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n Introduction
In 1878 the world-famous Russian ma-
thematician Tshebyshev published a 
paper concerning the transformation of a 
two-dimensional structure onto a curvili-
near surface, giving an application of this 
transformation for garment patterns. The 
available source paper is just a shortened 
description, which includes only the pre-
sented results. This work aims at a full 
description of Tshebyshev’s concept with 
special attention to the physical interpre-
tation of the assumption made, and to the 
degree of accuracy in the formulas quoted. 
Because Tshebyshev’s results are often re-
ferred to, the research attempt, which we 
have undertaken, seemsadvisable .

Moreover, the development of a method 
of designing garment patterns based on 
Tshebyshev’s assumption would give us a 
chance to eliminate the first sewing during 
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the preparation stage of the production. 
The possibilities of designing clothing 
forms in an unambiguous way starting 
from the material features and size cha-
racteristics of the human body, and using 
computer-aided engineering have been 
explored worldwide (as is proved by nu-
merous publications). Work on garment 
patterns conducted in recent years has 
led us to think that textile simulation in 
a form of proper net works and precise 
digital characteristics of the human body 
which records not only sizes, but also 
shapes, could result in positive effects. 
On one hand, a complete transformation 
from a three-dimensional model of the 
human body to two-dimensional forms 
characterised by the fabrics from which 
the clothing is made is likely expected.  
On the other hand, computer research 
has been conducted to simulate clothing 
on the basis of the expected appearance, 
resulting from an appropriate combination 

of joined fabric patterns produced using 
the fabric of familiar parameters.

n Angles of form deformation 
described by Tshebyshev

A non- deformed plane structure con-
sisting of two mutually perpendicular 
groups of fibres (weft, warp) is deformed 
onto a curvilinear surface.

The assumptions made by Tshebyshev 
have the following physical interpreta-
tions:
§ The plane structure is placed onto a 

curvilinear surface,
§ Fibres do not elongate in two mutually 

perpendicular directions,
§ Groups of fibres cannot shift at the 

points of mutual crossing.

The assumptions written above are an 
approximate description of the fabric, 
and are more accurate if the fabric defor-
mations are smaller.

Figure 1. Deformation of a network on a curvilinear surface. Figure 2. Deformation of line AB on a curvilinear surface.

a) b)
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n Dependence between 
the curvature 
and the deformation angle

As the result of deformation, point A 
with co-ordinates u, v in a non-deformed 
configuration, is moved to point A’ (Fi-
gure 1), the location of which is descri-
bed by vector r (u,v). The next point B 
(u+du,v+dv), lying on the line v=const., 
is moved to point B’, the location of 
which is described by vector 

.

The increment of vector , which is the 
distance of the measure of the two points, 
equals 

The equality  results from 
the assumed non-elongation of fibres, 
which leads directly to the equality: 

                       (1)

and similarly for direction v: 
                       (2)

where:

                   
The angle φ between tangents to the line 
AB is described by: 

                  (3)

The Gaussian curvature in the curvilinear 
co-ordinate system is described by the 
formula: 

                (4) 

where:

The deformation of line AB on a curvili-
near surface is presented in Figure 2. 

Using the equalities [1,2,3] and substitu-
ting them to formula [4], the following 
relation was obtained: 

 (5)

We need to notice that in Tshebyshev’s 
original work, on the right side of the 
equation [5] we subtract the two values, 
yet this difference does not change the 
further considerations due to the appro-
ximation accepted by Tshebyshev of 
one element to zero.The form presented 
above allows us to further simplify the 
formula [5], which in consequence gives 
the following equation: 

           (6)

n Properties of deformation 
angles on a geodesic line

We choose two points A and B in the non-
deformed co-ordinate system on Tsheby-
shev’s previously discussed net work 
(Figure 2a). Next, we deform this system 
onto a curvilinear surface, and as a result 
of this deformation points A and B take 
the new positions A’B’ (Figure 2b).

Circumscribing the curvilinear co-ordi-
nate describing the length of a line lying 
on a surface by s(u,v), and the vector ra-
dius of that line by , the length of the 
line joining points A’B’ is given by [7]. 

