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ABSTRACT

The estimation of wind-wave generation using a new discrete spectral model is compared to Hasselmann
et al.’s (1976) parametric model and to models driven primarily by direct transfer of energy from the
atmosphere into the surface waves. The main source term in this new model is a new parameterization
of the net energy transfer due to nonlinear wave-wave interactions. After calibration of the wave-wave
interaction source term to resemble the form of the solution to the complete Boltzmann integrals, the
discrete spectral model is able to reproduce the fetch-limited results of Hasselmann et al. and fits well
within the envelope of duration-limited growth curves from recent investigations. Since this model is
discretized into frequency and direction components, a finite-difference scheme is used to model propaga-
tion effects. The formulation of this model allows simulations in oceanic conditions to consider both
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wave growth under local winds and swell decay of waves passing through a region simultaneously.

1. Introduction

Hasselmann et al. (1976) introduced a parametric
model of wind-wave generation, relating the rate of
change of a single nondimensional wave parameter
to nondimensional characteristics of the wind field.
Prior to that, since the mid 1960’s, most models of
wind-wave generation, propagation and dissipation
had been formulated in terms of solutions of relevant
equations for individual frequency-direction com-
ponents of the spectrum (Pierson et al., 1966; Bar-
nett, 1968; Ewing, 1971). In a review of numerical
wave prediction technology, models of this latter
type have been termed discrete spectral models by
Cardone and Ross (1977). To date, there has been
little effort to document significant differences
among various methods of predicting waves in deep
water and it is most often assumed that the various
methods produce similar results when correctly
applied. However, the results of comparisons by
Dexter (1974) and Resio and Vincent (1979) in-
dicate that, while this might be true for waves in their
late stages of development, significant discrepancies
arise among these methods for the cases of fetch-
limited waves and duration-limited waves in their
early stages of development. The purpose of this
paper is to discuss ramifications of different con-
cepts of wave generation in terms of comparisons
to observations and to develop a general scheme for
a discrete spectral model which can produce results
in good agreement with these observations.

Results of the Joint North Sea Wave Project
(JONSWAP) indicate that wave growth along a fetch
is governed by a self-similar process. In that study

the dominant energy input on the forward face of
the spectrum is related to a convergence of energy
flux due to nonlinear, resonant wave-wave interac-
tions of the form as described by Hasselmann (1962).
The results of Mitsuyasu (1968, 1969) also show a
pattern of spectral wave growth along a fetch as was
first described by Kitaigorodskii (1962). Well before
Kitaigorodskii’s work, however, investigators in the
late 1940’s (Sverdrup and Munk, 1947) were pro-
posing relationships among nonspectral wave
parameters, wind speeds, fetches and durations
based on dimensional considerations and empirical
evidence. One of these, formalized by Kitaigorod-
skii (1962) and well substantiated in the Hasselmann
et al. (1973) and Mitsuyasu (1968, 1969) studies,
is that the growth of wave height H along a fetch
should be representable in the form

H=mZXm, 6))

where m, and m, are two universal constants for the
case of deep water and A is a nondimensional wave
height defined as H = g(E,/u®"?, where g is the
gravitational acceleration, E, is the total wave
energy and u is the wind velocity at some refer-
ence level. X is a nondimensional fetch defined by
X = gx/u?, where x is the distance along the fetch.

In the absence of significant refraction, shoaling
and diffraction, the radiative transfer equation for
surface gravity waves is reduced to

aF(x’y’t’f, 6)

=G R 1" b
Y (x,y,¢, 1,0

- ca(f, 0)'VF(X, Y, l’fa 0)9 (2)
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where F is the energy density of the spectral element
located on the water surface at point (x, y) at time ¢
with frequency f and direction of propagation 6,
G is the rate of transfer of wave energy into or out
of this spectral element, and c,(f, 6) is the group
velocity associated with this element. Pierson et al.
(1966, hereafter referred to as PTB), as discussed in
Pierson (1977) assume that the effects of wave-wave
interactions, if they do become significant, do so
only in late stages of wave development, in which
case these effects are implicitly modeled by includ-
ing a limiting form for wave development in Eq. (2).
Hasselmann ef al. (1973, 1976) and Weare and
Worthington (1978) take the contrasting position that
nonlinear terms dominate the source mechanism
to such an extent that the pattern of growth of the
wave spectrum and the constancy of spectral shape
represents an equilibrium with local wind and
wave scaling parameters. Thus, they believe that
parametric models yield a more accurate description
of wave growth.

