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ABSTRACT

The two-layer baroclinic instability model of the California Undercurrent from Mysak (1977) is modified
to investigate the effects of the lateral boundary conditions on the stability properties of the system. As is
common in baroclinic instability calculations, Mysak (1977) assumes the mean flow along the continental
rise to be bounded laterally by vertical rigid walls, thus allowing the cross-stream structure of the perturba-
tion flow to be decomposed into simple normal modes. Instability then occurs when waves of the same
cross-stream structure interact. The dominant instability is that associated with the gravest mode.

In the first model presented here we consider the effect of replacing the rigid outer boundary with a
quiescent, constant-depth ocean. Waves of short longshore wavelength are not greatly affected by the open
seaward boundary. However, as consideration is turned to waves of longer longshore wavelength, the
cross-stream wavenumber departs further from the integral values of the channel-flow problem and another
class of baroclinic instabilities occurs due to interaction between waves of differing cross-stream structure.
Nevertheless, the dominant baroclinic instability remains that associated with the gravest mode. A new
barotropic instability is also present, drawing energy from the horizontal shear between the coastal current
and the quiescent ocean.

In the second model the rigid outer boundary is retained but the inner boundary is replaced by a shallow
sloping region, modeling the effects of a sloping shelf adjoining the coastal current which flows along the
continental rise. Topographic waves are present above the sloping inshore region. These waves are coupled
with the channel waves. Once again the cross-stream wavenumber departs from the integral values of the
channel problem and instabilities are present due to interaction between waves of differing cross-stream
structure. As in the previous model the dominant baroclinic instability is that of the gravest mode and a new
barotropic instability is present due to the lateral shear in the mean flow at the shelf break.

For both models, a parameter study is presented in which we determine the effects of varying the shear,
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stratification and bottom slope.

1. Introduction

In a number of recent studies, a quasi-geostrophic
two-layer baroclinic instability model with vertical
rigid side walls and a sloping bottom has been used
to help explain the mesoscale fluctuations observed
in various coastal flows (Smith, 1976; Mysak, 1977;
Mysak and Schott, 1977; Helbig, 1978; Emery and
Mysak, 1980). Generally speaking, the length and
time scales of the observed fluctuations compare
quite favorably with the wavelength and period of
the most unstable waves. However, despite this
qualitative agreement between theory and observa-
tion, it is natural to ask whether the unstable baro-
clinic waves in a channel model are significantly
affected if the vertical side walls are replaced by
other boundaries, representing either the open ocean
or the continental shelf. The main purpose of this
paper is to investigate analytically, via two simple
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models, the effects of different lateral boundary con-
ditions on the stability properties of a two-layer geo-
strophic flow along a sloping bottom which repre-
sents the continental rise. In previous theoretical
studies which have investigated this baroclinic in-
stability problem, the associated eigenvalue problem
has been solved numerically and the results are gen-
erally quite complex (e.g., see Orlanski and Cox,
1973; Hart, 1974; Cutchin and Rao, 1976; Kubota,
1977; Wright, 1980).

By adding a quiescent open ocean or continental
shelf to the simple channel-flow model, the possibility
of barotropic instability now exists because of the
horizontal shear in the mean flow. A second pur-
pose of this paper, therefore, is to introduce into
the literature two simple analytical models for the
combined baroclinic-barotropic instability problem
for coastal flows. The combined baroclinic-baro-

tropic instability problem has received considerable

attention during the last decade. However, generally
speaking the studies of this problem have either
treated laterally unbounded flows with weak horizon-
tal shear (Stone, 1969; Mclntyre, 1970; Gent, 1975;
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FiG. 1. Flow system considered in open-ocean model. The nondimensional
instantaneous interfacial height due to the mean flow and the traveling wave dis-
turbance is given by & = (V, — V)x + ¢, — ¢,, where V,,, x and ¢, are the non-
dimensional quantities used in Section 2. In terms of dimensional V,, x and ¢, (the
latter having dimensions of streamfunction), the dimensional instantaneous inter-

facial height is given by (f/g")[(V, — Vy)x + ¢ — ¢4].

Killworth, 1980) or coastal flows with complex lateral
structures that require extensive numerical computa-
tions (see references cited at the end of first paragraph).
In Section 2 we consider, for the California Under-
current parameters used by Mysak (1977), the effect
of replacing the rigid outer boundary of the flow with
a quiescent, constant-depth ocean. While short waves
are not greatly affected by the open boundary, the
long waves have associated cross-stream wavenum-
bers that differ considerably from the integral values
of the channel-flow problem and another class of
baroclinic instabilities occurs due to interactions of
waves of differing cross-stream structure. A baro-
tropic instability also is present in this model due to
the horizontal shear between the coastal current and
the quiescent ocean. In Section 3 we investigate
the effects of varying the shear, stratification and
topographic parameters in the open ocean model.
In Section 4 the rigid outer boundary is retained
but the inner boundary is replaced by a shallow
sloping region, modeling the effects of a sloping
shelf adjoining the coastal current. In both this sec-
tion and Section 2, we use the same shear, stratifi-
cation and topographic parameters for the continental
rise region as in Mysak (1977). Quasi-geostrophic

topographic waves® are present above the sloping
inshore region, and these waves are coupled with
the channel waves. Once again the cross-stream wave-
number departs from the integral values of the chan-
nel problem and instabilities are present due to the
interaction between waves of differing cross-stream
structure. There also is present a barotropic instabil-
ity due to the shear between the coastal current and
a longshore shelf current. In Section 5 we investigate
the effects of varying the paraineters characterizing
the shears, stratification and topography in the
shelf model.

