

{

b := 1;

}

This is extended by adding an else branch:

if( a )

{

b := 1;

}

else

{

c := 1;

}

In this example, b is set to 1 if a evaluates to true but if a evaluates to false, the
else branch is executed and c is set to 1. It is important to note that CAO uses
strict types in this context: unlike in C , only boolean expression can be used as
the condition.

4.2 Iteration Statements

CAO offers the same three conventional forms of iteration statement that C
does. Additionally, they have exactly the same semantics so most people should
find them entirely familiar.

The do and while loop constructs use a single condition to continually ex-
ecute a body of statements while the condition evaluates to true. For example,
the following loops:

while( a < 10 )

{

...

}



do

{

...

}

while( a < 10 );

both continue to execute while the variable a is less than 10. The clear difference
is that a do loop is guaranteed to execute at least once since the condition is
evaluated at the end of each iteration. The condition of a while loop, in contrast,
is evaluated at the start of each iteration

A for loop takes two more parameters that are designed to perform some
form of initialisation and incrementing behavior. The best way to show the
semantics of these extra parameters is to note that the following for loop:

for( a := 0; a < 10; a := a + 1 )

{

...

}

is exactly the same as writing the following while loop:

a := 0;

while( a < 10 )

{

...

a := a + 1;

}

In addition to the more conventional iteration constructs, CAO includes a
genuine iterator statement. The foreach statement is intended as a bridge to-
ward a more mathematical way of writing down operations so that verbose loop
nests are eliminated: the compiler builds the loop nests automatically. For ex-
ample, the following code fragment:

s : matrix[4][4] of int;

k : matrix[4][4] of int;

foreach s[i][j]

{

s[i][j] := s[i][j] ^ k[i][j];

}

is functionally equivalent to:

s : matrix[4][4] of int;

k : matrix[4][4] of int;



i : int;

j : int;

for( i = 0; i < 4; i++ )

{

for( j = 0; j < 4; j++ )

{

s[i][j] := s[i][j] ^ k[i][j];

}

}

5 Functions

Functions in CAO are defined in a similar way to C , with a declaration that
specifies the function name and return and argument types followed by a body
of statements:

sort( a : int, b : int ) : int, int

{

return max( a, b ), min( a, b );

}

f() : void

{

a : int;

b : int;

a := 10;

b := 20;

( a, b ) := sort( a, b );

}

The semantics of function arguments are that they are all call-by-value. The
CAO compiler is free to utilise a call-by-reference style mechanism during code
generation in order to ensure large objects are not copied but references using a
pointer.

The major different from C is that CAO follows occam by allowing multiple
return values from a function. This approach is somewhat vital, due to the call-
by-value nature of arguments, so that a function can produce more than one
result. However, it also allows the easy exposition of low-level operations such
as add-with-carry instructions should the programmer wish to use them:

addc( a : int, b : int, c_in : int ) : int, int

{

sum : int;



c_out : int;

...

return sum, c_out;

}

This is the approach adopted by occam whereby the addc is essentially a library
call that maps down to a single machine instruction: there just isn’t a technical
reason why there should be only one return value other than that it is a historical
decision inherited from languages like C . From an implementation point of view,
CAO views the multiple return values as an anonymous structure in a similar
way that a functional style demands the programmer uses a first class tuple type
to group values. Note the use of parenthesis around multiple return values to
enforce this idea.

From an implementation point of view, the pass-by-value semantics makes
certain aspects much easier. For example, one no longer needs to worry about
the problem of aliasing between function arguments and results; one cannot alter
an argument value by altering a return value even if the same object is passed
as an argument and assigned to as a result.

6 Experimental Language Features

To allow some form of stability between what is in the language specification and
what is implemented in the actual compiler, we define a number of experimental
features. We fully intend to implement such features; they are simply specified
here rather than in the main specification so that we can fold them in once they
are implemented and hence maintain consistency between description and code.

6.1 Mathematical Types

The current syntax for definition of mathematical types such as fields and rings
is both inadequate and confusing. Fortunately, we have already moved toward a
solution for this. Essentially, we distill all types which are modulo some integer
or polynomial to one of four main cases:

typedef Fa : mod[ 2 ];

typedef Fb : mod[ n ];

typedef Fc : mod[ ];

typedef Fd : mod[ Fa / $ ** 8 + $ ** 4 + $ ** 3 + $ + 1 ];

In the first case, type Fa is defined as the integers modulo 2; this is simply
the field F2. The second case extends this by allowing a variable in place of
the previously constant modulus. Clearly this is advantageous since we might
want to calculate the modulus at run-time and then work with it. Both constant
and variable moduli can be prime or composite, the compiler can instrument



optimisation and analysis phases or issue errors or warnings when it has more
knowledge of the value in advance. Case three defines an empty modulus, here
we do not know the value of the modulus at all or where it comes from and so
rely on the run-time library or application software to initialise it for us. The
final case is perhaps the most complex and allows definition of extension fields;
the syntax demands one specifies a base field and an defining polynomial. As
such, Fd is an extension of Fa, which we already set as F2, defined using the
irreducible polynomial x8 + x4 + x3 + x + 1.

