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n Introduction
The kinematic characteristics of lever me-
chanisms that include links formed by lo-
wer pairs characterised by a surface con-
tact are inflexible. A change in the nature 
of the motion of the link being driven can 
at this point be achieved by connecting 
the quadrilateral mechanism with another 
lever mechanism in which the passive 
link of the quadrilateral is simultaneously 
the driving link of the next mechanism 
(Figure 1). As a result, for instance, an 
additional extreme position of the roc-
ker is provided in one cycle of the crank 
motion. It is a new quality of the motion 
of this rocker, but this motion cannot be 
changed in a continuous way. A further 
alternation, for example of the angular 
acceleration of the passive link (rocker) 
that consists in an increase or a decrease 
in extreme values of acceleration, can 
be obtained by introducing the variable 
motion of the crank as the driven link. 
This can be done if such a mechanism 
is introduced between the driving motor 
and the crank that will change the former 
uniform motion of the crank into the va-
riable rotary motion. The mechanism that 
alters the character of the crank motion, 
which is the subject of this paper’s con-
siderations , is formed by a toothed gear 
with a variable gear ratio, which consists 
of two non-circular pinions. An active 
pinion with a constant angular speed puts 
a passive pinion, rigidly connected to the 
lever mechanism crank, into the variable 
rotary motion. The essence of modelling 
the rocker motion consists in an angular 
orientation of the crank with respect to 
the passive pinion in which the expected 
effect is achieved. As an example, if the 
loom batten is the above-mentioned roc-
ker, then an increase in the rocker maxi-
mum acceleration in its extreme position 
(which means, when the weft is beaten 
up) will contribute to an increase in the 
weft beating-up force. 

Modelling the Batten Lever Mechanism’s 
Kinematics with a Non-circular Toothed Gear

Leon Kowalczyk, 
Stanisław Urbanek

Technical University of Łódź,
Department of Mechanics of Textile Machines

ul. Żeromskiego 116, 90-453 Łódź, Poland
www.p.lodz.pl/wlokno/k412/k412

 Abstract
The modelling of the kinematic characteristics of a rocker of the batten lever mechanism 
by means of an elliptic toothed gear is presented. This gear, introduced between a motor 
and a crank of the lever mechanism, alters the uniform motion of the crank into variable 
rotary motion. The modelling of the rocker’s kinematic characteristics consists thus in the 
determination of a directed angle of the crank and the passive pinion of the gear at which the 
highest increase in the angular acceleration of the rocker occurs. This is one way to increase 
the weft beating-up forc, and in turn, to improve the working conditions of the loom. 

 Key words: modelling, kinematics, lever mechanism, elliptic toothed gear.

The aim of this work is to propose a 
mechanical solution which would allow 
the loom’s working conditions to be im-
proved, and to present a method which 
would enable the best parameters of the 
device used to be selected. This in turn 
will contribute to better formation of the 
woven fabrics, especially those characte-
rised by very high weft density.

n Characteristics of the non-
circular gear

The toothed gear that drives the lever me-
chanism crank is composed of two, non-
circular pinions, whose task is to alter the 
uniform rotary motion of the active pi-
nion into the variable rotary motion of the 
passive pinion. This motion transforma-
tion is achieved by means of non-circular 

toothed gears that perform the continuous 
motion. The shape of the rolling lines of 
the pinions that form this toothed gear can 
be various, depending on the expected 
character of the possible passive link mo-
tion and on the technological preferences 
recognised by the designer. Elliptic gears 
with axes of revolution in the focuses 
of ellipses have been known and used 
for a long time in textile machines. Cir-
cular-non-circular gears with a circular 
active pinion with an axis of revolution 
displaced with respect to the geometrical 
centre and a non-circular passive pinion 
represent another solution [2]. Both the 
above- mentioned types of gears share the 
same disadvantage, namely that the axis 
of revolution of the pinion is displaced 
with respect to the geometrical centre. 
This fact is followed by some consequen-
ces of a dynamic character that limit any 

Figure 1. Schematic view of the toothed-lever mechanism with a double swing of the link L5.
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possibility of employing higher rotational 
speeds to a great extent. Regarding the 
elliptic gear, the rolling lines (ellipses) 
are described by polar coordinates in the 
following form:

                   (1) 
 
As follows from [1], in order to obtain 
the rolling lines of non-circular pinions 
with the axes of revolution in geometri-
cal centres, it is enough to increase the 
argument of the cosine function by k 
times, in equation (1). 

