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Fuzzy Neural Network Model of 4-CBA Concentration for
Industrial Purified Terephthalic Acid Oxidation Process*
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Abstract A fuzzy neural network (FNN) model is developed to predict the 4-CBA concentration of the oxidation
unit in purified terephthalic acid process. Several technologies are used to deal with the process data before modeling.
First, a set of preliminary input variables is selected according to prior knowledge and experience. Secondly, a method
based on the maximum correlation coefficient is proposed to detect the dead time between the process variables
and response variables. Finally, the fuzzy curve method is used to reduce the unimportant input variables. The
simulation results based on industrial data show that the relative error range of the FNN model is narrower than
that of the American Oil Company (AMOCO) model. Furthermore, the FNN model can predict the trend of the
4-CBA concentration more accurately.
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1 INTRODUCTION

Purified terephthalic acid (PTA) is a kind of im-
portant raw material for polyester production widely
used in textile and packaging industries. It is pro-
duced by catalytic oxidization of PX (paraxylene)
followed by subsequent purification of the crude
terephthalic acid by selective hydrogenation. 4-
carboxybenzaldchyde (4-CBA) is one of the byprod-
ucts and its concentration is an important quality cri-
teria in PTA process. Reference!l showed that the
lower the 4-CBA concentration is, the more the en-
ergy costs. Thus it is necessary to control the 4-CBA
concentration of the oxidation unit on-line for saving
energy and ensuring the purity of PTA.

In practice, it is rarely the case that the 4-CBA
concentration is directly used as a controlled variable,
because on-line accurate measurement of the 4-CBA
concentration is difficult. Usually, the 4-CBA con-
centration is analyzed only three times each day by
spectroscopic analyzer because of the cost involved.
Since the spectroscopic analysis is a laboratory tech-
nique with obvious time delay, the analytical values
of 4-CBA concentration are not available for real-time
control adjustment if required. In order to monitor
4-CBA concentration on-line an alternative method is
to build a soft sensor. By soft sensor technique the
4-CBA concentration can be inferred from other mea-
sured process variables such as temperature, pressure,
flow rate, etc, and their relationship which can be con-
structed by regression methods and the first principle
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modeling methods. If the 4-CBA concentration can be
estimated accurately through the soft sensor, we can
apply an advanced control strategy such as dynamical
matrix control (DMC) to directly control the concen-
tration for improving the production performance.

A simple flowsheet of the industrial PTA oxidation
process based on American Qil Company (AMOCO)
technics is shown in Fig.1l. Paraxylene, acetic acid
solvent, promoter, and catalyst are continuously me-
tered into the feed mixing tank. The residence time
is approximately 25 minutes. The mixed stream is
pumped into the reactor, and the air is fed to the re-
actor through four inlets. The oxidation reaction is
conducted in two stages. The first stage is the agi-
tated oxidation reactor, while the second stage is the
agitated first crystallizer. Exothermic heat of reac-
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Simple flowsheet of the industrial PTA
oxidation process
1—mixing tank; 2—reactor; 3—first crystallizer;
4—second crystallizer; 5—third crystallizer; 6—buffer tank;
T—vacuum filter; 8—crude TA dryer; 9,10—cooler

Figure 1
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tion is removed by condensing the vapor of reaction
solvent. A portion of this condensate is withdrawn
to control the water concentration in the reactor, and
the remainder is refluxed to the reactor.

Reactor effluent is depressurized and cooled to fil-
tering conditions in a series of three crystallizing ves-
sels. Air is fed to the first crystallizer for additional
oxidation reaction. The precipitated terephthalic acid
is recovered by filtering and drying. The solids are
conveyed to the purification section feed silos for addi-
tional processing. The more detailed discussion about
the oxidation theory and mechanism of paraxylene can
be found in the references!* =3l

There are more than 30 patents about PTA oxi-
dation process and its oxidation reactor in the past
decadel®. Many empirical models are proposed(?:°]
which are very simple, but the parameters of these
empirical models are different under different operat-
ing condition and often suitable to a limited operation
region. In addition, Cao et al. and Wang proposed the
first principle models separately based on bench-scale
laboratory results!’3, However, these models were
only verified by a few industrial data, and many of
industrial application problems were not settled(®l.