2. Open ocean model

We consider a two-layer geostrophic flow in a
uniformly rotating channel above a lower boundary
which consists of a sloping region and a constant
depth outer region (Fig. 1). The variables are non-
dimensionalised using L'and 4, for the horizontal

3 These waves are not to be confused with the familiar conti-
nental shelf waves (for a review see Mysak, 1980), which are
aegeostrophic in the longshore direction since their wavelength
is much larger than the shelf width (Pediosky, 1979, Section 8.2).
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and vertical scales, L/U for the time scale, U and
h,U/L for the horizontal and vertical velocity scales,
and p,fUL for the non-hydrostatic pressure scale
inlayern (n = 1, 2). For flow at small Rossby num-
ber, (U/fL < 1), Pedlosky (1964) shows that small

perturbations to the flow sati§fy

@, + U:0,)[Ad;, + Fi(d: — )]
+ [Fy(U; — Up) — Uygzldyy, = 0

(8, + Usdy)[Ady + Fo(ds — o))
— [F(U; ~ Uy) + T + Uspzldhyy =0

, 2.1

where A = 4, + 9,,, U,(x) is the basic geostrophic
velocity along the channel and ¢, the perturbation
streamfunction in layer n, which has been scaled by
UL. The nondimensional parameters are

F,=f*L%g'h,, F,=f?L*g'h,, T = afL? Uh,,

where g’ = g(1 — p,/p,) is the reduced gravity and
« is the bottom slope. The boundary condition of
no normal flow at the side boundaries gives

by =0, n=1,2, at
We look for solutions of the form
é. = RE{explik(y — cO)l{(x)},
such that the ¢, satisfy
(¢ = UlWhizz = k1 + Fi(d = $)]

X = 1, —10.

= [Fy U, = U;) — Uyl = 0, (2.2a)

(¢ — U)lzzr — k¥P2 + Fo(Py — )]
+ [Fo(Uy = Up) + T + Uyl = 0, (2.2b)
g, =0 at x =1, =, 2.3)

We shall consider the case where the current
flows solely above the sloping region and the ad-
joining ocean is quiescent, i.e.,
Va, n=1,2, if
0, if

O0<xs=s1

Un(x) = [ “l,<x <0,

(¢ — V))F, tanhkl, (c — V,) tanhkl,
cFik ck

(Vy, — ¢)F, tanhkl, (c — V,) tanhkl,
—cFyk ck

System (2.6) will have nontrivial solutions for a if and
only if the determinant of A vanishes. Thus the dis-
persion relation is

detA = 0. (2.8)
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where V, is a constant. We thus obtain solutions of
(2.2) by solving the constant coefficient equations in
the regions 0 <x <1 and —/, <x < 0 and then
matching the solutions acrossx = 0. The first match-
ing condition is obtained by integrating (2.2) from
—e to € for 0 < e <1 and then taking the limit
e — 0. We find that (¢ — U, ¥, + U, must be
continuous at x = 0. By integrating from —e¢ to x,
dividing by (¢ ~ U,)? and integrating from —§ to §,
we obtain this second condition that ¢,/(U, — c) is
continuous at x = 0.

The solution of (2.2) in —/, < x < 0 subject to
2.3) is

d]l = a; Sinhk(x + lo) + a2F1 SlnhK(x + 10)

. ! ] , @4
Yo = a, sinhk(x + ly) — aF, sinhk(x + ly)

where k> = k? + F, + F,, and a, and a, are arbi-
trary constants. The general solution of (2.2) in
0 <x = 1 subject to (2.3) is

(l}g = a3F1 Sinrl(x - 1) + a4F1 Sinrg(x - l)] (2 5)
¥, = azR, sinry(x — 1) + a Ry sinry(x — 1)) 7
where

R, = 1[§ + (8% + 4F,F,)'?],

R, = 15[S — (8% + 4F,F,)'?],
S = FI(V2 - C)/(Vl - C)
= [F(Vy = ¢) + TV, ~ ©),

=R, —kK*—F(Vy, —c)(Vy—-¢), n=1,2,
and a; and a, are arbitrary constants. Applying the
matching conditions* gives a system of four equa-
tions, linear in the four unknowns a,, a,, as, a4, i.e.,

Aa =0, (2.6)

where a = (a,, a,, a;, a;)”, and

4 Note that for the mean flow under consideration, the first
matching condition reduces to (¢ — U, )¢, continuous atx = 0.

cF, sinr, cF, sinr,

(Vy = c)F,r, cosry, (V, — c)F,r, cosr,

2.7

¢R, sinr, cR, sinr,

(V2 - C)erl COSI‘I (Vz - C)Rzrg COSrq

In the limit /, — 0, (2.8) reduces to the dispersion
relation given by Mysak (1977), with solutions r,
=mmorr, =mmw,m = =1, 2, +3, . ... Aplotof
the dispersion curves forV, = 1, V, = 0.25,1, = 0,



212

08

St
~-w
-~

o
=)

PHASE SPEED

JOURNAL OF PHYSICAL'OCEANOGRAPHY VoLuUME 11
777777777 ioksweniisad Lsaes 7,
- o
2
1

S

~

/
EE R

777 a7,

021 -
0.0 I L I 1. { 1 1 1 (
00 20 40 6.0 80 100
’ WAVENUMBER

F1G. 2. Dispersion curves Re(c) vs k for channel flow. V; = 1, V, = 0.25, F,
=27,F, = 6.8, T = 21,1, = 0, which are representative of the California Under-
current off Vancouver Island (Mysak, 1977). The solid lines represent stable
waves and the dashed lines give the real part of the phase speed for the unstable
wave. For each instability the position of the maximally unstable wave is marked
by a circle and its nondimensional growth rate noted. The dispersion curves are

labeled by cross-stream mode numbers.