The PTB method uses a form for the source mech-
anisms which follows from the original theoretical
developments of Phillips (1957) and Miles (1957).
This approach treats individual spectral elements
as though they were uncoupled and receive essen-
tially all of their energy from direct atmospheric
transfer, i.e.,

Gprg = Ay + B,F, 3)

where F is the same as in Eq. (2) without explicitly
denoting here the dependence on x, y, ¢, f and 6.
A, and B, represent separate atmospheric source
terms, both considered to be functions only of wave
frequency, propagation angle relative to wind direc-
tion and wind speed. Recent attempts to measure
direct energy fluxes into the wave field from the
atmosphere have indicated that most of this transfer
occurs in the central band of energy containing
frequencies and not on the forward face of the spec-
trum (Dobson, 1971; Wu et al., 1979). Of practical
significance is the question as to whether or not this
A + BF source configuration can produce results
in approximate agreement with observations, in
spite of the fact that they may not represent actual
physical source terms. .
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On the other hand, Hasselmann er al. (1973, 1976)
suggest that simple parameterizations of wave-wave
interactions, such as proposed by Barnett (1968) and
Ewing (1971), although they are quite accurate for
Pierson-Moskowitz spectra do not suffice to provide
reliable results when applied in numerical wave
prediction schemes. They conclude, instead, that
such parameterizations should include a more
sophisticated treatment of various shape factors of
the spectrum. This conclusion would appear to be
borne out by comparisons made in Fig. 1, at least
relative to the Barnett parameterization. These
comparisons between the computed solution of the
Boltzmann integrals describing the transfer of
energy due to nonlinear wave-wave interactions and
Barnett’s parameterization of this transfer show that
this type of three-parameter representation is not
accurate for a broad range of spectral shapes. What
is needed then is a new parameterization of the
wave-wave interaction source terms, one which
does give a good approximation to the evaluation
of the Boltzmann integrals.

2. Parameterization of nonlinear wave-wave inter-
actions

Webb (1978) provides good insight into the
wave-wave interaction process taken by Hassel-
mann et al. (1973, 1976) to be responsible for most
energy transfer into spectral elements on the forward
face of the spectrum. He conceptualizes the process
as being made up of two related transfers; one
which is termed ‘“diffusive’’ since it transfers energy
down an energy gradient and a second which is
termed ‘‘pumped’’ since it-represents that transfer
required to accompany the diffusive transfer in order
to conserve energy, momentum and action. The
term pumped was chosen by Webb in order to
emphasize the analog of this transfer process to
other systems in which entropy is locally decreased
in a particular region at the expense of an increase
in entropy elsewhere. Given four wavenumbers
ki, ks, k3, k4, and associated action densities #,, n,,
ns, ny, Webb defines the pumped and diffusive
trans|fers under the constraint |k, — k;| < |k,
— k4|, as

dn
_dt— (pumped) = 2 JJJJJJ C(ky, ko, k3, ky)8(k, + k; — kg ~ k)d(w, + @, ~ w3 — wy)

and

dn

X C(’kl - k4‘ - |k1 - k3|)n1”3(”4 — ns)dk,dk;dk, (4a)

7 (diffusive) =2 J[JJJJ C(kl, kz, k3, k4)8(k1 + kg - k3 - k4)8(w1 + wy, — w3 — (1)4)

X U(|ky = k| = ky — ks|)npng(ng — ny)dk,dksdk,, (4b)



512 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 11

|
[ N\ PIERSON-
005 I\ moskowiTz
{
004 :
1 L SQUARE SPECTRUM qi000 N |
WITH 15 TAIL § 003 |
-}E !
3 &G 002 |
&
B -}
& J
5 @ 0.01
~
N
&
s 00 b
=
<1000 “
1 i )1
0 ° .
t e 20 (a)
0.0
- SHARP
| SPECTRUM
i 7.0
MEAN JONSWAP 4
! SPECTRUM o2r %= .07
. Op* A2
oz} y=33
o, = .07 _‘ =
g, = .09
L ® 24 ~
P
3 Sot} 4 80
& 0t 16 & .
& T
VR & - 140
a 0.0 o 'y
00 o ’ Q
1 &
-8 S -1 -40
2 1 l."": 1 1 i 1 i 1 —
00 02 o4 06 08 !
Hz (<) I 4 -80

| "

: 1y I i

0.0 04 08

Hz (d)

F1G. 1. Comparison of Barnett parameterizations of wave-wave interaction source terms to computed
solutions of complete integrals (Hasselmann et al., 1973).

‘

where the delta functions of wavenumbers and Appendix 1 in Webb (1978) gives a representation
angular frequencies are present to insure conserva- of this algebraically complex function for the case
tion of momentum and energy, respectively, and the of deep water.

¢ function is 1 when the argument is positive and 0 As seen in Fig. 1, the general form for the net
otherwise. The term C is the coupling coefficient transfer of energy within a spectrum is given by three
which dictates the rate at which interactions occur. lobes, a positive source located on the forward face,
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a negative source located at frequencies slightly
above the spectral peak and another positive source
at still higher frequencies. In the problem of numeri-
cal wave prediction, only the first two lobes are
important since the energy transfer into the third
lobe is at such frequencies that viscous and turbulent
dissipation is assumed to keep the local energy
density small.