 (7) 

where:
r,s = r,u u,s + r,v v,s

v,u = v,s/u,s

The shortest line joining points A’B’, is 
called the geodesic line, and is defined by 
the condition: 

, 
or by using the perquisite condition of the 
extremum existing, the variance LA’B’: 

                    (8)

By substituting length LA’B’ (7) to condi-
tion (8) we obtain: 

       (9)

By means of numerous transformations 
we obtain the final equation (10) circum-
scribing the geodesic line of the system 
analysed. The differential equation pre-
sented in (10) describes the location of the 
geodesic line in the form of the function 
v(u) searched for.

The assumption made during the analysis 
was that the line v=v(u) is being sought. 
If we assume that the axis u lies on the 
geodesic line, then v=constant, and the 
derivative

 

It results from formula (10) that 

 Similarly, if we accept the reverse rela-
tion, that is u=u(v), we will obtain

 

It allows us to state that the angle φ lying 
at one of the geodesic lines which over-
laps with one of the net lines is always 
constant. 

Equation 10, 12, and 13.

Figure 3. Stability of angles on geodesic 
lines overlapping the lines of the network.

(10)

(12)

(13)
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Figure 3 presents a special case where the 
geodesic lines lie on two mutually inter-
secting network lines. Then the angle φ 
lying at a point where the two directions 
intersect is a constant angle in the direc-
tion of the net works line u, as well as in 
the direction of v.

n Angles of form deformation 
according to Tshebyshev 

In order to check the approximation 
accepted by Tshebyshev, the equation

  

was solved, accepting (after Tshebyshev) 
the small increments of the angle φ. Then 
for ϕ ≅ π/2, sin ϕ ≅ 1, and equation (6) 
takes a form suitable for integration: 

                    (11)

The acceptance of the co-ordinate sys-
tem u, v lying on the curvilinear surface, 

and overlapping with the geodesic lines, 
causes the boundary conditions resulting 
from the property (10) to take the follo-
wing form: 

§ for  

§ for   

By the development of the curvature K 
into a series within the surroundings of 
the beginning of the co-ordinate system 
(u=v=0) presented on equation (12), and 
by the integration of equation 11, taking 
into consideration the boundary condi-
tions, we obtain equation (13). 

n Numerical verification of 
Tshebyshev’s approximations

The received equations were verified for 
a sphere, for which the Gaussian curvatu-
re is constant and equals: K = 1/R2, where 
R is the radius of this sphere. 

Then the solution of equation 11 takes 
the form: 

               (14)

The above solution is the result of the 
acceptance of small increments of de-
formation angles, and at the same the 
approximation sin ϕ ≅ 0. The verification 
carried out was based on the numerical 
solution of the full equation 6. This equ-
ation defines the value of the deformation 
angle on the surface of the sphere, and 
the angle φ is equal to the angle between 
the two intersected geodesic lines. By 
carrying out the analysis of the above-
mentioned equation, the assumptions 
consistent with Tshebyshev were made; 
that is, that both directions of the network 
overlapped with the geodesic lines of the 
sphere, and that the angle between them 
was 90˚. The boundary co-ordinates of 
the network were covered with two me-
ridians of the sphere. Through the appro-
ximation of the second derivative by the 
schema of finite differences: 

   (15) 

the equation [6] for point D takes the 
form:

.

If in the contiguous points A, B and C, the 
deformation angles φ are known, then it 
is possible to determine the angle φD. We 
start the calculations from the determina-

tion of the deformation angles in nodes 
next to the node lying on the boundary 
lines, overlapping with the geodesic lines 
(Figure 4). The findings obtained were 
compared with the solution of equation 
14, and are presented on Figure 5.

n Summary
The comparison of these two methods 
allows us to statethe following: 
§ For deformation angles only slightly 

different from 90°, the dispropor-
tion resulting from the use of both 
methods is not large. The farther we 
move into the network, the greater the 
difference is.

§ The greatest discrepancy between 
both values is at the extreme node 
of the network, and equals about 3°. 
This value allows us to suppose that 
if we change the deformation angle 
from 90˚ to about 40˚, the difference 
is not significant, and we can accept 
that Tshebyshev’s method sufficiently 
approximates the values of the defor-
mation angles way.

n Conclusion
§ As a result of completing all the calcu-

lations, it can be unequivocally stated 
that the method developed by Tsheby-
shev can be used when it is possible to 
describe the curvature of the surface 
on which the deformation is made.

§ By comparing Tshebyshev’s method 
with the numerical solution, we can 
state that for a body with known cu-
rvature the divergence resulting from 
both methods is small, and we can 
accept that both solutions are correct. 
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Figure 4. The determination of the 
deformation angles by schema of finite 
differences.
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