6.2 Parallelism

Writing parallel constructs in occam is a joy, the problem is that writing the
actual program part is far from that. The ability to define parallel sections of
code and use channels to communicate between processes is compelling when
writing programs in some domains: CSP type processes map well into hardware,
they are also quite nice for describing communication between parties in secu-
rity protocols. One of the original motivations for CAO was to amalgamate the
familiar syntax of C with the parallelism in occam . As a result, CAO treats
parallelism as a first-class notion using two language features: channel types and
par statements.

A channel is used to express communication between two parallel parts of a
program or to connect the program with some external data source or target.
There are two main types of channel: an input channel that receives data and an
output channel that sends data. Each channel type is specified by detailing the
communication direction and the type of data communicated over the channel.
For example, the statements:

x : input chan of int;

y : output chan of bool;

define x, a channel channel than reads integer values, and y, a channel that writes
boolean values. Note that the types of input and output channels are distinct,
one can not use an input channel where an output channel is required and visa
versa.

Channel read and write operations are different from occam in the sense
that there are no explicit read and write operators. Instead, a channel used as
an rvalue provokes a read from that channel, while a channel used as an lvalue
writes to the channel. Although this means the communication can’t really be
spotted without knowing the types of all variables, it offers a more natural way
to use a channel: it is just a variable that isn’t stored in the same sense as normal.

The par and seq statements look simply like normal compound statements
marked with a keyword:

par

{

...

}



where each statement in the block is treated as a parallel process. This is a lot
more loose that the occam definition in terms of correctness checking.

6.3 Advanced Maps

A drawback of the map syntax described above is that one cannot map entire
matrix objects; each row/column needs to have a map applied to it indepen-
dently. One way forward might be to replace the source and target indices in the
map with full element selector expressions so one would write:

m : map := { [0] to [1],

[1] to [2],

[2] to [3],

[3] to [0] };

but could then do something like this as well:

m : map := { [0][0] to [1][0],

[1][1] to [2][1],

[2][2] to [3][2],

[3][3] to [0][3] };

in order to remap matrix type structures. Further, there isn’t currently any
support for functional map definitions. For example, we wanted to define maps
something like

m : map := { target = ( source + 1 ) % 4 };

instead of

m : map := { 0 to 1,

1 to 2,

2 to 3,

3 to 0 };

Although this is defiantly seems attractive, coming up with a syntax that fits
with the rest of the language is a challenge.

6.4 Matrix and Vector Slices

Since we have eliminated pointers, it would be a nice extension to have matrix
slice operations like those in occam whereby one can specify the whole first row
or column of a matrix using syntax such as:

a : matrix[3][3] of int;

a[0][] <- {0,1,2}; // first row = 0,1,2

a[][0] <- {0,1,2}; // first col = 0,1,2

This kind of controlled pointer seems not only attractive but actually vital for
being able to specify some high-level operations efficiently. For example, if one
wants to rotate a column or row of a matrix, as is the case in AES, the column
or row needs to be referenced somehow.



Appendix B : Potential Research Ideas

As a tool for serious use by the cryptographic community, CAO has significant
potential. Although it covers a fairly broad range of areas, below are a list of
potential, specific topics that could be addressed in fairly self-contained chunks
either as student projects or varying difficulty, of as actual research projects:

– High performance compilation of cryptographic primitives.
• Software register allocation for complex types.
• Automatic addition chain generation for small multiples.
• Range analysis for delayed modular reduction.
• Domain specific super-optimisation.
• Efficient compilation of bit-permutations.

– Automatic security diagnosis and vulnerability solution.
• Analysis and generation of proof-carrying code.
• Compiler instrumented indistinguishable functions.
• Compiler instrumented arithmetic and boolean masking for side-channel

defense of block ciphers like AES and DES.
• Compiler instrumented of program-hardening constructs, for example

StackGuard and PointGuard.
• Compiler generated hidden Markov models for security analysis.
• Automatic security proof validation via source code annotation.
• Distillation into formal-method paradigms such as Spi Calculus.
• Transformations to increase the level of non-determinism in NONDET

processors.
– Shared-source compilation for diverse targets.

• Hardware compilation and hardware-software interface.
• Targets for smart-card systems such as JavaCard and the Mondex MUL-

TOS operating system.
• Support a range of libraries, for example NTL, LiDIA, GMP, nuMONGO.
• A CAO-specific library which is specialised to best match the compiler

capabilities and code generation style.
– Development tools.

• An lburg style system for generating back-ends from a description rather
than directly programming them.

• A Javadoc style system for adding documentation to CAO source code.
• A CAO to LATEXpretty-printer to generate algorithms from programs.
• A rich-text CAO source code editor that allows mathematical symbols.
• An interpreter for CAO to allow interactive programming like in the

Magma shell.