Although it is easier to treat the mathematics for
the complete solution in terms of action density,
most wave prediction is carried out in terms of energy
densities. Since n(k) = F(k)/w, where = g|k|, a
straightforward transformation can be used to obtain
arguments in terms of F(k) or F'(f, 6) for a param-
eterization. Observational evidence is given most
often as a one-dimensional energy density E(f),
thus, the latter form F’'(f, 6) is preferred here. In
this paper, we shall restrict our attention to spectra
of the form

F'(f, 6) = E(f)Z(0),
where Z is a symmetric function around 6,, the mean
direction of wave propagation. The form of Egs.
(4a) and (4b) is such that, if the initial spectrum is
symmetric about 6, net energy transfers will
maintain this symmetry. If one considers the
dimensions of all terms involved in Eqs. (4a) and (4b)
and limits the shape of E(f) to a single peak, then a
reasonable scaling for interactions on the forward
face of the spectrum (the first lobe) will be of the form

OE(f) 0E(f) f

- =3 >(_)C'(fg)w(f—m), (5)

where the angle brackets denote an averaging process
over that region of the spectrum characterizing the
positive and negative lobes of the net transfer, and
Y is a nondimensional function of relative frequency
flfw. The C'(f,) term is related to the coupling coef-
ficient in Eqs. (4a) and (4b). As pointed out by Webb
(1978) for deep-water waves C(bk,, bk,, bk, bk,)
= bSC(k,, k2, K3, ki), thus sincef ~ k2, then C'(fp)
~ f§. In Eq. (9), f, functions as a frequency scale
taken here to be that frequency located at the point of
contact between the first and second lobes of the net
transfer function.

For the case of the growing sea, if the modulation
of the ‘‘overshoot-undershoot’ effect (Barnett and
Sutherland, 1968) is neglected, the energy density
in the region of the spectrum where the negative
lobe of the interaction transfer is located is given

by
E(f) = ag?Qm)™f75. (6)

On the forward face of the spectrum, the energy
density is approximated by E(f,)¥(f/f,). Combining
these relationships into Egs. (5) and (6) yields

ai(tf ) _ Dla"ngm“"‘l‘(%) ’

~ <E(f)>?+><

M
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where D, is a nondimensional constant. In this
instance, the proper scaling frequency f, is taken as
fw. In Barnett (1968) and Ewing (1971) the scaling
frequency f; is represented as the mean frequency
of the spectrum

fo=Eq j " ECHfdf.

For an f~° spectrum with a steep forward face,
fo = % fm. As long as these two frequencies are
linearly related, there is no fundamental difference
between using either scale for a self-similar spec-
trum. If we examine Figs. 1c and 1d, the intersec-
tion of the positive and negative interaction nodes
occurs, for practical purposes, at f,,, in agreement
with its usage here; and there is little difference
between using f,, or Barnett’s f; as a scaling fre-
quency. On the other hand, in case a the location of
fm is not well defined; and in case b the location of f,,
does not coincide with f;. Clearly, neither f,, nor
Barnett’s f is a fundamental scaling parameter for
all spectral shapes.

The null-point between positive and negative
transfers occurs in the middle range of frequencies
in a spectrum when the convergence of energy trans-
fer in the pumped term (4a) is exactly balanced by
divergence of energy transfer in the diffusive term
(4b). From dimensional considerations and the func-
tional dependencies of the pumped and diffusive
terms, it can be inferred that this point will be located
in the neighborhood of a frequency such that

K2 OE(f)
of of

given that the spectrum is unimodal. If the local
derivative of the spectral density is given by

0E(f)
of

then (8) will be met when n = 324. For n < 324, the
diffusive term will dominate and energy will diverge
from this region. For n > 324, the pumped transfer
will begin to dominate and energy will converge to-
ward this region. Consequently, this criterion will
be taken for the definition of f, in Eq. (5).

It is important to note that Eq. (8) is not intended
to imply that 85,,/0f = 0 at f,, but rather that f; is
located at the point in which the rate of change of the
scaling function with respect to frequency is equal
to zero.

For a range of peak frequencies from 0.05 to 0.4,
the value of f, determined in this way is about
1.24f,, for a Pierson-Moskowitz (PM) spectrum,
given by

E(f) = ag?Qm)¥ > expl—0.74(f/f)],

lE2(f) C’(f)] =0 ®

— qf‘—(n-H)’ )

(10)
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where the substitution f,, = g/u has been made into
the original equation proposed by Pierson and
Moskowitz (1964). In Fig. 1b, the value of f,, is 0.30
and the value of f, = 0.38, which compares favor-
ably with that predicted from the relationship pro-
posed here. This parameterization off, is best suited
for spectra with monotonic derivatives of energy
density with respect to frequency. If there are sev-
eral points at which »n in Eq. (9) equals 323, it is
unclear at present whether or not each will function
as an f, with several positive and negative lobes
distributed throughout the spectrum or whether the
different lobes would blend together. It is expected
that this behavior will depend on the separation be-
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tween those f; points, relative to the width of the
expected transfer lobes. From the shape of the exact
solutions shown in Fig. 1, it appears that the form
and intensity of the energy transfers are largely
related to the levels of the spectrum near the spectral
peak. A spectral width parameter such as the root
mean square frequency deviation to either side of
fm can be used to characterize this distribution.