F, =27,F, = 6.8and T = 215 [values used in Mysak
(1977) for the California Undercurrent] is given in
Fig. 2. The shaded regions below ¢ = V, and above
¢ =V, correspond to regions where there are an
infinite number of discrete higher modes. There is
baroclinic instability whenever the upper and lower
wave of same cross-stream mode have the same
phase speed. For the parameter values in Fig. 2
this occurs only for cross-stream modes one and
two. No other interactions occur. Where two curves
cut, (e.g., I, IT, IIT) two different cross-stream modes
exist with the same phase speeds but do not interact.
The circles in Fig. 2 show the location of the fastest
growing unstable waves. The nondimensional growth
rates Im(kc) are also given at these points. The
growth rate of the gravest mode is twice that of
the second mode and so the dominant instability is
the fundamental mode instability. -

Fig. 3 shows the same situation for /, — «. This

5 For values of T of this order, the inclusion of 8 would change
the results by only ~ 1% and thus has been neglected in this study.

{ .
value is chosen as the most extreme. However, Fig.
3 is typical of dispersion curves for /, > 1. For large
k (i.e., short wavelengths), the waves are unaffected
by the absence of a rigid outer boundary at x = 0.
The maximally unstable baroclinic wave remains
that associated with the first mode and the growth
rate, wavelength, etc., of this wave are within 2%
of the channel case. However, for smaller &, that is
for waves whose longshore wavelength is compar-
able or slightly longer than the width of the conti-
nental rise, the dispersion curves are modified sig-
nificantly. Previously, the curve for the first mode
cut those for the other modes without interacting.
The corresponding points in Fig. 3 (i.e., I, II, III)
show that instability is now present for these waves
with similar phase speed but differing cross-stream
structure. The instability I corresponds to an upper
layer concentrated baroclinic mode one interacting
with an upper layer mode three. The points IV, V and
VI correspond to interactions between mode two
and higher baroclinic modes. The largest growth rate
for these baroclinic instabilities between waves of
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Fi6. 3. Dispersion curves for the open-ocean model. The parameters are the same

differing cross-stream structure is 0.02 for the one-

as in Fig. 2 with, however, [, infinite.

three interaction (i.e., I), only 4% of that of the dk/dc =

maximally unstable wave. On a given solid curve k
is a single-valued function of ¢. Unstable waves first

N

FiaG. 4. Streamfunctions for the wave VII (k = 2.05,¢ = 0.86) of the ocean model.
The solid line is the upper layer response, the dashed line that of the lower layer.
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appear at the points on the dlsperswn curves where

Figs. 4, 5 and 6 show the streamfunctions (to within
a real multiplicative constant) for the stable waves



214

JOURNAL OF PHYSICAL OCEANOGRAPHY

VoLUME 11

05

-10F

F1G. 5. Streamfunctions for the wave VIII (k = 2.8,¢ = 0.55) of the ocean model.

numbered VII (k = 2.05, ¢ = 0.86), VIII (k = 2.8,
¢ = 0.55) and IX (k = 0.48, ¢ = 0.65) in Fig. 3.
Wave VII (Fig. 4) lies away from a point of interac-
tion of two waves and thus displays the characteris-
tics of a stable wave in the channel model. The
streamfunctions have very similar cross-stream
structures for both the upper and lower layers (al-
though out of phase by =) and the disturbance is a
modified second mode (mode number ~ 1.7). In the
quiescent ocean the disturbance decays monotoni-
cally. Wave VIII (Fig. 5) lies at the intersection of
the dispersion curves for modes one and three. The
wave contrasts with wave VII in showing a com-
pletely different modal structure in both layers. The
lower layer is a modified third mode and the upper

T S e ¥ Y TS T

-05

-0

F1G. 6. Streamfunctions for the wave IX (k¥ = 0.48, ¢ = 0.65)
of the ocean model.

layer is a modified first mode. Such different vertical
modal structure is not possible in the simple channel
model.

For very long waves (k — 0), the outer boundary
of the current is an antinode for the waves and the
wavenumbers approach 15, %, %, . ... Wave IX
(Fig. 6) consists of a bottom layer concentrated wave
with mode number 2.5 interacting with an upper
layer mode 1.6. Such long waves decay slowly in the
open ocean.

Horizontal shear between the inner and outer fluid
regions allows the flow to be barotropically unstable.
The first two lines in Table 1 give the nondimensional
growth rates for the waves (BT1 and BT2 in Fig. 3)
caused by this shear. The waves are unstable at all
wavelengths. At short wavelengths, the magnitudes
of the real and imaginary parts of the phase speed
approach half the velocity difference in the layer in
which the wave is concentrated, i.e.,

c->WV(0xi) as k> (n=1,2).
Thus an arbitrarily large growth rate can be obtained
by choosing a sufficiently short wave which, how-
ever, will then be confined to a small region about
x = 0. This effect is due to the unrealistic concen-
tration of the velocity shear at x = 0.

