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ABSTRACT

Internal waves scatter sound by two related perturbations: 1) those associated with vertical particle
displacements {(x, y, z, ?) in the presence of a vertical gradient of (potential) sound speed (6c = {8,c,);
and 2) those associated with horizontal particle velocities «(x, y, 2, #). The combined fractional
perturbation in propagation velocity is 8c/c + w/c. The second term, generally neglected, introduces
a nonreciprocity when source and receiver are interchanged. Nonreciprocity is expected to be rela-
tively small except for transmission along a deep downward loop. The principal internal wave contribu-
tion to nonreciprocity is from inertial frequencies. The sum and difference of reciprocal travel times
are a measure of £ and u, respectively, along the ray path; the quadrature spectrum of reciprocal travel
times is related by an integral equation to the spectrum of the momentum flux (Zu). Precise measure-
ments of nonreciprocity could provide an estimate of the vertical momentum flux in an internal wave field.

1. Introduction

In the absence of a velocity field the character
of a sound transmission would be the same in all
detail if source and receiver were interchanged. Any
nonreciprocity is therefore evidence for a flow field,
and contains some information concerning this flow
field. Worcester’s (1977) experiment of reciprocal
transmission in a midocean environment revealed a
high degree of nonreciprocity in short period (cph)
fluctuations. In this paper we have asked whether
these fluctuations can be accounted for by the parti-
cle velocities associated with internal waves, and
whether one could derive oceanographically useful
information in this manner. We have not succeeded
in" explaining the experimental results, but have
found that the cross spectrum in oppositely directed
acoustic travel times could provide a measure of the
correlation between vertical and horizontal particle
velocities, e.g., the vertical flux of horizontal mo-
mentum. '

The formalism required for the interpretation of
nonreciprocity is regrettably complex; in fact, all
existing models of internal wave spectra give null
results for the most interesting statistics (the cross
correlation of reciprocal travel times). The first four
sections prepare the way for a discussion of the
previous experiment and of a future experiment for
measuring momentum flux.
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In Section 1 we examine the role of internal wave
particle velocities in the scattering of sound; the con-
tribution of velocity scattering is important for deep
paths.

In Section 2 we deal with the representation of
the internal wave field when the surface boundary
condition of zero vertical velocity does not hold
precisely, as would be the case for a vertical mo-
mentum flux transmitted through internal waves. A
representation by wave packets in three-dimen-
sional wavenumber space is convenient. The spec-
tral model is generalized to provide for vertical
asymmetry and horizontal anisotropy.

In Section 3 we derive the statistics for the acous-
tic phases ¢.(t) of the pulsed transmissions in the
+x-directions, as functions of the geophysical time ¢.
(Phases are travel times multiplied by acoustic cen-
ter frequency.) The mean products ($,2(1)), ($-2(z)),
(. ()P_(1)), . . . , can all be expressed as integrals
of the internal wave spectra

f dr S e
ray i

where j, w, a are the internal wave mode number,
frequency and azimuth. The a integration is re-
moved if the integrals are evaluated by stationary
phase, and a = o(w; z). For a factored GM spectra
S(Jj, @) = H(j)G(w) the w integration and j summa-

de...Jda..-s(j,w,a;z),



APRIL 1981

tion can be performed explicitly, and even the x
integration can be carried out for the special cases
of an axial ray and of an upper loop (ray apex ap-
proximation).

A parallel derivation of the In-intensities, is given
in Section 4 but with much more limited analytical
results.

In Section 5 Worcester’s experiment in reciprocal
transmission in examined. The data set is severely
deficient, and we regard this section as an illustration
for evaluating the previous general expressions for
a specific experimental situation. The solution of the
forward problem depends, of course, on our assump-
tions concerning vertical asymmetry and horizontal
anisotropy.

In Section 6 we examine the inverse problem of
deriving useful information about internal waves
without such ad hoc assumptions. The acoustically
measured time series ¢,(t) and ¢_(¢) provide us
with two autospectra P, (w) and P, 4 (w) and the
co- and quadrature spectra, Py o (w) and Q4,4 _(w).
The acoustically measured spectra are related to
the spectra and cross spectra of the vertical displace-

ment ¢ and the horizontal particle velocities u, v of’

the internal wave field. The relation is through inte-
gral equations whose solution is a problem of in-
verse theory. Of particular interest is a relation be-
tween @, »_(w), the quadrature spectrum of recipro-
cal travel times, and the w-spectrum of (ud,{), i.e.,
the frequency spectrum of the vertical flux of hori-
zontal momentum. It would be of great interest to
measure the evolution of momentum flux as a func-
tion of frequency, depth and time during a storm
episode. '

Whether stable estimates of this kind can be made
we do not know; the inversion problem is intricate
at best and we have not attempted to solve it here.
We shall try to gain some experimental experience
over the next few years.