3. Discrete spectral parameterization of wave growth

Fig. 2 shows a comparison of three spectral
shapes: a PM spectrum [given by Eq. (10)], a JON-
SWAP spectrum given by
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FiG. 2. Comparison of nondimensionalized shapes of spectra proposed by Kitaigorodskii (1962} (K),
Hasselmann et al. (1973) (J) and Pierson and Moskowitz (1964) (PM).
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E(f) = EPM(f)aexp(—(f-f,,,)2/(20-2fm2)]’ (1 1)

where o = 0.07 for f < f,, o =0.09 for f = f,,
6 = 3.3, and a Kitaigorodskii-type of spectrum is
given by

ag¥f SQ2m), f=Ffs
angm“s(27r)“‘

x expll ~ (fu/H), f<fu

12)
E(f) =

In essence, the PM spectrum has only one free
parameter f,,, since everything else in Eq. (10) is a
constant, whereas the spectra from Egs. (11) and
(12) contain two free parameters f,, and «. Fig. 2
represents the comparison when o = 0.0081, the
value taken as a universal constant in the PM spec-
trum. As can be seen here, the spectra given by (11)
and (12) are quite similar in terms of total energy,
with the JONSWAP spectrum showing more evi-
dence of the overshoot-undershoot oscillation around
the saturation energy in the equilibrium range.
Since, the concentration of energy near the spectral
peak can be important in many applications, this
similarity in total energy does not imply the two
spectral shapes may be used interchangeably.

In a numerical model of the discrete spectral type,
the information on spectral shape is not sufficient
to merit a laborious calculation of derivatives,
moments, etc. Consequently, a parameterization of
the nonlinear source term G, that is stable and still
retains characteristics of the Kitaigorodskii-type
spectrum can perhaps best be formulated in terms of
Eq. (7). On the forward face of the spectrum, the
function y(f/f,,) must be related to the spectral
width, which for spectra given by Eq. (12) leads to

Gy = D1 fr=* expll — (fulf YW SIfn)®. (13)

For now, let us assume that the level of energy in
the so-called equilibrium range is governed by an
instantaneous balance among the wave-wave inter-
action sink, wave breaking and the atmospheric
input. Several studies (Mitsuyasu, 1968; Hassel-
mann ef al., 1973, 1976) have indicated that there is
a relationship between o and nondimensional fetch
of the type

a = myX™, (14)

where m; and m, are universal constants. However,
in a numerical model, the concept of fetch in a time-
varying, space-varying windfield is quite ambiguous
and subjective. An easier nondimensional relation-
ship to apply can be formulated in terms of non-

dimensional wave height
o = msH™, (15)

where m; and mg are two new constants. Alterna-
tively, a nondimensional peak frequency, defined as
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fm = ufulg, could be used to estimate a. From the
JONSWAP study we have

a = 0.076X°22,
o = 3.5X703,
Substituting these relationships into Eq. (13) yields
Gyi = Dog®ulfn)* expll — (ful VNS 1f0)° (16)

which is interesting since it demonstrates how such
a wave-wave interaction source term can behave as
an apparent wind source term. Without the variation
of a implicit in the functional relation between «
and some wave parameter nondimensionalized by
wind speed, this would not be possible. The fact that
the wind speed enters into Eq. (16) as a squared
term is reassuring in a physical context since the
transfer of momentum due to surface stress is ex-
pected to be of the form r = Cpu, where Cj, is the
coefficient of drag. The parameterization of G, here
is fundamentally different than those proposed by
Barnett (1968) and Ewing (1971). Neither of those
contain any factor which will produce the wind
speed dependence reported here, given that both
previous models were formulated to work with the
assumption that « is a constant.

An equivalent relationship to Eq. (16) can be
formulated in terms of nondimensional wave height
if the relationship shown in Eq. (15) is used with
mg = —0.47. A comparison of this relationship
with observational evidence is shown in Fig. 3. This
method is preferred over the use of nondimensional
peak frequency for estimating « in a numerical model
since the total energy is estimated with more pre-
cision than the location of the spectral peak.

For a fixed wind speed, the variation of « with E,
is small. Thus, the rate of growth is essentially
given by

aE fo
¢ - J G udf (17)
ot 0
or along a fetch by
aE fo
"~ J Gy df, (18)
ax 0

provided that the angular distribution of the energy
density is reasonably constant and that ¢, is the
average component of propagation in the positive
fetch direction [=0.85¢, for Z(8) = cos2( — 6,)].
Combining Egs. (16) and (18) and noting that for
the type of spectrum considered here f;, = f,,,

oE,
ox

fin
~ Dyg~fu~u? j £ exp(ful £)df

=~ Du’g7, (19)

where D; and D, are dimensioniess constants. It is
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Fi1G. 3. Relationship between Phillips equilibrium coefficient @ and nondimensional wave energy (after Resio and Vincent, 1977a).

apparent here that the rate of growth of total energy
along a fetch is a constant, independent of x. From
the JONSWAP data, we have E, = m’X where

E = H%. Hence in dimensional terms
Ey = muix/g, Q0
OF
= mou¥g. 21
ox

Clearly, if D, = m,, then the growth of total energy
in a model based on the form of G, proposed here
will correspond to that observed by Hasselmann
et al. (1973). Since the spectral formulation used
here is based on that of Kitaigorodskii (1962), wave
growth follows a self-similar pattern, in agreement
with the JONSWAP data although with a somewhat
different shape as seen in Fig. 2. The question now
arises as to whether or not a model with A + BF
source terms can reasonably duplicate these results.