With no vertical shear, and in the absence of topo-
graphic effects (V, =V, =V, T =0), r, = ik and
r, = ik, giving modes decaying exponentially from
x = 0, with dispersion relation

[c? tanhk + (V — c)? tanh«l,]

X [c* tanhk + (V — c¢)? tanhkly] = 0. (2.9)
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TasBLE 1. Nondimensional growth rates Im(kc) of the barotropically unstable waves in the open-ocean model.

Wavenumber k&

Vi, Vs F, F, T 1 2" 4 6 8 10
FiG. 3 1,0.25 27,6.8 21 BT 0.32 0.73 1.70 2.72 3.75 4.78
BT2 0.10 0.23 0.55 0.87 1.15 1.41
Fic. 7 1,0.0 BT1 0.31 0.66 1.54 2.58 3.64 4.69
BT2 — — — — — —
FiG. 8 1, —0.25 BTI 0.30 0.60 1.34 2.40 3.51 4.60
BT2 0.04 0.11 0.23 0.37 0.52 0.70
FiG. 9 0.5, 0.0 BT 0.15 0.31 0.76 1.29 1.82 2.35
BT2 — - — _ _ =
_FiG. 10 1,0.25 13.5, 3.4 21 BTI 0.32 0.77 1.79 2.83 3.86 4.88
BT2 0.08 0.22 0.55 0.87 1.15 1.41
FiG. 11 54, 13.6 BTI1 0.33 0.72 1.59 2.56 3.58 4.61
BT2 0.10 0.24 0.55 0.87 1.16 1.42
FiG. 12 1,0.25 27, 6.8 4 BT1 0.31 0.70 1.68 2.71 3.75 4.78
BT2 0.07 0.19 0.50 0.84 1.16 1.45
Fic. 13 10.5 BTI 0.34 0.75 1.69 2.71 374 4.78
BT2 0.11 0.26 0.58 0.86 1.13 1.37
Fic. 14 0.0 BT1 0.28 0.56 1.64 2.69 3.74 4.78
BT2 0.14 0.30 0.57 0.82 1.06 1.30

These waves are the two-layer equivalent of those
given by Drazin and Howard (1966) for barotropic
instability in channel flow. The roots of (2.9) are two
complex conjugate pairs and so the waves are un-
stable at all wavelengths.

3. Parameter study of open ocean model

In Section 2 and in Figs. 2-6, the values for V,,
F, and T are representative of the California Under-
current off Vancouver Island (Mysak, 1977). In this
section we shall illustrate how the dispersion curves
and growth rates are affected by varying the above
parameters, which characterize the shear, stratifica-
tion and topography of the mean state, respectively.

Figs. 7-9 show the dispersion curves for new val-
ues of V,, and should be compared with Fig. 3, where
(Vy, Vo) = (1, 0.25). As might be anticipated, by
increasing the vertical shear V, — V, (Figs. 7 and 8),
the wavenumber range of baroclinic instability for
the first two cross-channel modes is increased sub-
stantially, with a shift toward lower wavenumbers.
Also, the maximal growth rates have nearly doubled
(Fig. 8). There is also a corresponding increase in
the growth rates of the secondary baroclinic instabili-
ties. Thus, in general, larger vertical shears enhances
the baroclinic instabilities, increasing their growth
rates. For these larger vertical shears, the growth
rates for the barotropically unstable waves are re-

duced —substantially for the BT2 wave, but only
slightly for the BT1 wave. In particular, while the
magnitudes of the horizontal shears in Fig. 8 are the
same as those in Fig. 3, the increased vertical shear
in Fig. 8 results in a BT2 wave growth rate that is
only half as large (see Table 1). Fig. 9 shows the
dispersion curves for a weaker vertical shear (V,
— V, = 0.5) and also reduced lateral shears in the
two layers. In this case the growth rates of the maxi-
mally unstable baroclinic waves (first two modes)
have dropped by about a third, whereas the growth
rates of the BT1 wave have dropped by more than a
factor of 2 (see Table 1).

Figs. 10 and 11 show the dispersion curves for
new values of F,, with the other parameters un-
changed. Halving F, and F, (Fig. 10) is equivalent
to doubling Ap/p, i.e., increasing the stratification
by a factor of two [see sentence following Eq. (2.1)].
Comparing Fig. 10 with Fig. 3, we note that while
the baroclinic instabilities associated with modes 1
and 2 now have much smaller growth rates and wave-
number ranges, the secondary baroclinic instabilities
have larger growth rates and wavenumber ranges.
Thus stratification stabilizes the usual channel-mode
baroclinic instabilities, but slightly destabilizes the
secondary ‘‘interaction’’ instabilities! For weaker
stratification (Fig. 11), on the other hand, the channel
modes are considerably destabilized and the sec-
ondary modes slightly stabilized. For the barotropi-
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FiG. 8. As in Fig. 3 with V, = 1, V, = —0.25 (larger vertical shear).
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FiG. 11. As in Fig. 3 with F, = 54, F, = 13.6 (weaker stratification).

cally unstable waves, varying F, has very little ef-
fect on the BT2 wave growth rates, but the BT1
wave growth rates increase (decrease) by 5-10%
when Ap/p is doubled (halved) (see Table 1).