2. Propagation velocity

Let {(x, y, z, t) designate the upward particle
displacement due to internal wave motion, and

u,v,w = 0,{

1

the three components of internal wave particle
velocities. The perturbation in sound speed arising
from the vertical displacement equals { times the
vertical gradient in potential (actual minus adiabatic)
sound speed, i.e.,

2

8¢ = £(0,C)potential-
Thus

6¢c * u

(3

is the internal wave perturbation in probagation
velocity in the =x direction, ignoring the small tilt of
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TaBLE 1. Representative values of internal wave parameters.'

z n rms { rms u
(km) (cph) (m) (cm s7%) rms 8c/c rms ulc
Thermocline 0 3 7.3 4.70 49 x 107 3.1 x 10°®
Sound axis -1 1.1 12.0 2.85 11 x 108 1.9 x 1073
-2 0.406 19.8 1.73 2.4 x 1078 1.1 x 1073
Bottom -4.5 0.094 41.2 0.83 0.3 x 10°% 0.6 x 108

sound rays. The fractional perturbation in propaga-
tion velocity is :

U
+ —

M = 4)

a|g

C

For a ‘“‘canonical ocean’ (Munk, 1974), Eq. (2)
can be written

oc

= = 245722, ©)
C

where

n = nye (6)
is the Brunt-Viisild (or buoyancy) frequency, n,
the surface-extrapolated value, b the scale depth,
g gravity (z is positive upwards). Constancy of in-

ternal wave vertical energy flux (the WKBJ approxi-
mation) requires that
rms { = n~ ", rmsu = n'?
hence
rms 8c/c ~ n%2.

Table 1 gives representative numerical values for
the special case of a sound axisatz = —b = —1km.

"Thus 8¢ and u contributions from internal waves

are comparable beneath 2 km.

3. Internal wave spectra

The customary representation of an internal wave
field is a linear superposition of elementary wave
trains of random phase. The usual boundary con-
dition has vanishing vertical velocity at the surface?
and on the bottom, and therefore a representation
in terms of normal modes is more convenient. One
writes the vertical displacement {(x, t) as

i(x, 1

. [ d%k .
= X [ {atln) expL it o — GOt )

+ af(ky) expl—i(ky Xy — wD)]W;ky; 2)}, (7)

' From W. H. Munk and F. Zachariasen (1976), to be referred
to as MZ. Table 1 of MZ is in error with regard to u/c. For a
systematic treatment we refer to Flatté et al. (1979).

2 The ‘‘free surface’” boundary condition is replaced by the
*‘lid”’ boundary; this approximation is adequate for the purpose
of the present discussion.
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where 0 = w;(ky) is the frequency, k;, the horizontal
wavenumber and x,, is the horizontal position. The
mode functions W;(k,; z) vanish at the surface (z
= 0) and at the bottom (z = —D), so that the bound-
ary condition is automatically built in.

If desired, one can equally well describe {in terms
of plane waves with vertical as well as horizontal
components of wavenumbers:

{(x,1) = jd3k/(277)3{a(k) expl+i(k'x — wi)

+ a*(k) exp[—i(k'x — wt)]}. (8)
Here k = (ky, k,) and x = (xy, z). The (approxi-
mate) dispersion relation is

®

This simply expresses the well-known fact that the
inclination tany = k,/ | ky [ of the wavenumber to the
horizontal is a function only of frequency.

But the boundary condition of zero vertical ve-
locity at the surface does not hold precisely, as there
is some (possibly very little) net vertical momentum
flux transmitted through internal waves. When this
flux is an essential element of the analysis, as it is
here, (7) is incorrect but the more general represen-
tation (8) can still be used.

In the representation (8), positive (negative)
values of &, represent waves having upward (down-
ward) phase propagation, and downward (upward)
energy propagation.

Thus if a(k) is an even function of k,, we have
vertical symmetry. Conversely, if a(k) has a com-
ponent odd in &, (8) can represent asymmetric verti-
cal propagation. Eq. (7), in contrast, is intrinsically
vertically symmetric.

Miiller et al. (1978) have made a consistency anal-

_ysisof 1444 £, u, v cross spectra collected during the
IWEX experiment (Briscoe, 1975). They find that (i)
the observed fluctuations are consistent with the
random superposition of linear internal waves; (ii)
the internal wave field is nearly horizontally iso-
tropic and vertically symmetric except at inertial and
tidal frequencies; (iii) WKBJ-scaling is satisfactory
except at the turning points where more refined
methods (e.g., the Airy solution) should be used;
and (iv) at intermediary frequencies, normal modes
and plane waves are about equally satisfactory. At
buoyant frequencies (w — n) the plane wave repre-
sentation is inconvenient to describe the measure-
ments (presumably because the upward and down-
ward propagating waves have increasingly deter-

ministic phase relations with proximity to the turning -

point). To these findings we can add the expectation
that (v) the plane wave representation is inconveni-

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 11

ent to describe the largest vertical wavelengths (low
modes) for reasons similar to those stated in (iv).

Other empirical evidence also favors isotropy and
symmetry over the opposite extreme of plane waves
in a narrow beam (for a review, see Garrett and
Munk, 1972, 1975) and this view has received sup-
port from recent theoretical work (McComas, 1977;
Pomphrey et al., 1980) which shows that a narrow
beam is rapidly diffused (equipartioned) as a result
of nonlinear interactions. Certainly the assumptions
of isotropy and symmetry greatly simplify the prob-
lem. But here we cannot take advantage of this sim-
plification, because the nonreciprocity of acoustic
transmissions depends crucially on the covariance
(Lu) which, as will be seen, vanishes in the case
of either isotropy or symmetry (or both). At the same
time there is much to be gained from studying these
departures from isotropy and symmetry even if they
are slight, for these departures are closely related
to the vertical momentum flux (wu) in an internal
wave field.