In this work, we propose a fuzzy neural network
to model the nonlinear relationship between 4-CBA
concentration and measured process variables in or-
der to predict the 4-CBA concentration in a real time
manner.

2 FUZZY NEURAL NETWORK

Fuzzy neural network (FNN) can be thought of
as a nonlinear mapping between input variables and
output variables. Based on fuzzy neural network a
complex nonlinear model can be built and is suitable
to different operation region in industrial processes.
The architecture of four layers’ fuzzy neural network!”!
with m inputs and one output is shown in Fig. 2, The
four layers are input layer, fuzzification layer, infer-
ence layer and defuzzification layer respectively. There
are m neurons connected with m input variables in the
first layer, m x R neurons in the fuzzification layer, R
neurons in the inference layer and one neuron in the
output layer. Each m neurons in the fuzzification layer
represents one fuzzy rule, so there are R rules in total.

The ith rule is,
Ri: If 2 is A;i1and ---and z; is A;j and --- and z,
is Ai,m)

Then y is B;.

where z; is the jth input variable, y is an output
variable, A; ; is a fuzzy set in the input space and B;
is the ith fuzzy set in the output space.

We assume that A;; and B; have Gaussian type
membership function as follows,

| fuzzification| inference
I I

| layer
I

I
input layer |
X !

defuzzification

A j(z;) = exp [“ (m) 2] (1)

1Bi(y) = exp [r (y—;—bi) 2} (2)

where a; ; and ¢;; (1 = 1,2, \R; 7 = 1,2,---,m)
represent the center and width of the input member-
ship functions respectively; b; and d; reprensent the
center and width of the output membership functions,
respectively. On the basis of multiplicative inference,
we get

m
w; = [ nA:; (3)
j=1

The inference result coming from R rules follows a
standard center of gravity formula,

R R
Yout = (Z dibiwi) / (Z diwi) (4)
i=1 iz1

and the learning of FNN is accomplished by adjust-
ing the input/output widths and the centers of mem-
bership functions and follows backpropagation (BP)
algorithm!®®l, In this study, we use an Euclidean dis-
tance, that is

E = 3 (ou ~ 9)° )

where E is the error, y,, is the actual output value
and y is the target output value.

We only take a;; as an example for brevity. By
using the BP algorithm, the following update formula
can be derived

+ala; ;(k) — a; ;(k — 1)]
(6)

F
a,:‘j(k + 1) = a‘-,j(k) - T,-‘aai‘j

aE _ 3E ayout 8wt' 3.”'*41'.,3' (7)
80.,;‘_;.' N Byout 6w; B,uA,:J Ba,-__,-

where 7 is the learning rate and a represents the mo-
mentum coefficient.
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It is important to initialize the parameters of fuzzy
neural network because BP algorithm is sensitive to
the initial parameters. In order to select a set of
suitable parameters, fuzzy C means clustering (FCM)
algorithm('°~12| is applied to initialize parameters a; ;
and b;. The initial values c¢;; and d; are selected
stochastically in open set (0, 1).

3 INPUT VARIABLES SELECTION AND
SAMPLE SET COLLECTION
3.1 Preliminary selection of process variables

Hundreds of process variables are recorded respec-
tively one time per 30 seconds by the distribution con-
trol system (DCS) in PTA process. When building
the soft sensor model, the selection of an appropriate
subset from these variables is very important. Too
many unimportant variables included in the soft sen-
sor model will lead to the difficulty of training and
usage. On the other hand, the accuracy of model can-
not be guaranteed if some important variables are not
included.

According to the prior knowledge and experience,
twelve variables are preliminarily selected, including
flow rate, reaction pressure, temperature, solvent ra-
tio in the reactor and catalyzer liquid level, etc. These
twelve process variables are measured in the reactor
and the first crystallizer. After collecting the sample
data, a fuzzy curve method"13] is applied to reduce
the input variables in section 3.4.