Figs. 12-14 show that topography is both a stabil-
izing and complicating influence on the baroclini-

cally unstable waves. For a larger bottom slope (Fig.
© 12, with T = 42), the wavenumber ranges for first
and second mode instabilities have decreased and
shifted to higher phase speeds and wavenumbers.
However, only the maximum growth rate of the grav-
est mode has been substantially reduced. At lower
wavenumbers, there are now new weak instabilities,
both primary (involving higher cross-channel modes)
and secondary. As the bottom slope tends to zero
(Figs. 13 and 14), the dispersion curves simplify con-
siderably, with the limiting case T = 0 (Fig. 14)
representing the classical Eady model with an open
ocean on one side. For this case the first cross-chan-
nel mode (only) is unstable for all k < 4.3 and its
maximum growth rate (at £ = 2.1) is comparable to
the growth rate of the BT1 wave at that wavenum-
ber. However, it is interesting to note the interaction
between these two unstable waves near k = 2.2: as
k decreases the dispersion curves slowly start to
coalesce, but suddenly, at k = 2.2, rapidly diverge.

Varying T has little effect on the growth rates
of the upper BT1 wave (as might be anticipated);

however the growth rate of the lower BT2 wave
can be significantly altered, especially at lower wave-
numbers. As T — 0, the growth rate of a long BT2
wave is nearly doubled (see Table 1).

4. Shelf model

We consider the effect of a shelf of width Li;
adjoining a deep region of width L. In the light of the
results in Section 2, we shall assume that the current
in the deep region is bounded by a solid outer wall
(Fig. 15). The inclusion of a quiescent unbounded
outer ocean is straightforward but is omitted here
to isolate the effect of the shelf and because of the
small effect of the quiescent ocean on the maximally
unstable baroclinic waves. We shall further simplify -
the problem by assuming that in the absence of any
mean flow, the upper layer of the channel region is
of the same thickness as the outer depth of the shelf.
[Such a model has been considered by Gill and
Clarke (1974) to study the importance of coastal
trapped waves in upwelling.] However, when the
mean and perturbation flow is included the posi-
tion of the interface at x = 1 lies just below the
shelf break, provided V, — V, < 0and the perturba-
tions ¢, are small (see Fig. 15). With this restriction
on V, — V,, the frontal problem in which the inter-
face lies over the shelf, is avoided. The Eqgs. (2.2)
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are still the governing equations for the motion in
the region 0 < x < 1. Intheregion 1 <x <1+ [,
the governing equation is that for barotropic flow
above a sloping shelf.

(c = U)Wz - kzllll) + (Ts + Uy = 0, (4.1)

where T, = a,fL?* Uh,. Eq. (4.1) may be combined

with (2.2a) to give an upper layer equation,

(¢ = UN($122 — K*¢1)

+ H(Q1 - x)Fy(y; — )] + [H(1 — x}(U, — U,)F,
+ Uype + Hix — DI, = 0, (4.2)

where H is the Heaviside stepfunction [ H(#) is unity
if @ is positive and is zero otherwise]. We wish to
solve (4.2) and (2.2b) subject to the boundary condi-
tions of no normal flow at solid boundaries,

V, 0<x=s1
Ux) = 4.4
1(x) [Vs, 1<x<1+I, “44)
Us(x) = V,.

Such a profile gives a constant coefficient equation
in the channel and shelf regions and the matching
conditions at x = 1 on ¥, may be obtained as
before. We find again that both (¢ — U ), + U4,
and ¢,/(U, — ¢) must be continuous. The solution
of (2.2), (4.2) for profile (4.4) subject to (4.3a, ¢) is

0sx<1]
0sx<1]’

llll = blFl Sinrlx + bgFl Sinrzx,
l’lg = blRl Sinrlx + bgRg Sinrgx,

where b, and b, are arbitrary constants. The general
solution of (4.2) for profile (4.4) subject to (4.3b) is

lll1=b3F1 Sinr:;(x_l_ls) 1<x$l+ls,

where b; is an arbitrary constant and r3? = T/

Yn=0, n=12 at x=0, (4.32) (¢ — V,) — k% Applying the matching conditions
Y, =0, at x=1+1, (43b) atx = 1 gives the system
Y = 0, at x = 1. (4.3¢) " Bb = 0, 4.5)
We consider a velocity profile of the form where b = (b, b,, b3)T and
R, sinr, R, sinr, 0

B=| (c —V)r cosr,

(c — V,) sinr,

(c — V)r, cosr,

(Vs — c)rs cosrsl,

(c — V,) sinr, (¢ — V,) sinrgl;
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The dispersion relation is given by requiring the
determinant of B to vanish, i.e.,

R, sinr,[(c — V,)rs cosry sinrsl,
+ (¢ — V)*r; cosrsl, sinr,]
— R, sinrof(c — V,)?r, cosr, sinrl

+ (¢ — V,)r; cosrsly sinry] = 0. (4.6)

For very short waves, k — «, Eq. (4.6) becomes
sinr, sinr, sinrsl; = 0,

which has solutions r, = mm or r, = mm or ry
=mmll,, m = =1, £2, 3, . . .. The first two solu-
tion sets are the channel modes of Mysak (1977)
and the third set are topographic waves propagating
along the shelf.