The random phase assumption asserts that statisti-
cal averages of the wave amplitudes are uncorre-
lated. That is,

(a(k)ak’)) = (a*(k)a*k')) = 0, (10
while
(a(k)a*k')) = VBQ2m)3*8%k — k')Sk). (11)

Since in general we are allowing both even and odd
(in k,) parts of a, there will be even and odd (in
k.) parts of S; these we denote® by $* and S:
Sk) = SMUky, k) + ST(ky, k.), (12)
where
§FUky, k) = £8F(ky, —k). (13)
The spectrum S is related to the mean-square dis-
placement according to (10) and (11):

d’k
[ st (14)
(¢ =
==} kz 2
2 j d Jﬁ‘i SOk, ko), (15)
o 27 ] (2mw)?
since [*,, dk, 57 = 0. We can, if we wish, re-express

this in terms of mode number j (defined through
the approximate relation

n = jm(w? — w})?/neb

as given in GM72), frequency w, defined in (9), and
horizontal azimuth «, so that

k, = kg cosa, k, = ky sina, k, = ky tany.
3 The superscripts (+) are of course unrelated to the subscripts
+ in Eq. (4) which designate propagation in the. +x direction.

i
v
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Thus we write

(16)

j 0

@%==zj"dwr”33st,w,
PR 2w

with a relation between the spectrum S(w, j, o) and
the spectra S™(K).

The velocity components u, v and w can be ob-
tained from the vertical displacement { by using the
equations of motion. We have

3
(2m)®
x exp[+i(k-x — wt)]a(k)

{tany(iw cosa — w;, sine)

ulx,t) = [

+ tany(—~iw cosa — w;, sina)
x exp[—i(k-x — wt)]a*k)}, (17)

with a similar expression for v. The vertical velocity
w = (is

(x,f) = d’k {—iwexp[+ik-x — wt)]a(k)
i _f @y TP
+ iw expl—i(k-x — wi)]a*k)}. (18)
From these we deduce, in analogy to (14), that
o [ d%k
= J @m)?
X tan’*y(w? cos?a + w;, sin*a)S(K), (19)
d*k
5= 25(k). 20
(w) = | 2= s 20)

These, again, may be written in w, j, o language.
As in the case of ({2), only the even (in k,) part
of the spectrum S(k) contributes, the coefficient in
(19) and (20) being even functions of k,.

The corresponding expressions for the covari-
ances are

d*k .
(Luy = —J —(?;)—3 w;, sina tanyS(K)
\ . 21
(wu) = —J L w? cosa tanyS(k)
(2m)?

Here, since tany is odd in k., only the odd part of
S, namely S, will contribute.

To evaluate the expressions for the variances and
covariances, we will use a model for the spectrum.
In the usual model idealizations one assumes i) verti-
cal symmetry, S‘(w, j, o) = 0, ii) horizontal isot-
ropy, $‘P(w, j, @) independent of («), and these two
assumptions are generally supported by the analysis
of Miller et al. (1978), as previously mentioned.
The covariances (21) vanish for either (or both) con-
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ditions; for i) because § = S in (21), and for ii) due
to the integration over «.

We shall use a generalization of the GM model
(Garrett and Munk, 1972, 1975; Munk, 1980); for the
even spectrum we arbitrarily assume that the angular
dependence can be factored

S (w,J, @) = HHE()F(a), (22)
with
o 2T
Sup=1, [[EF@ =1 @
=1 o 27
The GM mode weighting is
72 + ;7 2y—1
HG =L 5 o3 e
DN O Al M
i=1
and the frequency weighting function is
E(w) = (4/77)“)1'71((‘)2 - w%n)llzw_3<€2>
= G(w)(?), (25

with
f Ga@)do = 1, (&)= (no/n)id),

0 .
and ({22)V? = 7.3 m. The normalization is con-
sistent with (16). We leave F(a) unspecified.
Nothing is known about the odd spectrum S
other than that it is small. For simplicity, we set

S = rS® sgn(k,) (26)

for some constant r; positive r designates a net up-
ward phase and downward energy propagation.
Hereafter we drop the superscripts and write S
= 58

4. Mean-square acoustic phase

We first refer to the previous results! for the ef-
fects of vertical particle displacements in an iso-
tropic symmetric internal wave field. From MZ(115)
and MZ(118) we have (¢?) = (|X|?). Then from
(MZ66)

2 R
(o) = — g% Mo J dx sec?0
w

Win Jo

n
~ . w; *
x 37 [ do s, 0, @)
J Wy, (w - wL)
where g is the acoustic wavenumber, w,? = w?,

+ n? tan®6, w;, is the inertial frequency, and 6 the
ray inclination relative to the horizontal. The inte-
gral [§ dx is along the ray from source to receiver.

J;u
J

in

dowS(w,)) = ((8c/c)?) (28)
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is the definition of the power spectrum S(w, j) of
&c/c as a function of frequency w and vertical mode-
number j. Eq. (27) was derived for a horizontally
isotropic and vertically symmetric spectrum. For an
anisotropic medium, where S depends on «, Eq. (27)
is modified by replacing S(w, j; z) by S(w, j, ay; 2),
with .

—(0? — w,2)V?*(n tané). (29)

The only values of « that contribute to the integral
are @ = a,. The reason for this is that only those
components of the internal wavenumber vector k
which are perpendicular to the acoustic ray and
_ thereby of stationary internal wave phase contribute
to acoustic phase fluctuations [for a correlation
length of sound speed fluctuations small compared
to the range R, as assumed in the derivation of
(27)].* This geometric restraint, together with the in-
ternal wave relation (9), leads to

tanao =

w? = w?, + n%tan?6(1 + tan’e)

SM+P~+((‘)3 j& a)
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with a lower frequency limit given by w,? = w?,
+ n® tan%#, and the expression (29) for «,. Thus,
along the ray, only two of the internal wave de-
grees of freedom are independent, and the value of
the azimuth in (27) is determined by w and; [actually
only by w, as we see from (29)].