Thus, a following family of rolling lines, 
described by the equation:

                  (2)

has been obtained, where k ∈ N. The pi-
nions, whose rolling lines are described 
by equation (2), have been referred to as 
elliptic pinions. These lines are obtained 
by marking the values of the radius r for 
the angle kϕ from equation (2) on the 
angle ϕ. If the ellipsis which is the basis 
for drawing an elliptical geometrical fi-
gure has the axes 2a and 2b, then its focal 
distance , parameter p = b2/a 
and the ellipsis eccentricity e= c/a. The 
above-mentioned quantities are the basis 
for forming k-periodic figures. When 
k=2 is assumed, then the closed figure, 
a so-called two-period ‘ellipsis’, is obta-
ined. The point that was the focus of the 
original ellipsis, after the transformation 
according to relationship (2), becomes 
the geometrical centre of the rolling line 
formed in this way. Two identical pi-
nions, whose rolling lines are the above-
described curves, rotated by the angle π/2 
with respect to each other, give an elliptic 
toothed gear (Figure 2). 

A constant distance between the axes of 
revolution of the pinions is equal to 2a, 
and is identical as in the elliptic gear for-
med from the original ellipses, with the 
axes of revolution in focuses. From the 
condition of the pinions rolling on each 

other without sliding, the gear ratio func-
tion has been obtained, namely: 

                 (3)

Substituting k = 2 in (2), we obtain: 

               (4)

 
Next, if we employ the geometrical 
properties of the toothed gear used (Fi-
gure 2): 2a = r1(ϕ1)+ r2(ϕ1), after the 
transformation of (3), we obtain:

=          
                                                             (5)
and

         (6)

n Equations of the mechanism 
motion

In the present paper, the lever mechanism 
whose schematic view is shown in Figu-
re 1 has been analysed. This is a crank-
two-rocker drive of the batten in a loom 
for manufacturing woven fabrics of very 
high density. The mechanism has been 
supplemented with a toothed gear with a 
variable gear ratio. The crank L1, fixed ri-
gidly to the passive pinion of the driving 
elliptic toothed gear, is the active pinion. 
We obtain two swings of the batten (roc-
ker L5), whose magnitudes depend on 
the position of two quadrilaterals with 
articulated joints that form this mecha-
nism with respect to each other, per one 
full rotation of the crank with a variable 
speed. The present investigations are 
aimed at determining the influence of va-
riable speed of the crank on the angular 
distance ψ, speed dψ/dt and acceleration 
d2ψ/dt2 of the rocker L5 versus time, 

as well as at analysing their maximum 
values with respect to the constant speed 
of the crank. 

In the calculations performed, the mecha-
nism was replaced by a closed polygon of 
vectors, as in Figure 3.

The condition of equilibrium demands 
that the resultant of these vectors is zero. 
It is fulfilled if the sums of component 
vectors are equal to zero. As a result, 
the equations of equilibrium for the po-
lygons of vectors from Figure 3 give a 
set of nonlinear algebraic equations (7) 
in the form:

 F1 = −L1sin(ϕ2-π/2) + L2 sinγ2 − L3 
cosγ3 + L7 = 0,
 F2 = L1cos(ϕ2-π/2) + L2 cosγ2 − L3 sinγ3 
− L6 = 0,
 F3 = −L5 sinψ + L4cosγ4 − L3 cosγ3 + L7 
+ L9 = 0,
 F4 = L5 cosψ +L4 sinγ4 − L3 sinγ3 + L6 + 
L8 = 0.                  (7) 

From the conditions of cooperation of 
gear pinions, we obtain:

          (8)

where: ϕ02 is the angle that determines 
the position of the crank with respect to 
pinion 2.

The set of equations (7) has been treated 
as the vector function y = F(x) = 0 of the 
variable vector x=(γ2,γ3,γ4,ψ), whose 
components (γ2, γ3, γ4,ψ) are unknown. 
Assigning the angle ϕ1 as an independent 
variable and assigning the angle ϕ2 from 
relationship (8), the set of equations (7) 
has been solved by employing the New-
ton method. The result of calculations 
has been improved by means of the Brent 

Figure 2. Rolling lines of the non-circular 
elliptic toothed gear under investigation.