4. Spectral growth with A + B source terms

Most of the empirical calibrations of the A and B
source functions have relied on one-dimensional
spectral information. For simplicity, the two-
dimensional source functions in Eq. (3) will be as-

sumed to have an equivalent one-dimensional rep-
resentation A, + B,E(F) that will produce essen-
tially the same pattern of spectral wave growth as
the A, + B,F source terms integrated over direc-
tion. Although several forms for B, have been pro-
posed, most of these can be reduced to a nondimen-
sional relationship of the form (Snyder and Cox,
1966; Barnett, 1968; LLazanoff and Stevenson, 1975;
Dobson and Elliot, 1977)

B,lf = ¢(ulc), (22)

where ¢ is the phase velocity of a spectral element
with frequency f. For a self-similar spectrum of the
Kitaigorodskii type, on the forward face we have
along a fetch ‘

' BUEHAS _ 2080 (P (N o
J aw3Jf¢&JM“”ﬁ()

If we allow ¢(u/c) ~ (u/c)" then Eq. (23) becomes

0 Cy 0

flll ’
JBﬂﬂ#=mJW, 24
0
which can be calibrated into a constant function of
wind speed, as in Eq. (19), only for the case n = 2.
However, most of the theoretical and empirical
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studies have led to the use of forms for B, with
n =1 (Synder and Cox, 1966; Barnett, 1968;
Lazanoff and Stevenson, 1975; Dobson and Elliot,
1977). Additionally, the behavior of @ would not be
properly modeled with such an approach. If the
JONSWAP relationship for a given wind speed,
o ~ f#3, is applied then the exponent in (24) be-
comes n — 3, which when the usual factor n = 1
is substituted into it yields only a weak dependence
on f,.

Since the A; and B, terms are not functionally
equivalent, the A term must independently approach
a constant when integrated over the range of growing
frequencies, for waves generated along a fetch. A
typical dependence of A on frequency is of the form
A ~ f~™ for frequencies up to the peak of the fully
developed spectrum for a given wind speed. Thus
the growth of total energy due to this source along
a fetch is

JdE,
ax

= my, Jf findf. 5)

For n = 2, the growth of total energy depends on
Inf,; and for n # 2, it depends on % ™. This seems
to suggest that such a source term, i.e., a linear
source term not dependent on the relative location
of the spectral peak, cannot be significant in the
growth of waves along a fetch. This may explain
some of the necessity of recalibrating models with
A + B source terms when applying them to regions
dissimilar to their original calibration site.

Another factor which seems to explain some of the
differences between numerical wave models with
A + B source terms and the type described in this
paper comes from the difference in the rate of prop-
agation of the source terms themselves along a fetch.
As shown in Resio and Vincent (1979), the Gy
source term propagates at the rate C,(f,,), whereas
the A and B source terms propagate at the group
velocities of the individual spectral elements. Table 1
from that study gives a comparison of the times
required to achieve fetch limitation for the different
types of models. It is shown there that models with
A + B source terms that grow correctly with time
grow too slowly with fetch; and such models that
grow correctly with fetch grow too fast with time.

The previous discussion suggests that numerical

models with dominant A + B source terms cannot

duplicate similarity relationships observed in the
JONSWAP data. Still, in a complete specification
of source terms, it is necessary to include some ex-
plicit atmospheric input term. Most recent experi-
ments indicate that the majority of the energy trans-
fer from the atmosphere into the wave field occurs
in the midrange of energy containing frequencies;
and, since the theoretical form of the A term trans-
fers more energy into spectral elements on the for-

DONALD T. RESIO

517

TABLE 1. Comparison of durations (hours) required to achieve
fetch-limited conditions in models dominated by atmosphere
input source terms and in models dominated by wave-wave
interaction source terms.*

Dominant Fetch (n mi)
Wind speed source

(kt) term 10 50 100 500

20 Gar 23 69 113 314

NL 32 94 149 440

40 Gar 1.6 4.6 7.5 223

Gy 22 64 102 30.2

60 Gyr 1.6 4.2 7.2 231

GuL 1.9 5.5 8.8 26.0

* Assuming that both models produce values for f,, equal to
those given by Hasselmann et al. (1976).

ward face of the spectrum than into this range, the
A term is dropped entirely from the source terms
in the present model. A simple form for B is used
here, similar to that proposed by Snyder and Cox
(1966)

B, = sf[(u cosf)c™! — 0.9], (26)

where s is the ratio of the densities of air and sea
water. This is equivalent to using the form of B,
proposed by Barnett (1968) multiplied by 0.2. In
Barnett’s work, the A + B terms were determined in
such a way that they explained all of the wave
growth along a fetch. A % reduction is consistent
with more recent findings that ~80% of the growth
is due to the wave-wave interaction source (Hassel-
mann et al., 1973). The final form of the source terms
used in this discrete spectral model is

S =GCGun + BIE(.f)‘I-’(G = 6o). @27

Since there is no longer any A term in this source
formulation, a linear term to initiate wave growth
is now lacking. It is apparent that waves must already
be present in order to have wave-wave interactions
which generate more waves. Consequently, it is
necessary to have some high-frequency cutoff in
such a discrete spectral model. In the model de-
scribed here, this cutoff is achieved at a moderate
frequency level by incorporating a local (non-
propagating) parametric model into the discrete
spectral model. The boundary between the para-
metric and discrete spectral domains of this model
is maintained at a fixed point, and energy in each
domain is conserved independently. In a growing
sea, energy is initiated in the parametric region.
The rate of change of f,, is calculated and energy
exchange into the discrete spectral region is used
to trigger the growth in that domain. The calcula-
tion of a new f,, at the end of a time step in this
model follows from the solution to the parametric
equations of Hasselmann et al. (1976).
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where the superscript n here denotes the time step,
Ar is the time increment used in the model, and
N, = 0.00109N,, where N, is a constant specified
by Hasselmann et al. (1976). Once the peak fre-
_quency has shifted into discrete spectral domain, the
parametric domain assumes an f ~° equilibrium form.