3.2 Dead time detection

In this section, we propose a new method based
on the maximum correlation coefficient to detect dead
time between the process variables and response vari-
ables. Dead time is the delay between the time when
the value of a process variable changes and the time
when the dependent variable begins to change in re-
sponse which depends on the structure and scale of
the production equipment. It must be considered to
align sample data to guarantee the performance of the
soft sensor to be modeled.

In practice there are two main operation state in-
cluding normal operation and load down operation in
the PTA process. In the case of normal operation, the
change range of the 4-CBA concentration is relatively
narrow. However, in the case of load down operation
step disturbances are manually introduced only to one
variable each time and the change range of the 4-CBA
concentration is very broad. Thus we can especially
increase the sample frequency of 4-CBA concentration
during load down. For the reason of cost and other
factors, we analyzed the 4-CBA concentration with
interval of one hour at most.

In Fig.3 a total of 11 samples of 4-CBA concen-
tration collected are shown from 10 to 20 o’clock. On
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the other hand the process variables were re-sampled
each 6 minutes and 141 samples were collected from 6
o’clock to 20 o’clock. Only process variable FIC114,
which is the feed flow rate to reactor, corresponding
to z2 in the Table 1, is shown in Fig. 3 for simplicity.
It is found that the obvious time delay exists between
the change of 4-CBA concentration and the change of
FIC114. For convenience of analysis, all the sample
data were normalized to unit length.
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Figure 3 Obvious time delay exits between the

change of FIC114 and the change of the 4-CBA
concentration

Dead time 7 is calculated by the following formulas

T= 3-11'8 max[Ce ()] x T (8)

Ray(1)
VR:(I) xRy
Ry (1) = E{[z(t = 1) — p(D][y(t) — 1y} (10)

Ry(l) = E{[z(t — 1) — p(1))*} (11)
Ry = E{[y(t) — uy}*} (12)

where z(t ~ [} is the value of the process variable at
time (¢t — ), y(t) is the value of the response variable
at time ¢, p.(I) and p, represent the mean value of the
variables z(t—1) and y(t), respectively, I = 0,1,---,30
denotes the number of the time delay , t denotes the
sample moment of the response variable and T = 6
minutes, which is the sampling interval of the process
variable,

According to Eq.(9), correlation coefficients be-
tween the process variable and 4-CBA concentration
with different time delay are calculated. We can de-
termine the dead time by searching the value of [ cor-
responding to the maximum correlation coefficients
shown in Eq. (8).

Dead time of different variable is shown in Table 1
according to the above formulas. It is worth to notice
that the calculation of correlation coefficient between
the process variable and response variable ignores the
effects of the other process variables. Consequently,

Cz,y(i) = (9)
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Table 1 The 12 inputs and one output of the 4-CBA concentration and their dead time

No. Variable Dead time, min Sample frequency
inputs

1 z1: flow rate of paraxylene to feed mixing tank 144 30s

2 x2: feed flow rate to the reactor 144 30s

3 x3: catalyst concentration 150 30s

4 x4: level of the reactor 114 30s

5 xs: reactor temperature 102 30s

6 zg: vent Oz concentration from the reactor 108 30s

7 z7: reactor condenser to water withdrawal 108 30s

8 xg: total water withdrawal 120 30s

9 xg9: temperature of the first crystallizer 18 30s

10 x19: vent O2 concentration from the first crystallizer 84 30s

11 x11: vent CO3 concentration from the reactor 150 30s

12 x12: vent CO concentration from the reactor 168 30s
output

13 y: 4-CBA concentration in the crude TA 0 8h

all of the dead time shown in Table 1 is approximate
values. The sample frequency shown in Table 1 de-
notes the sampling interval of the process variables in
the case of normal operation. In fact, the dead time
determined by the maximum correlation coefficient is
consistent with the PTA process.
3.3 Data collection and preprocessing