Fig. 16 gives a plot of the dispersion relation (4.6)
forl, =1, T, = 12.5, V, = 0 and the other param-
eters as in Figs. 2 and 3. Once again, the curves
for the baroclinic waves are similar to those of the
channel flow for short longshore wavelength. There
are now three regions with infinitely many discrete
curves corresponding to high cross-stream wavenum-
ber. The regions nearc = V,andc = V, correspond
to baroclinic channel waves and the region near
¢ = V, corresponds to topographic shelf waves.
Once again at the points I, II and III instabilities
are present due to interaction between baroclinic
waves of differing cross-stream structure. For longer
waves the dispersion diagram deviates further from
the channel case diagram than does the diagram for
the open-ocean model. The additional set of topo-
graphic shelf waves causes more secondary instabili-
ties. The growth rates of these instabilities are
significantly larger than those of the secondary in-
stabilities in the open-ocean model. There are now
four mixed instabilities with growth rates of the same
order as that of the gravest mode instability. There
also are wave interactions which do not lead to in-
stability. At the points IV, V and VI the first mode
topographic shelf-wave interacts with lower layer
concentrated baroclinic waves so that the dispersion
curves do not cross. However, no instability is
present.

Figs. 17-19 show the streamfunctions for the
stable waves VII (k = 3.44, ¢ = 0.87), VII (k
=241, ¢ = 0.49), and IV (k = 4.6, ¢ = 0.48) of
Fig. 16. Fig. 17 of wave VII shows an upper layer
concentrated wave with antinode at the shelf bound-
ary. The wave consists of a gravest mode shelf wave
forcing a third-mode channel wave. Fig. 18 of wave
VIII shows a wave comparable to the ocean-model
wave VIII shown in Fig. 5. Once again, a gravest
mode upper layer concentrated channel wave inter-
acts with a third-mode lower layer wave. However,
the interaction now forces a significant signal above
the shelf. Fig. 19 of wave IV is included to show
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FiG. 15. Flow system considered in the shelf model. The non-
dimensional instantaneous interfacial weight due to the mean
flow and traveling wave disturbance is givenby h = (V, — V)x
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that it is possible for a shelf wave to force signif-
icant motion in the deep channel layer. Here the
lower layer response is far larger than that of the
upper channel layer.

There is only one barotropic wave (BT in Fig. 16)
caused by the horizontal shear in the upper layer.
Table 2 includes the nondimensional growth of this
wave which is unstable at all wavelengths. In the
absence of vertical shear and topographic effects
Ge,V,=V, =V, T=T,=0), we have

F,[(c — V)% cothk tanhkl,
+ k(c — V)3 + F,l(¢c — V)*k cothk tanhkl
+k(c — V)31 =0. 4.7)

The roots of (4.7) are a complex conjugate pair and
so there will be one shear wave present which will
be unstable at all wavelengths.

Fig. 20 gives the dispersion curves for the case
of a stagnant lower channel layer and a weak current



222

above the shelf region (V, = 1,V, = 0, V, = 0.25).
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mode growth rate is increased by 40%). Once again,

All other parameters are as in Fig. 16. The larger there are a large number of secondary instabilities,
vertical shear in the channel causes higher growth some with growth rates of the same order as the
rates in the channel mode instabilities (the gravest dominant instability. The weaker horizontal shear in
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FiG. 17. Streamfunctions for the wave VII(k = 3.44,¢c = 0.87)
of the shelf model. The coastal boundary is at x

outer current boundary at x = 0.
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2 and the Fic. 18. Streamfunctions for the wave VIII (k = 2.41, ¢ = 0.43)

of the shelf model.
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F16. 19. Streamfunctions for the wave VI (k = 4.6, ¢ = 0.48)
of the shelf model.

the previously strong barotropic instability by baro-
clinicity and topography. The barotropic mode inter-
acts with the upper layer concentrated waves and
there are no long waves which may be ascribed
directly to barotropic instability. Nondimensional
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TaBLE 2. Nondimensional growth rates Im(kc) of the
barotropically unstable wave in the shelf model with F, = 27,
F,=68T=21,T,=125,l,=1and V, = 0.

Wavenumber k

Vi, Vs 1 2 4 6 8 10
FiGg. 16 1,0.25 0.11 023 076 231 350 4.59
Fic.21 1,0.1 0.07 023 067 219 342 454
FiG. 22 1, 0.0 — — 0.50 2.1t 337 4.50
Fic.23 05,00 001 004 031 073 152 214

growth rates for the unstable waves are given in
Table 3.

5. Parameter study of shelf-model

We now discuss the effects of varying the shear,
stratification and topographic parameters used in the
previous section. In particular, because of the pres-
ence of three mean flow parameters (V,, V, and
V) in the shelf model, it is convenient to look at
vertical shear and horizontal shear changes separately.

Figs. 21-23 show the dispersion curves for vari-
ous values of the vertical shear V, — V,, with V,
= 0 in each case. These figures represent variants
of Fig. 16, where V,; = 0 also. As the vertical shear
increases (see Figs. 16, 21 and 22), we note that the
barotropically unstable wave (BT) interacts more
and more with a second mode baroclinic wave and
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F16. 20. Dispersion curves for the shelf model. The parameters are as in Fig. 8
withV, = 0, V, = 0.25
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TABLE 3. Nondimensional growth rates Im(kc) of the barotroﬁically unstable wave in the shelf model withV, = 1,V, = 0.0and/, = 1.