To take the particle velocities into account, we
need to replace ((8c/c)?) by (u?) (Eq. 4). This re-
produces the foregoing results when ¥ = 0. When
u # 0 however, we need to distinguish between
the phase fluctuation ¢,(¢) for a transmission in the
positive x direction, and ¢_(¢) for a negative trans-
mission. These depend on u.(¢) along the ray path.
Eqs. (27) and (28) generalize to

(drd,) = ...de e S ...dea..5“+u+

X {w, j, aglo, 2(0)]; z(x)} (30)
and similarly for (¢_¢_), ($,.d_), where

(papr) = <—i—c€5> + <ii> + 2<-8£i>

n 27 da c C cC C
. -3
[ do| ol Seateio| =ead=¢ e D=2 ) (3D
i Joy, o 2m
Suplo,j, @) | = (peu) = ( ) — « y
We now define the spectra* . ) )
. and similarly for ®,,, ®., with S,,, S.,. Since ({?)
» J" deo J i i‘f_scc’ Suns Seu is proportional to ((5c/c)?), ‘
o oo 2 L Sed@vdy @) = kAN Sg(@,j, ), (35)
_ <b‘c 8c> <u u> <8c u> where
ccl’\e el \e ¢ K, = 24.5n%/g = 6.8 X 107> m™1 36)
associated with vertical particle displacement, hori- Further, from Eq. (19) we have
zontal particle velocity and the cross term, so that @, ], 0) = K2My~(w? Coste + @i, sin’a)
= u + 28 32 .
Susp = See * Suu ¥ 25 2 X tanySy(, j, @), (37)
and similarly for S, _,_and S, ._, using the sign con- and from Eq. (21)
ventionin (31). .S, is the co-spectrum of 5c/c and u/c. . _ i nina)? .
Combining (30), (31) and (32) leads to the rules Scu(®, j> ) = kukeho™(n/No) @iy SINX
(D) = Do + Py + 2D, X tany rSy{o, j, o), (38)

<¢—d)—> = (I)cc + q)uu - 2(I)cu ’ (33)

<¢+¢—> = (I)cc - q)uu
where
2 R N 1
@, = = g% 20 J dx sec?d 3, TJ do
m Win Jo iJ wy,

Wip

(wZ —_ wL2)112

Scelw, j, aolw, z(0)]; z(x)}  (34)

. * In the subscripts (but not otherwise) we use the abbreviation
¢ for 8c/c and u for u/c.

where
Ky, = Rolc = 3.5 X 1075 m™'.

In the above expressions, « is to be evaluated at
aolw, z(x)] when integrating along the ray. From Eq.
(29) we have

n tand
(@ — wf,)"

(wz — sz)IIZ

1/2

COoOSag =
, (39

sing, = —
(w® — o)

and can rewrite (37) and (38) in the form
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Suu(w9j9 ao)
n® — w?
>

)S;;(w Jraw), (40)

= no—zKuzsz(

”l

2
. _ n
Selw, j, ag) = —ny lKch(—>
Ry

win(wz — wLZ)IIZ(’,lZ — wZ)le

2 2
W" — Wiy

rS;;((O,_]., aO)' (41)
For the GM spectrum, S, is proportional to (w?
- w})? and S,(a) and S.(a,) are strongly
weighted toward w;,, whereas S, vanishes at w;,
(inertial motion is horizontally polarized). The
principal contributions to nonreciprocity come from
inertial frequencies.

Using the internal wave spectral model given in
the preceding section,

S;;(w,j, a) = H(j)G;;(w)F(a)({Z),

it is now possible to evaluate ®.., ®,,, and d,, for
various choices of the angular distribution F(«).
Since the angular dependence of the spectrum
is in fact weak, we will assume horizontal isotropy,

F(a) = 1. Only the dependence on vertical asym-
metry then remains. Evaluating Eq. (34) then gives®
®[‘l‘
(I)uu - 277_1q2b <J—1>
Win
¢(‘u
de' sec?fk,? (f—) (Lo2) Qe
n
x| J dx sec?fr,? (—”_) (% b, @2)
n, .
r de SCCZBKcKu(—r-l—) (L6?) Qe
Ry
where
2/ 1 2 — D +
O =gy + o ) @)
m \ D? 2D? D -1
1 2
Quu=-—-(—2+ D+l 1) (44)
™ D D -1
Qe = ! 45
cu — B‘é‘ ’ ( )

5 1. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series
and Products (Academic Press, 1965). Formula 2.264 is helpful.
For €., use the integration variable x = 1 — w},/w? and multiply
numerator and denominator Vx; for ,, use x = w?,/w?.
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with
2 2
D2=w§=1 ntz:n@ 46)
Win Win
We also have
™ =X J'H(j) = 0.44 47
. 1

using our choice of H(j). The integrands in (42) are
given functions of 6(z) and n(z) which vary along
the ray paths z(x). It is a simple matter to compute
the ray paths from Snell’s law, and to perform the
integrations numerically. The mean-square phases
follow at once from Eq. (33). But for two special
cases the solution can be obtained analytically.