As mentioned in section 3.1, 4-CBA concentration
is sampled only three times a day while the process
variables are recorded almost three thousand times a
day. In other words, three samples at most are col-
lected for training fuzzy neural network each day. The
data set with 129 samples was collected according to
the dead time of process variables and the sampling
moment of 4-CBA concentration. That is,

X=[ai(t—m) @t —m) o2t —m2)]  (13)

Y =[y(t)] (14)
where X and Y represent process variables values
and 4-CBA concentration collected, respectively, 7;,
t = 1,2,---,12, is the dead time of the ¢th process
variable and t is the sampling moment of the 4-CBA
concentration.

Before training a fuzzy neural network, it is neces-
sary to pre-process data to identify bad outliers and
filter noise. Bad outliers can result from sensor fail-
ure or misreading from lab tests. We delete samples
that have outliers identified by using prior knowledge.
Noise in the process variables can be filtered by aver-
age filtering method defined by

20
1 .
Ii(t—ﬂ) = ﬁgzi(t—ﬁ + 10_5‘) (15)
The right term of Eq. (15) is applied to calculate the
average value of the 20 samples around 7;.
3.4 Reduce input variables using fuzzy curve
method

In section 3.1, we only select the possible input
variables set based on the prior experience. Some
unimportant variables may be included in the candi-
date set. In order to simplify the final model, we use
the fuzzy curve method to reduce the unimportant
variables based on the practical sample data.

Considering a system that has m possible extra-
neous inputs X = [zy---z;-- 2,,] and one output
Y =y. The number of training data points is n. Let
z,; be the ith variable in the kth data point, and y;
is the output value in the kth data point. The fuzzy
curve method is briefly described as follows.

The fuzzy membership function ¢ ;(z;) for each
input z; is defined by,

2
() = exp l— ("’Lfff—) ] k=1,2n

(16)
where b is the width of the fuzzy membership function,
which is typically taken as about 20% of the length of
the input interval of ;.

For n data points, we have n fuzzy rules for each
inputs and the kth rule is

R*: If 2; is ¢k.i(x:), then y is yy.

We use the center of gravity algorithm for defuzzi-
fication to produce a fuzzy curve ¢; for each input z;
by

Z i)Yk

k=1
> ki)
k=1

The range of corresponding ¢; can be obtain by

(17)

ct-(x,-) =

(18)

On the basis of the value of Rc;, the importance of
the input variables can be recognized. The larger the

Re; = max(c;) — min(c;)
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range of Re; is, the more important this input variable
15.

According to Egs.(16)—(18) the ranges of the
fuzzy curves, Re;, i@ = 1,2,---,12, are shown in
Table 2.

As shown in Table 2, the range of the fuzzy curve
for 7 and x5 is smaller than that of the other vari-
ables. Thus, we delete these two variables for simplify-
ing the model. However, this does not mean that these
two variables have no effect on the 4-CBA concentra-
tion. It is just because that the range of these two
variables is too small to produce any obvious error in
the model prediction. In addition, if high correlation
coefficient exits among several process variables, some
of these variables should be deleted to reduce the pre-
diction variance of the model. In this process, the cor-
relation coefficient between z; and z4 is 0.998, which
are almost completely linear dependent. Based on the
practical experience z; , rather than z, is deleted de-
spite the larger range of the fuzzy curve between
and y shown in Table 2. Finally, 9 input variables
including zs, =3, 4, *5, T¢, Ls, L9, T10, and xy, are
selected to build the soft sensor based on fuzzy neural
network.