5. Comparison to growth characteristics of Hassel-
mann et al. (1976) parametric model

The rate of wave growth under ideal conditions
of fetch limitation or duration limitation under a
stationary wind field can be calculated from the
Hasselmann et al. (1976) study. For growth along a
fetch, this solution yields

E, = 1.6 x 107 7u%x/g (29)
and for growth through time, it becomes
Ey = 4.3 x 10710187 g 47,1017 (30)

where ¢ is the total elapsed time since the wind be-
gan to blow, assuming an initial condition of E; = 0
atr = 0.

In order to use Eq. (13) in actual calculations,
the constant D; must be evaluated from compari-
sons to the complete solution. Fig. 4 shows the re-
sults of calculations of the parameterized wave-wave
interactions based on the type of formulation given
in Eq. (5). For the growth of a Kitaigorodskii-type
spectrum, this is equivalent to Eq. (13) with D,
= 0.0023. Clearly, the new parameterizations yield
a more consistent source function relative to the
complete solution. Without any recourse to re-
calibration, the discrete spectral model was run
for ideal fetch- and duration-limited cases, as-
suming a Kitaigorodskii-type spectrum. Fig. 5 shows
that results from these runs compare quite favorably
to the parametric results.

In the parametric model, wave growth is auto-
matically halted when the nondimensional peak fre-
quency attains the value 0.13; and a fully developed
sea state is achieved abruptly at this value. In the
discrete spectral model a property of combined
source terms can be shown to affect an asymptotic
approach to a fully developed sea state, without
requiring a side condition on the value of a param-
eter. Basically, the saturation range in the discrete
spectral model is attained when the atmospheric
input (B term) puts more energy into the central
band of frequencies than is transferred out of this
range of the wave-wave interactions. Whether the
level of energy in this range is controlled by wave-
wave interactions or by wave breaking is not really
relevant in the present discussion provided both lead
to anf % distribution of energy as empirical evidence
suggests. Eventually as the negative lobe of - the
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wave-wave interactions moves progressively into
lower frequencies, it will approach the so-called
wind frequency (f = g/u), at which point the B term
goes to zero. When this occurs, the spectral shape
becomes broader near the peak since it can no longer
maintain an f~° distribution, and the rate of wave
growth slows down from the similarity-based rela-
tionships shown in Egs. (29) and (30). Dimensional
considerations indicate that such a condition on the
wind frequency leads to a fully developed energy
that depends on wind speed to the fourth power,
i.e., Egar ~ u*. This is in agreement with empirical
evidence which supports a wind speed squared rela-
tionship for fully developed wave height (Pierson
and Moskowitz, 1964). The deviation between the
discrete spectral model and the parametric model at
large fetches and durations shown in Fig. 5 is prob-
ably due to the difference in their approaches to
fully developed conditions.

6. Transition to swell and swell decay

In the parametric model, waves are said to be
swell when the nondimensional peak frequency
becomes <0.13. When this occurs in the parametric
model, the spectral components are assumed to be-
come instantaneously uncoupled and a discrete
spectral propagation scheme, typically using the
method of characteristics, is used to move the
energy over the ocean surface at the group velocity
of each individual frequency. Since the point of con-
tact in frequency between the local sea and swell

‘calculations is not fixed, there are a number of com-

putational difficulties which must be overcome in
order to maintain a smooth, stable solution. Since it
is assumed that these spectral elements are com-
pletely uncoupled from each other, there is no decay
of energy as the waves propagate away from their
source. There is still geometric spreading and fre-
quency dispersion which will reduce the energy
density as one moves away from the source; but
total energy is conserved.

- In the discrete spectral model presented here,
there is no difficulty in propagation brought about
by mixed computational systems at the same fre-
quency. Propagation is achieved for all spectral
elements lower than the parametric high-frequency
domain by using an explicit finite-difference formula
5
> NeF ik, €2

k=1

n+1 —
Fit =

where the superscript n denotes the time step in the
model and subscripts i, j and & refer to frequency,
direction and space counters, respectively. The
values of the multipliers represent a one-step version
of a modified Lax-Wendroff scheme used by Bur-
ridge and Gadd (1978) and Golding (1978). This
scheme is space-centered and quasi-time centered,
and is computed here on a nonstaggered grid. After
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F16. 4. Comparison of parameterizations of wave-wave interaction source terms based on equation in
text to computed solutions of complete integrals (Hasselmann et al., 1973).

the spectral peak of the locally generated waves is
determined, the wave-wave interaction source for a
swell spectrum is computed using the same concepts
as used for the local sea and the total source integra-
tion is performed. Fig. 6 shows a typical decay
sequence for a wave spectrum after the wind is
switched off in the discrete spectral model. The
lack of such an energy-decaying factor for swell

in a purely parametric model could be a major draw-
back in its application for climatological processes.
This is especially true for cases in which wave
statistics are required for planning, design, opera-
tion and maintenance related to coastal structures
or when otherwise used to quantify nearshore
processes.