a. Axial approximation

For the case of a transmission along the sound
axis,z = z;,,D = 1, Q. = 2/w,and Q,, = —1; how-
ever (), = ®© and (44) requires an asymptotic ex-
pansion near the axis (Appendix A). The result is

D,
B, | =2rgR 2 (j)
Win
q)cu
2 n,\?
—xcz(—‘) €
™ Ry
n, 4 4R, )
X 4 12— M —In ————— | + , (48
“ (n0)<€0>(77 9.2|R — R,| (48)
rKcKu( ) (C 2)
L nO J

where n, = n(z,). Here R, = 21 km is the range of
a canonical axial loop. The three terms in the right-

hand brackets for the sound axis at z;, = —b, hence
ny/ny, = e ! are
7.8 X 107°, In(0.43Ry/|R — R,|) X 2.4 x 10719,

~1.7 x 107%.

The middle term dominates when R is very close
toR,, but evenforR = 1.01R,itis 9 X 107%and so
small as compared to the first term. In the case of
vertical symmetry (r = 0), (d,d.), (d_¢d_) and
(¢.b_) are then nearly the same.

b. Apex approximation

For steep rays the major contribution to the x-
integrals come from the upper apex of the ray. Near
an apex located at (X, 2), the equation of the ray is
z(x) = 2 — (x — ®)2% where R is the ray curva-
ture at the turning point. From MZ85 we have for
the canonical sound channel that



E
b,
where ¢(z) = ¢ {1 + efexp(n) —m — 11}, 0 = (z

- 2,)/V2b,., b, is the sound-speed scale depth, z, is
the axis depth, and y, = 1.1 x 1072 km™'. Further

R = %Il—expf;lx'y,,|1—expﬁ[,

A x—x
Win gﬁ
. In performing the integrations in (42) we set § = 0,

n =n, and write dx = R(w;,/A)D(D? — 1)~Y2dD
from (49). The result is

. 2
D=1+

2

tan? =~ 1 + (
Win

)2. (49)

(I)CC

Oy b = 2¢R (Y2
n

@,

N

() @
< 1 0.48K,,2(%) @) Lo

fi

—r % chu(—)z (@) |

L

from each turning point. For a turning point near
the surface we have Z =~ 0 and 2 = n,. D, Py, ..
are in the proportion {25, 0.03, —0.81r}, with the
first term clearly dominating, so that (¢,.¢,),
{(dp_¢d_) and (¢, ¢p_) are again nearly equal.

5. Mean-square intensity
We define the zero-meaned intensity®

L == 1L — <z>9 L= lnp29 (i> = lnpoé, (51)

( b [
I.
_ 9 q ny j*z
I =27 — — — I
b Win 77]*
I

It is not useful to attempt either an axial or an
apex approximation. The phase curvature is not well
approximated by (55) for either an upward loop or an
axial ray, and for a downward loop the contribu-
tion at the apex does not dominate. Therefore we
shall leave (56) as it stands, and be content with a
numerical evaluation of the integrals.

¢ Multiply by 10/1n10 to get the intensities in decibels.
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J dx SeCzeKcz(ni)5 <§02> IAﬁl(X)chc(o, "l)
n 3
J dx sec%xf(ﬂ—) (L) |AT) | QualB, 1)

r [dx sec26;<cx,,(’—1n~)4(co2> [A1(x)| Qeu(6, 1)
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where p(r) is the slowly varying amplitude of the
received pressure oscillation pe’® from the trans-
mitted signal at frequency o, and p, is the amplitude
in the absence of ocean variability. In analogy with
the Eqgs. (33) we write

<L+L+> =l + Iy + ZIcu

and similarly for (e_c), (i ).
MZ(116) to allow anisotropy gives’

(52)

Generalizing

4
1., = Rel—— q°b Ho

w c’-’in
R
X I dx sec?d Y j (1 —~ ')
0 j

n
X f
wr

do Win
((1)2 — wL2)lf2
% Sl aulo, 200 20} L (59
with
B = (m/b)¥(n/ny)*(1/gA). (54)
A is the ‘‘phase curvature’’ of the ray which can
be evaluated numerically.® For a ray consisting of a
single downward loop, we may to a good approxima-
tion take

A7!' = x(R — x))R (downward loop). (55)

We recognize that the frequency integrals in (53)
are of the same form as for the phases in (34). Pro-
ceeding as in the previous section, we evaluate (53)
using the spectral model given in Section (2) for the
special case of horizontal isotropy.

The ranges and acoustic wavenumbers here under
consideration are such that 8 < 1. In this event we
may approximate the j summation (see MZ120); the
result is

~

(56)

6. An experiment in reciprocal transmission

The only mid-ocean experiment in simultaneous
two-way transmissions known to us was conducted

” Flatté et al. (1980) have revised the predictions of MZ for
the frequency spectrum of intensity fluctuations to include the
effect of the vertical advection of short vertical wavelength in-
ternal waves by long vertical wavelength internal waves. The
total variance is unchanged.