Figure 3. Polygons of vectors
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algorithm [3]. As a solution, the function 
ψ = ψ(ϕ1) sought has been obtained in 
a discrete form. The discrete function 
ψ = ψ(ϕ1) has been replaced by a conti-
nuous function in the form of a Lagrange 
polynomial [4], and the derivatives dψ/dt 
and d2ψ/dt2 have been calculated.

n Results of the numerical 
computations

By inserting an elliptic gear in the rocker 
driving mechanism of a loom, we obtain 
a new mechanism. In the mechanism thus 
obtained, the kinematic functions of the 
passive pinion 2 are superimposed on the 
functions of the rocker L5 (see Figure 
2). In the elaboration presented here, a 
mathematical model in the form of two 
equations describing the kinematics of 
the model was developed. The compu-
ter solution of the model simulates the 
kinematics of the real device, and is a 
tool which can be used for the formation 
and improving of the parameters charac-
terising the properties of the machine 
developed by this procedure. The effec-
tiveness of the algorithms presented was 
proved by the solution of the modelling 
mechanism, whose geometry was ac-
cepted by taking the assumed character 
of the rocker motion into consideration, 
and fulfilling the geometrical condi-
tions between the lengths of the links 
of the crank-and-rocker mechanism. 
Based on our considerations, the follo-
wing dimensions have been assumed 
in our calculations: the link lengths of 
L1 = 0.04 m, L2 = 0.09 m, L3 = 0.08 m, 
L4 = 0.09 m, L5 =0.17 m, L6 = 0.1 m, 
L7 = 0.06 m, L8 = 0.05 m, L9 = 0.11 m; 
and the gear parameters a = 0.05 m, e = 0 
and e = 0.2, as well as an angular speed of 
ω1 = 1 rad/s.

The analysis of the rocker’s kinematics 
was performed by changing the two fol-
lowing parameters:
§ the angle ϕ02, which determines the 

position the maximum rocker accele-
ration on the curve, and

§ the eccentricity e of the original ellip-
sis which is decisive for the extreme 
values of the kinematic parameter.

For e = 0, the elliptic gear becomes a 
circular toothed gear with a constant gear 
ratio of i1,2 = 1, which does not alter the 
nature of the crank motion. In this case, 
an optimisation cannot be carried out, 
as the toothed gear inserted is neutral 
regarding changes to the kinematics. For 

e > 0, the elliptic pinions form the to-
othed gear which is inserted to the crank 
driving system. The superposition of the 
crank-and-rocker mechanism’s kinema-
tics with the kinematics of the elliptic 
passive pinion may create very different 
functions of the rocker parameters. They 
depend on the angle ϕ02, which is deci-
sive for the crank’s position in relation 
to the pinion 2. In our elaboration, the 
optimisation comes down to searching 
for such a value of the angle ϕ02 at which 
the resulting kinematic parameters of the 
rocker achieve extreme values. As the 
result of comparing the characteristics 
for different ϕ02 values in the accepted 
co-ordination system, it was stated that 
for ϕ02 = 1.5π, the maximum amplifica-
tion of the rocker’s kinematic parameters 
occur ??at/in the gear with an established 

eccentricity of e = 0.2. In the problem 
discussed in this paper, as optimal func-
tions (runs) are considered as a kinematic 
function, which as the final effect results 
in maximum extreme values of the velo-
city and acceleration of the rocker, thanks 
to the amplification of the rocker driving 
mechanism by using an elliptic gear, and 
by changing the angle ϕ02. The optimal 
functions obtained by the kinematic ana-
lysis of the rocker motion of the mecha-
nism modelled for the above-discussed 
case are presented in Figures 4, 5, and 6.

n Conclusions
1. The elliptic toothed gear used to dri-

ve the lever mechanism crank was 
enabled at k = 2, to bring the axes 
of revolution of the pinions to the 
geometrical centre, and thus to omit 
the barriers which result from the di-
splacement of the centre of mass with 
respect to the geometrical centre.

2. The lever mechanism presented, which 
includes a non-circular toothed gear, 
allows for the weft beating-up force 
to be modelled. This is an offer for the 
designers of looms that are used in the 
manufacture of heavy woven fabrics. 

3. Bearing in mind the achievement of 
maximum accelerations in the extre-
me position of the link L5, the value 
of the crank angular orientation ϕ02 
is established. The kinematic charac-
teristics obtained for the rocker allow 
us to state that the increment in the 
rocker angular acceleration maximum 
is equal to 70% for ϕ02 =1.5π and for 
e=0.2. 
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Figure  4. Plot of the angular distance ψ = 
ψ (ϕ1), e=0 → ω2 = ω1= const., e=0,2 →
ω2 = ω1/ i1,2.

Figure 5. Plot of the angular speed dψ/dt 
= f(ϕ1), e=0 → ω2 = ω1= const., e=0,2 →
ω2 = ω1/ i1,2.

Figure  6. Plot of the angular acceleration 
dψ2/dt2 = f(ϕ1), e=0 → ω2 = ω1= const. , 
e=0,2 →ω2 = ω1/ i1,2. Received 09.06.2004       Reviewed 07.02.2005