Table 2 The range of the fuzzy curves

Input Input

variables Re: variables Rei
T 0.7130 Ty 0.0918
T2 0.7109 Ty 0.7041
T3 0.6927 zg 0.2182
T4 0.5046 10 0.3839
T5 0.5966 11 0.6981
Te 0.5353 Ti2 0.0864

4 SIMULATION RESULTS

Using Matlab 5.3 as simulation tool, we construct a
fuzzy neural network model for predicting the 4-CBA
concentration. A total of 129 sample data including
normal operation data and load down operation data
from a practical PTA oxidation process are collected.
The data are divided into two sets, one set has 100
samples used for training FNN, and the other set has
29 samples used for testing. FCM clustering algorithm
and gradient descent algorithm are used to initialize
and train the parameters of the fuzzy neural network
respectively. After training FNN with different num-
ber of fuzzy rules and learning rate, it is found that

the most suitable rule number is 3, and the learning
rate is 0.16. The training and testing relative errors
after 350 iterations are shown in Fig.4. For compar-
ison, the empirical regression model of AMOCO? is
applied to the same data set. Under the same condi-
tion as in the FNN approach, the training and testing
relative error are also given in Fig. 4.

testing set

015———

training set

predicted error

— FNN
s AMOCO

0 20 40 60 80 100 120 140
observation number

Figure 4 Predicted relative errors for 4-CBA
concentration using the fuzzy neural network
method and AMOCO regression model method

Table 3 lists the performance of two models includ-
ing the maximum relative error, the minimum relative
error and the root-mean-square-error (RMSE) in de-
tail. In the training set the maximum relative error
of FNN model is about 6.5% while that of AMOCO
model is up to 14.5%; in the testing set the maxi-
mum relative error of FNN model is about 7% while
that of AMOCO model is close to 10%. In addition,
the RMSE of FNN model in all data set is about
0.035 while that of the AMOCO model is about 0.04.
Though the RMSE’s of the two models are close to
each other, the relative error range of the FNN model
is narrower. Therefore, the FNN model can predict
the trend of 4-CBA concentration more accurately.

5 CONCLUSIONS AND DIRECTIONS FOR
FURTHER RESEARCH

This paper presents a fuzzy neural network model
to predict the 4-CBA concentration of the oxidation
unit in PTA process. Several technologies are used
to deal with the process data before modeling. Suit-
able input variable subset has been selected according
to the prior knowledge, experience and fuzzy curve
method. The maximum correlation coefficient based
method has been proposed to detect the dead time

Table 3 Training and testing performance for 4-CBA concentration using the FNN method and AMOCO model

Model Training set Testing set
max. rel. error min. rel. error RMSE max. rel. error min. rel. error RMSE
FNN 0.0653 —0.0603 0.0256 0.0788 —0.0509 0.0353
AMOCO 0.1427 —0.083 0.0376 0.0877 —0.1035 0.0404
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between the process variable and response variable.
The simulation results show that the performance of
the FNN model is better than that of the AMOCO

model.

Further directions for research include: collecting
samples as many as possible to improve the model ac-
curacy; applying the FNN model to the PTA process
to estimate the 4-CBA concentration online

NOMENCLATURE

A j the fuzzy set in the input space

a; the center of the input membership function

B; the fuzzy set in the output space

b the width of the fuzzy membership function

b; the center of the output membership function

Cry(l) the correlation coefficient between x and y
when delay time is [T

c;(x;) the fuzzy curve for each input z;

cij the width of the input membership function

d; the width of the output membership function

E the square error between the output of the fuzzy
neural network and the target output value

[} the number of delay time

m the number of the process variables

n the number of training data

Re; the range of corresponding ¢;(x;)

R (1) the variance of the x when delay time is [T

Ry (1) the covariance between = and y when delay
time is [T

R, the variance of the y

T the sampling interval of the process variable

t the sampling moment of the process variable

X the data set of the process variables

zi(t — 7;)  the value of the ith process variable when
delay time is 7;

x; the input variable of the fuzzy neural network

Thoi the ith variable value in the kth data point

Y the data set of the 4-CBA concentration

y the output variable of the fuzzy neural network

Yk the output value in the k th data point

Yout the output of the fuzzy neural network

o the momentum coefficient

239

n the learning rate

T the dead time

T the dead time of the ith process variable

@ .ilxi) the fuzzy membership function for each input z;

A j(z;)  input membership function

wBi(y) output membership function
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