% See Eq. (7.1.10) of Flatté et al. (1979).
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n (cph)

surface 0

o—r——r—r——r -

Depth (km)

1 { - ] [ A

10 15 20 25

Range (km)

F1G. 1. Average sound-speed (¢) and buoyancy frequency (n) profiles (solid lines). The associated
ray geometry has two refracted paths with travel times differing by 40 ms. Dashed lines give smooth
fits to the profiles and are used in the theoretical computations (adapted from Worcester, 1977).

by Worcester (1977, 1979) approximately 350 km
WSW of San Diego, California. Broadband acoustic
transceivers centered at 2250 Hz were suspended
from each of two ships at about 1 km depth and
25 km range (Fig. 1); this geometry was selected to
give two purely refracted ray paths with travel times
differing by ~40 ms. Phase-coded pulses were
simultaneously transmitted every 30 s at each trans-
ceiver and were processed after reception to yield
~0.6 ms time resolution. .

The data set resulting from this experiment is
severely deficient as an experimental test of the fore-
going theory on several counts: (i) The available
time series consists of only about 8 h of useful data
out of a total of 15 h, while most of the contribu-
tion to the current-related fluctuations is expected
to come from near the inertial frequency of about

TABLE 2. Strength parameter ® and diffraction parameter A
at 2250 Hz (adapted from Worcester, 1979).

Lower path Upper path
® (rad) 15.0 30.4
A 2.6 x 103 4.6 x 103
DP2A 0.6 43
dA 0.04 0.14
Regime Unsaturated Partially saturated
DA < 1 PA>1, DA<

one cycle per day; (ii) the principal source of phase
fluctuation in the experiment was relative drift of
the ships, making phase statistics useless; and (iii)
at the center frequency of 2250 Hz used in the ex-
periment, only the lower path is in the unsaturated
regime for which the Rytov approximation used by
Munk and Zachariasen (1976) is adequate (Table 2).
Only the intensity fluctuations along the lower path
are therefore available for comparison with theory.

We regard the experiment principally as a way
of focusing on a specific situation for which the vari-
ous predictions of the foregoing theory can be evalu-

TABLE 3. In-intensity covariances at 2250 Hz for reciprocal
transmissions at 25 km range (multiply by (10/In10)*> = 18.86 to
get dB?). No theoretical value is available for (¢.c_) in the
partially saturated regime. The positive direction is from the
Alexander Agassiz to the Ellen B. Scripps.

(Lety) (eto) {ert)
Upper path
Theoretical 1.64 1.64 —
Measured 1.2 1.5 0.2
Lower path
Exact numerical
calculations 0.79 - 0.22r 0.79 + 0.22r 0.72
Approximation for A=* 0.68 — 0.18 0.68 + 0.i8  0.62

Measured 1.3 0.7 0.1
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TABLE 4. Theoretical phase and In-intensity covariances for reciprocal transmissions at an acoustic frequency of 100 Hz and 25 km
range. Upper and lower path values are for the geometry used by Worcester. Results for an axial path are included for comparison.
Parameter values used include g = 419 km™!,n, = 5.41 X 1072 s7'(3.1¢cph),b = 1.2km,c, = 1.481 km s}, ¢ = 0.003, b, = 0.8 km,
z, = —0.7km, w;, = 7.3 X 1078 874, j, = 3, and (j~') = 0.435. For the upper path apex approximation, apex height £ = —0.219 km
and ray curvature R = 57.5 km were used. Numerical calculations were done for two slightly different source angles, =0.1°, for
the axial path. Phase covariances are in (rad)?; multiply In-intensity variances by (10/In10)®> = 18.86 to obtain (dB)>.

(Prby) (D_db_) {(brd-) {tety) {e_t) (igt)

Upper path

Numerical calculation 2.18 — 0.18r 2.18 + 0.18r 2.15 0.248 — 0.023r  0.248 + 0.023r 0.245

Apex approximation 2.09 — 0.16r 2.09 + 0.16r 2.08 — —_ —
Axial path

Numerical calculation (6, = +0.1°) 3.56 — 0.93r 3.56 + 0.93r 3.19 2.18 — 0.57r 2.18 + 0.57r 1.92

Numerical calculation (6, = —0.1°) 3.68 — 0.95r 3.68 + 0.95r 3.31 1.59.— 0.41r 1.59 + 0.41r 1.41

Axial approximation 3.45 — 0.95r 3.45 + 0.95r 3.37 — — —
Lower path .

Numerical calculation 0.550 — 0.135r  0.550 + 0.135r 0.503 0.035 — 0.010r  0.035 + 0.010r 0.032

Approximation for A! — — —_ 0.030 — 0.008  0.030 + 0.008r 0.027
ated. Table 3 gives the measured In-intensity fluc- A7' = x(R — x)/R. 57

tuations for both the lower and upper paths, and

compares the lower path results to theoretical values
obtained both by exact numerical calculation of the
phase curvature, A~!, and by use of the lower path

The approximation of Eq. (57) is evidently quite
good for this geometry, giving results within about
15% of the exact calculation. For the lower path

the measured variances, (.t ) and {(«_t_), can be

approximation
PHASE LN-INTENSITY
06 — 0.06 0.4 T Q.025
UPPER | | 1 g s
PATH 1 i 1 ;
fiy 4 A .
4 7oA\ 1 //:\\
0 PLIEANOIN =0 o VSR 0
0.3 T 0.03 0.2 0.05
AXIAL ===t I ] '
PATH /// r"‘\ \\\
________________________ [ Ve \\
//‘/_,—‘ “\\T\
o ° o e e T °
0.1 — 0.01 0.003 T 0.00075
: [ : !
// :Ili N
1 /// y \\\ I
v ~ o
,’/> ~,n\\
: [} S . — Mo
[} 5 10. 15 20 5 o] 5 10 15 20 25

RANGE (km).