Wavenumber &

Vs F,, F, T,T, 1 2 4 6 8 10
F1G. 20 ©0.25 27,6.8 21, 12.5 0.06 1.22 2.31 3.22
FiG. 24 0.5 — — - 0.38 1.16 1.90
FiG. 25 1.0 — — _ —
FIG. 26 0.25 54, 13.6 21, 12.5 — — 0.02 1.03 1.87 2.85
FiG. 27 0.25 27, 6.8 0.0, 12.5 — — 0.06 1.21 2.31 3.22
FIG. 28 21, 0.0 0.15 0.36 0.85 1.66 2.56 3.40
FiG. 29 0.0, 0.0 0.15 0.36 0.89 1.67 2.57 3.40

eventually becomes stable at low wavenumbers (see
Fig. 22 and Table 2). However, while the BT wave
is stabilized by increasing the vertical shear, the
cross-channel mode instabilities and secondary in-

stabilities tend to be destabilized. Decreasing the

vertical shear (Fig. 23) produces rather weak cross-
channel mode instabilities at generally higher fre-
quencies and wavenumbers. The BT wave in this
case also has reduced growth rates (see Table 2)
and, at small wavenumbers, much lower phase speeds.

Figs. 24 and 25 show the effects of decreasing the
horizontal shear in the upper layer and should be
compared with Fig. 20. In allcases V,.= 1,V, = 0.0
so that the vertical shear is kept constant. As V, —

10

V., the growth rate and position [in (c, k) space] of
the maximally unstable first-mode channel wave are
not significantly changed. However, many new sec-
ondary instabilities arise which involve interactions
between the topographic shelf modes S, and the
channel modes (see Fig. 24). Also, the BT wave
gets pushed into the upper right corner in (c, %) space
in this limit and has relatively small growth rates
(see Table 3). When V, = V, the BT wave, of course,
disappears, but so do all the secondary instabilities.
The resulting picture (Fig. 25) is relatively simple
and, apart from the BT wave, is not unlike the case
in Fig. 7, showing the open-ocean dispersion curves
for V, = 1.0, V, = 0.0. However, the second-chan-
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F1G. 21. As in Fig. 16 with V, = 1, V, = 0.1 (larger vertical shear).
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nel mode instability in Fig. 25 is unstable for all
k <4.2.

Fig. 26 shows the dispersion curves for a weaker
stratification when V,=1.0, V,=0.0 and V,
= (.25, as in Fig. 20. The growth rates of the first
two-channel mode waves are substantially greater,
and the wavenumber range of instability for these
waves is much larger and includes much higher wave-
numbers. The weaker stratification slightly stabilizes
the BT wave (see Table 3), but otherwise leaves
its position in (c, k) space unaltered.

Fig. 27 shows the effects of removing the bottom
slope in the deep-channel region and should be com-
pared with Fig. 20. It is interesting to note that the
growth rates and wavenumber ranges of instability

" of the chaninel modes are considerably smaller in
Fig. 27. Thus, in contrast to the open-ocean model
where the continental rise exerts a stabilizing in-
fluence, here, in the presence of a neighboring slop-
ing shelf, the continental rise has a strongly de-
stabilizing influence on the baroclinically unstable
waves. Fig. 28, on the other hand, shows the effects
of replacing the sloping shelf by a flat shelf. Com-
paring Fig. 28 with Fig. 20, we note that the topo-
graphic shelf modes are now absent, and so are the
secondary instabilities arising from the interactions
between the shelf modes and the baroclinic channel
modes. The growth rates of the primary instabilities

L. A. MYSAK, E. R. JOHNSON AND W. W. HSIEH
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are not much affected. The BT wave, funnily enough
becomes destabilized when the shelf slope is removed
(see Fig. 28 and Table 3). Finally, Fig. 29 shows
the dispersion curves for a constant-depth shelf and
channel. This limit (T = 0.0 = T,) corresponds to a
two-layer Eady model adjacent to a flat shelf. As
might be anticipated the long baroclinic waves
(modes 1 and 2) are unstable; but they have lower
growth rates then when I’ # 0. The barotropic wave
is virtuaily unaffected by the absence of bottom slope
in the channel region (see last two lines in Table 3).
Also, unlike in the case of the open-ocean Eady
model (Fig. 14), there is no interaction between the
BT wave and the baroclinically unstable waves.

6. Summary and discussion

Two variations have been made to the standard
two-layer channel model for baroclinic instability.
For the parameters used by Mysak (1977) to describe
the California Undercurrent off Vancouver Island,
the characteristics of the maximally unstable baro--
clinic wave in either the open-ocean or shelf model
are within a few percent of those given by the channel
model. It thus appears that the inclusion of vertical
side walls at the edges of a coastal current flowing
along the continental slope does not significantly
affect the growth rate, frequency or wavelength of
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F1G. 26. As in Fig. 20 with F, = 54, F, = 13.6 (weaker stratification).
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the maximally unstable wave, provided the wave-
length is comparable to the channel width. Indeed,
it is probably because of this theoretical result that
-surprisingly good agreement between observation
and theory was obtained by Emery and Mysak (1980)
who used the simple channel model to explain the
presence of northward traveling thermal features in
infrared satellite images off Vancouver Island.

In both the open ocean and shelf models secondary
baroclinic instabilities at longer wavelengths are also
possible and are the result of interactions between
different cross-channel modes. However, their
growth rates generally are small and thus the observa-
tions of such waves in nature would be unlikely.