In the sequence of spectra shown in Fig. 6, the
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negative lobe of the wave-wave interaction source is
parameterized so as to maintain a constant f ~* slope
at frequencies above the spectral peak. There is evi-
dence from the field study of Snodgrass et al. (1966)
and the laboratory study of Mitsuyasu and Kimura
(1965) that this occurs in nature, at least in the region
relatively close to the wave generation area. For
computational simplicity, the form of the param-
eterization is given by

G = (D5/GYEXS ) f R E(f). (32)

This formula retains the basic o® dependence of the
source function and is basically a substitution of
E(f)/E(f) for the function y(f/f,) in Eq. (5). After
waves have propagated a large distance relative to
the size of the wind system responsible for the wave
generation, frequency dispersion will tend to pro-
duce very peaked swell spectra; however, at these
distances the rate of energy decay becomes quite

small (Snodgrass et al., 1966). Thus, the deviation
between the parameterized shape function, with the
assumed f 5 high-frequency tail and actual spectral
shapes should not be of major consequence.

7. Discussion

The model described in this paper represents a
discrete spectral model that approximates the
similarity-based fetch and duration growth charac-
teristics of the Hasselmann et al. (1976) parametric
model. At present, it is undergoing extensive testing
against recorded wave spectra; however, since error
characteristics in such a comparison are as much a
product of the meteorological models used to esti-
mate an oceanic wind field as the wave model, these
results will not be reported here. The fundamental
physics of the discrete spectral model consists of
three parts: a new parameterization of the wave-
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wave interaction source term, an atmospheric input
term of the exponential type and a variable energy
density level in the range of frequencies above the
spectral peak, where a balance of energy fluxes leads
to an f 5 distribution of energy. It would appear
from the results of this paper and that of Resio and
Vincent (1979) that a model with dominant atmos-
pheric input source terms cannot be scaled to
match the results of the discrete spectral model
with a dominant nonlinear wave-wave interaction
source term.

On the other hand, the parametric model has some
attributes which do not appear to be substantiated
by observations. One of these, the lack of swell de-
cay, is remedied in the discrete spectral model by
maintaining the ability to calculate two sets of wave-
wave interaction source terms, one for local sea and
one for swell. A second problem area with the para-
metric model for many applications is the assump-
tion that the wave spectrum is always centered

around the wind angle. Hasselmann et al. (1976)
use an argument based on the relaxation time of the
value of « to justify this assumption. However, the
region of frequencies in which this adjustment is
rapid is above f;. In this area, energy already present
in the spectrum is transported out of this region,
while the wind puts in additional energy toward its
central direction. On the forward face of the spec-
trum, the adjustment to a shift in wind must be much
slower, since no previously present energy is trans-
ported out of this region and the net wave-wave
interaction source is centered around the central
wave angle and not the wind direction. It is interest-
ing to note here that, whereas a variable wind speed
can be rescaled into a similarity process equivalent
to a series of constant wind speeds with different
initial conditions, this is not the case for a change in
wind angle. The discrete spectral model can be
shown to produce a spectrum under a changing wind
angle with energy on the forward face propagating
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in a significantly different direction than the energy
at high frequencies. This type of deviation has been
reported by Forristall er al. (1978) and in data from
the GATE project.

In actual applications with the discrete spectral
model described in this paper, better results have
been achieved by using scaling relationships be-
tween « and nondimensional wave height that are
based on friction velocity rather than wind speed at
some reference level. This is in accordance with
the original work of Kitaigorodskii (1962). Only if
the coefficient of drag is constant will the two scal-
ings produce identical results; and many papers in
recent years have presented evidence that this is not
the case for winds over water. Garrett (1977) sum-
marizes the data and results of several studies and
suggests a velocity dependence of thé roughness
length of the water’s surface that is similar to Char-

nock’s (1955) formulation z, ~ u,2%/g. Since there is
an algebraic relationship between the roughness
length and the coefficient of drag, this relationship
may be incorporated into the JONSWAP data in
order to extend these data to the case of friction
velocity scaling. Fig. 7 shows that this different scal-
ing can produce significant differences even at wind
speeds as low as 30 kt. As seen here, with the wind-
speed scaling, the growth of wave height with time is
considerably lower than other models (which have
presumably been tuned to fit actual data); whereas,
with the friction velocity scaling, the growth of wave
height with time appears to fit in with the other
models quite well.

If friction velocity is the more appropriate scaling
parameter for wave generation, there also may be a
dependence on atmospheric stability. Schwab (1978)
reported that results from his numerical model of
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wind stress over Lake Erie were improved when
consideration of drag variation of the type presented
by Resio and Vincent (1977b) was included. Also,
Strong and Bellaire (1965), Davidson (1973), Sanders
(1976) and Cardone (1969) present evidence that
wave generation can be significantly influenced by
atmospheric stability. If this is the case, then a
friction velocity scaling will tend to give better agree-
ment with observations when used in a climatologi-
cal application.