F1G. 2. Contributions to the phase and In-intensity covariances given in Table 4 as a function of
range (upper and lower ray paths are shown in Fig. 1). The integrands for &, I, (solid, left scales)
are much larger than the integrands for &,,, {,, (short dashes, right scales) or ®,,, I, (long dashes,
right scales). The negative of ®., and /., for » = 1 are plotted. Results are displayed for the axial path
with 6, = +0.1°. Phase is in (rad*> km™'); multiply In-intensity by (10/In10)? to obtain (dB* km™).
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reconciled with the predicted variances for a small
value of r, but the cross-covariance, (¢.¢_), is much
lower than predicted. The upper path variances are
near the well-known theoretical value for the satu-
rated regimes of 1.64 [corresponding to (5.6 dB)?];
the cross-covariance is low and similar to that meas-
ured for the lower path.

The disagreement between the measured and pre-
dicted cross-covariance is at best only suggestive
due to the extremely short time series available.
If one takes the discrepancy seriously, however,
a plausible explanation is suggested by the similarity
between the upper and lower path values of (¢, ¢_).
The upper path as computed for the mean sound-
speed profile lies in the partially saturated regime,
and is broken into a number of distinct Fermat paths
(micromultipaths) by the internal wave perturba-
tions. Interference effects among the micromulti-
paths are then important, and small changes in the
sound-speed and/or current field can lead to large
changes in the interference pattern (fades, for ex-
ample). The lower path is close to the boundary
between the unsaturated and partially saturated re-
gimes (®2A = 1, A < 1); the boundary region is not
well understood, but it is possible that sporadic
micromultipathing occurs and causes interference
effects. The lower path was in fact found to be occa-
sionally split into two distinct peaks.

At an acoustic frequency of 100 Hz both the upper
and lower paths would be in the unsaturated regime.
Table 4 summarizes the theoretical phase and In-
intensity covariances at this frequency (for com-
pleteness, an axial path with the source at z,
= —0.700 km is included). Fig. 2 shows the con-
tributions along the acoustic paths (Fig. 1) towards
the various covariances. There are a number of in-
teresting features.

The upper path cross-covariances, {(¢p,¢_) and
(14t ), differ little from the variances for r = 0: cur-
rent fluctuations are unimportant compared to sound
speed fluctuations for the upper path, as expected.
Further, the apex approximation is quite good for
phase covariances along the upper path. All inte-
grands are strongly peaked at the apex (Fig. 2).

The axial path with 6, = +0.1° is slightly over
the boundary into the partially saturated regime (the
In-intensity variances exceed the saturated value of
1.64). The predicted In-intensity covariances for the
axial path apparently are sensitive to small changes,
however; the predictions for a ray with source angle
6y = —0.1° differ considerably from those for one
with 6, = +0.1°. The axial approximation for phase
covariances is quite good.

The lower path cross-covariances, {(¢,¢_) and
{t;1_), are smaller relative to the variances than
was the case for the upper path: currents are rela-
tively more important. The cross covariances are

W. MUNK, P. WORCESTER AND F. ZACHARIASEN

451

still predicted to be quite large, however. The lower
path approximation for the phase curvature appears
to be good.

7. Measuring momentum flux

An important and difficult problem is to measure
the vertical flux of horizontal momentum. There
have been some previous estimates [using rotary
decomposition of repeated current profiles (Lea-
man, 1976)]. To make estimates useful one will want
to impose the least restrictive assumptions on the
internal wave field; so far there have been rather too
many of these assumptions.

In the discussion so far we have considered only
the mean products (b ()P, (1)), (Dd-(NP_(1)),
(P (1)d_(1)) of the measured time series ¢, (¢) and
¢_(r). The measurements can be extended to give
the mean lagged products and their Fourier
transforms:

' ]
(bt — 1)) =

J dwPy 4 (0) cOsoT

(b_(Np_(t — 7)) = del’u-(“’) coswt L (58)

(b (DDt — 7))

= de[Pd,+¢_(w) coswt + Q4. 4_(®) Sinwr]

P,, and (J,, are the cospectra and quadrature
spectra, respectively, of any two time series a(¢),
b(t). Whena = b, then Q,, = 0 and P, is the same
as the power spectrum. Further, Py, = Py, and Q,,
= —Que- Eq. (30) is generalized to give

(S4(Dpslt = D)) = -+~ j dx
IDRER de e Pu+u+(w) CoSwT
(6 (DNb-(t — 7)) = - de

59
IDYERE de <o+ Py (@) COSOT

j
de

“ [Py (o) cosor + Qu p (w) sinwr]

(D (Db_(t — 7))
— [y
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We need the expansions [using (4)]
{(s(Dp(t — 1)
_ <8c(t) dc(t — 'T)> + <u(t) u(t — 1')>

(4 C c C

+ <8c(t) u(t — T)> + <u(t) Sc(t — 'r)>

(4 C c C

( Y+ =C =< )
()= =+ )

(pu-(Du(t — 7))
<ﬂ+(t)}‘v—(’ - 7))

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 11

Performing the Fourier transform, and equating
terms in coswr, and terms in sinwr, gives

Pﬂ+#+=PCC+Puu+2Pcu

Py = Poo + Puy - 2P,

Pu = Pec — P, 60)
Qun = ~20u,

These are substituted on the right hand side of (59);
for the left-hand side we use (58). Equating the w-
integrands leads to