Because of the concentrated horizontal shear in
the mean flow (represented by a delta function),
barotropic instabilities also were present in each
model. The growth rates of these waves increased
with wavenumber. However, at large wavenumbers
such barotropically unstable disturbances would be
confined to a very small region centered about the
point of flow discontinuity. The observation of these
waves in the ocean also would be unlikely because
in practice coastal flows are not discontinuous in
the horizontal direction. When the flow in each layer
is modeled by a continuous velocity profile, no baro-
tropic instabilities occur for parameters characteris-
tic of the California Undercurrent (Wright, 1980).

.0 6.0
WAVENUMBER
Fi1G. 29. As in Fig. 20 with T = 0.0 =

8.0 10.0

T, (constant depth in both regions).

From the parameter studies of the open-ocean
and shelf models, it was found that the effect of
varying the vertical shear, stratification or bottom
slope was fairly predictable for the usual channel
mode baroclinic instabilities. In general, the shear
was destabilizing, whereas the stratification was
stabilizing. In the open-ocean model, the continental
rise was stabilizing, whereas in the shelf model (with
arigid outer wall and a sloping shelf), the continental
rise was destabilizing. Topography also tends to in-
crease the number of secondary interaction instabili-
ties. In most cases, the barotropic instabilities were
only moderately affected by changes in the vertical
shear, stratification and bottom slope.

Finally we wish to point out two obvious limita-
tions of the shelf model. First, in the shelf region
the perturbation flow is assumed to be quasi-geo-
strophic. In reality, however, most low-frequency
fluctuations on the shelf tend to be strongly aegeo-
strophic in the longshore direction (Allen, 1980).
Thus to model accurately the coupling of the low-~
frequency offshore and shelf motions in the presence
of coastal flows, a more general framework of the
barotropic-baroclinic instability problem is required.
Second, in order to avoid the frontal problem in the
shelf model, we required-that V, — V, < 0 (see Sec-
tion 4). If V, — V, = 0, the interface could extend
on to the shelf region, in which case water from the
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deep continental slope region would rise up on to the
shelf. To model this situation theoretically, a con-
tinuously stratified system would be required. Also,
dissipative processes would not be negligible near
where the interface rubs against the gently sloping
shelf.

Acknowledgment. This work was supported by
Operating and Strategic grants from the Natural Sci-
ences and Engineering Research Council of Canada.

REFERENCES

Allen, J. S., 1980: Models of wind-driven currents on the conti-
nental shelf. Annual Review of Fluid Mechanics, Vol. 12,
Annual Reviews, Inc., 389-433. )

Cutchin, D. L., and D. B. Rao, 1976: Baroclinic and barotropic
edge waves on a continental shelf. Spec. Rep. No. 30, Center
for Great Lake Studies, University of Wisconsin, Mil-
waukee, 53 pp.

Drazin, P. G., and L. N. Howard, 1966: Hydrodynamic stability
of parallel flow of inviscid fluid. Advances in Applied Me-
chanics, Vol. 9, Academic Press, 1-89.

Emery, W.J., and L. A. Mysak, 1980: Dynamical interpretation
of satellite sensed thermal features off Vancouver Island.
J. Phys. Oceanogr., 10, 961-970.

Gent, P. R., 1975: Baroclinic instability of slowly varying zonal
flow. Part 2. J. Atmos. Sci., 32, 2094-2102.

Gill, A. E., and A. J. Clarke, 1974: Wind-induced upwelling,
coastal currents and sea-level changes. Deep-Sea Res., 21,
325-345.

JOURNAL OF PHYSICAL OCEANOGRAPHY

VoLUME 11

Hart, J. E., 1974: On the mixed stability problem for quasi-geo-
strophic ocean currents. J. Phys. Oceanogr., 4, 349-356.

Helbig, J. A., 1978: On the inertial stability of coastal flows.
Ph.D. thesis, University of British Columbia, Vancouver,
183 pp.

Killworth, P. D., 1980: Barotropic and baroclinic instability in
rotating stratified fluids, with application to geophysical
fluid systems. Dyn. Atmos. Oceans, 4, 143-184.

Kubota, M., 1977: Long-period topographic trapped waves in a
two-layer ocean with basic flow. J. Oceanogr. Soc. Japan,
33, 199-206.

* McIntyre, M. E., 1970: On the non-separable baroclinic paraliel )

flow instability problem. J. Fluid Mech., 40, 273-306.

Mysak, L. A., 1977: On the stability of the California Under-
current off Vancouver Island. J. Phys. Oceanogr., 17,
904-917. .

——, 1980: Recent advances in shelf wave dynamics. Rev. Geo-
phys. Space Phys., 18, 211-241.

——, and F. Schott, 1977: Evidence for baroclinic instability
of the Norwegian current. J. Geophys. Res., 82, 2087-2095.

Orlanski, 1., and M. D. Cox, 1973: Baroclinic instability in ocean
currents. Geophys. Fluid Dyn., 4, 297-332.

Pedlosky, J., 1964: The stability of currents in the atmosphere
and the ocean: Part 1. J. Atmos. Sci., 21, 201-219.

——, 1979: Geophysical Fluid Dynamics. Springer-Verlag,
624 pp.

Smith, P. C., 1976: Baroclinic instability in the Denmark Strait
overflow. J. Phys. Oceanogr., 6, 335-371.

Stone, P. H., 1969: The meridional structure of baroclinic waves.
J. Atmos. Sci., 26, 376-389.

Wright, D. G., 1980: On the stability of a fluid with a specialized
density stratification. Part II: Mixed baroclinic-barotropic
instability with application to the northeast Pacific. J. Phys.
Oceanogr., 10, 1307-1322.