Another factor which can be of significance in the
application of a numerical wave model concerns the
run time characteristics. A major argument against
the use of discrete spectral models is the large amount
of computer time and large area storage require-
ments necessary in the simulation of waves over a
large area. In a 576-point Atlantic Ocean grid at each
point, 320 spectral elements and a high-frequency
parametric domain are used to represent the wave
spectrum, giving a total of 184 320 elements in all.
Source calculations are performed for these and
each element is.propagated, using Eq. (31). Speed is
achieved by performing as many precalculations as

possible and by minimizing branching logic. One day
of simulation for the Atlantic (eight time steps) can
be run in ~16 s on a CDC CYBER 176 computer.
Thus, the run time is really not too great a factor
for many potential applications even at the scale of
the entire Atlantic Ocean. For a smaller number of
points or a smaller number of frequency-direction
elements, commensurately less run time will be
required.

As a final part of this discussion, it is appropriate
to include a comparison of the discrete spectral
model to some recent wind-wave models other than
the PTB type and Hasselmann er gl. (1976) para-
metric model. In the last few years, the concept of
a wave spectrum as a superposition of free surface
waves has been challenged. Toba (1978) and Lake
and Yuen (1978) argue that the wave spectrum is
not weakly nonlinear, as suggested by Hasselmann
(1962) but rather represents a strongly nonlinear
process. Based on laboratory studies (Rikiishi, 1978;
Kato and Tsuruya, 1974; Ramamonjiarisoa and
Coantic, 1976), the group velocity of spectral com-
ponents with frequencies higher than the spectral
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peak appears to deviate significantly from linear
theory. Preliminary findings suggest instead that
these waves are coupled to dominant waves, located
at frequencies near the spectral peak, and propagate
at the same group velocity as these waves. Lake
and Yuen go on to explain this behavior and asso-
ciated energy transfers within an evolving one-
dimensional wave spectrum in terms of the nonlinear
Schrodinger equation. The spectrum in this sense
represents a coherent system of bound waves. In
such a system, the interactions among frequencies
are not restricted to those wavenumbers satisfying
the resonance condition expressed by the delta func-
tions in Egs. (4a) and (4b). -

In a wind-wave spectrum, this apparent propaga-
tion behavior of the high frequency components is
not surprising. Since the equilibrium range is main-
tained by a balance of energy fluxes through this
region of the spectrum, the level of energy here is
a local quantity. As shown by Hasselmann et al.
(1976), the relaxation time of the energy level in this
region of the spectrum is very short. Like any local
quantity, the integrity of individual waves is not
maintained for long distances. A consequence of this
is that propagation characteristics of high-frequency
waves in a spectrum do not necessarily infer that all
wave energy is bound to the dominant waves, but
might reflect the local nature of these waves which
in turn depend highly on the dominant waves
present.

Laboratory studies (Lake et al., 1977) also in-
dicate that the form of a wave train in deep water
evolves through a series of cycles of amplitude
modulation, in agreement with the coupled form of
the nonlinear Schrédinger equation. In this type of
evolution, the spectrum alternately becomes more
concentrated and then more dispersed in frequency,
an apparent violation of the principle that entropy
is a nondecreasing function. Herein lies a funda-
mental difference between the coupled mode be-
havior and -the weakly nonlinear interactions.
Whereas the latter of these is formulated in terms
of wave action, which is averaged over phase, the
former is not. In the random sea model, entropy
can be measured by an equivalence to dispersion
of energy in wavenumber space. In the bound wave
model, the entropy of the system must be defined
in terms of the probability that the system is in a
particular portion of the phase space. Since high
correlations can exist among different wave com-
ponents in the bound wave system, this, too, must
be considered as a contributor to total entropy.
Hence, the redistribution of the spectral energy
undergoing amplitude modulation must be accom-
panied by a counterbalancing redistribution of the
correlation structure in such a way as to negate the
apparent decrease in entropy. In the basically one-
.dimensional case typical of a wave confined in a
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flume, it is expected that considerably higher cor-
relation among different components can be main-
tained then when waves are free to propagate at
varying angles to each other. This does not lead to a
definite conclusion as to which model of the physics
is more appropriate in prototype conditions. How-
ever, since both models produce a growing spectrum
with an f~5 high-frequency region and a source
function linked to the location of the spectral peak,
use of either model when empirical evidence is also
considered, must inevitably lead to similar results.

8. Summary and conclusions

A discrete spectral model has been presented
which exhibits fetch and duration growth char-
acteristics to the Hasselmann et al. (1976) para-
metric model. Source terms with a dominant atmos-
pheric input apparently cannot duplicate these
growth characteristics. The parameterization of the
wave-wave interaction source term by Barnett
(1968) was seen to be too low by a factor of 3 for a
JONSWAP spectrum; consequently, a new param-
eterization was formulated for the wave-wave inter-
action source terms. This parameterization can ac-
count for certain aspects of spectral shape variation
and leads to a simple o®f,,~* scaling relationship for
the nonlinear source term in a self-similar spectrum
with an f % high-frequency tail. This type of source
representation is found to depict both wave growth
and wave decay rates in accordance with observa-
tional evidence while maintaining spectral shapes
consistent with observed spectra. Advantages over
a parametric model include simplified numerics
since only one computational system is used for sea
and swell, the ability to represent swell decay as it
propagates away from a storm area, and the freedom
to permit wave direction to deviate from wind direc-
tion in situations of rapidly varying wind directions.
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