Po,s, Pee + Py + 2P,
Poo | _ .. { de - 31 x| Pee ¥ Puu = 2Py 1)
Pd>+d=_ i J (= sz)m P — Py
Os,0. =2Qcu
Finally, we require the relation between the _
acoustic spectra and the spectrum of vertical mo- Poy = ©Qp = 24.58702(Z2) P gy

mentum flux, that is the cospectrum of wu = {u.
For a stationary process Py, = wQy,; from (5)

By various combinations of (61) we obtain our final
result

Va(Po,o, + Po_o_ + 2Ps,6.) P
2 2 2 Wipn .
Ya(Py,o, + Po_o_ — 2Py, 0.) =—‘1b dxseCOE— Y Py (62)
o * ™ Win i J (w - )1/
~120Qs,6_ : Py
The important result is that the spectrum of momen-
tum flux is related to the quadrature spectrum of We change to a depth integration [ dx -+ = [ dz

reciprocal travel times.

The integral equations are all of the form
. /

.1 Wiy
F(w) = %‘ —j—de seczﬂm
X Plo, j, afw, x); z(x)}, (63)
where
tana, = — @~ o))" (64)

n tand

by stationary phase considerations. The ray inte-
grals { dx are accordingly constrained to such por-
tions of the ray for which

o}, + nttan?d = w,? < 0? < n (65)

This constraint is illustrated in Fig. S5 of Munk and
Zachariasen (1976). If the integral equations (63) can
be solved for P, then we have a way of obtaining
the oceanographically interesting spectra of ({?),
(u*) and (wu) characterizing the internal wave field
in terms of measured spectra Py ., Py o_, P,
Q.s,s_ for reciprocal acoustic transmissions.

X cotf - -+ and write Eq. (63) in the form
F) = 3 j J 42K (@, 2)Glw, J, as(w, 2); 21, (66)
J

with
1 Win

K(w, z) = , (67)

2)1/2

sinf cosf (w? — w,

subject to the constraint (65). F(w) is a function
measured by the reciprocal transmissions, K(w, z)
and aq(w, z) are determined from the profiles c(z)
and n(z) and presumed as known, and G(w, j, ay;
z) is an unknown function of all of its arguments.
For several resolvable multipaths, i = 1,2,...,
with ray inclinations 6,(z), each yielding a measured
spectrum F(w), we have

Fiw) = 3 j j dzK (@, 2)Glw, j, aolw, 2); 2],

i=1,2,. (68)

The inversion of these integral equations is a prob-
lem of inverse theory, and one can use the powerful
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F1G. 3. The kernel K(w, z) at three selected frequencies, for a canonical sound channel (left) and
a particular ray path (center) which crosses the sound channel axis with an inclination of 8°.

apparatus that has been developed for such pur-
poses. However, the constraints on « and z will
make it impossible to evaluate P in its generality.
One may hope that the j-dependence can be fac-
tored, and that the dependence on direction « is
weak, in which case the integral equations reduce
to the form

Fiw) = (G fdei(w, 2)G(w,z), i=1,2,....
As a practical matter, a numerical inversion of even
this simplified equation raises all kinds of questions
of accuracy, resolution and uniqueness. We think
that these should be examined in the context of a
specific experiment, rather than at this time.

The behavior of the weighting kernels K;(w, z) is
crucial to the application of the proposed method.
For illustration in Fig. 3 we have chosen a typical
fairly steep ray in a canonical sound channel (Munk,
1974), but even for this smooth channel the kernel
is complex. First of all, there are singularities asso-
ciated at the turning points Z, when w < n(%). [This
excludes a singularity at the low turning point for
the case w = 0.75 cph which has a forbidden region
(n < w) beneath 1.8 km.] Then there are singular-
ities associated with (w® — @,;?)""2 unless w > o,
everywhere along the ray; these occur at 0.65 km
and 1.20 km for the case w = 0.17 cph, but not at
the higher frequencies. But all singularities are inte-
grable, and there is a significant contribution along
the entire (non-forbidden) ray paths.
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APPENDIX A
An Integral Involving Q,,
Q.. [Eq. (46)] diverges as D — 1. Set
A? = D? —~ 1 = (n/wy,)? tan?o.
Then the integral approaches

4
Quu=——ln—2—.

1
T A (AD

We can express A as a function of range. Let source
and receiver be on the axis at x = ¥4 R. Then with
8z = A cosmx/R designating the distance of the ray
above the sound axis, we find (Munk, 1974) A
—-3nwB(R — Ry)/R, where R, = VanBe V2 = 21
km refers to the axial loop (R < R, for upward
loops). It follows that

8z 372 B R - R, X
0d=—=——— —— — — sin— ,
dx 4 R R,
n19 377'2 ny B R —RO . TX
A~ —=—0u — sin —
Wiy 4 Win R RO R
Setting B=1 km, n, =19 x 1073 s, w;, = 7.3
X 1073 s71, R, = 21 km, we have
R - R
A=922 " 20gn X

Ry
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We now require

/2R
R f dxQ,,
J-amr

4 (2R 2R
= — J a’x[l 0
7R J_qmr

n.___+1nz]
9.2|R — R,

4 [ 4R,
=_ln —_—
7 L9.2|R — R|

Thus even if we are within 0.1 km of the convergence
distance, IR — R0] = (.1 km, the effect of currents
is still relatively small. So the logarithmic singular-
ity is of no practical interest.
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