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Fuzzy Support Vector Regression Model of 4-CBA Concen-
tration for Industrial PTA Oxidation Process*
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Abstract In the past few years, support vector machines (SVMs) have been applied to many fields, such as pattern
recognition and data mining, etc. However there still exist some problems to be solved. One of them is that the
SVM is very sensitive to outliers or noises because of over-fitting problem. In this paper, a fuzzy support vector
regression (FSVR) method is presented to deal with this problem. Strategies based on k nearest neighbor (KNN) and
support vector data description (SVDD) are adopted to set the fuzzy membership values of data points in FSVR.
The proposed FSVR soft sensor models based on kNN and SVDD are employed to predict the concentration of
4-carboxy-benzaldehyde (4-CBA) in purified terephthalic acid (PTA) oxidation process. Simulation results indicate
that the proposed method indeed reduces the effect of outliers and yields higher accuracy.
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1 INTRODUCTION

Purified terephthalic acid (PTA) is the main raw
material for polyester fiber, PET resins, PET films
and other products. It is produced by catalytic oxi-
dization of para-xylene (PX). One of the major impu-
rities, 4-carboxybenzaldehyde (4-CBA), is quite diffi-
cult to remove by physical means, so the concentration
of 4-CBA is regarded as the main index to the quality
of PTA product in the PX oxidation process.

The simplified PX oxidation process flowsheet is
shown in Fig. 1. Para-xylene, acetic acid solvent, pro-
moter (hydrobromic acid) and catalyst (cobalt ac-
etate, manganese acetate) are continuously metered
into feed mixing tank together with the recycling
mother liquid. Then the mixed stream is pumped into
the reactor, and the air is fed to the reactor through
four-inlets. There are two stages in the oxidation reac-
tion processi!], with the first stage being the agitated
oxidation reactor, and the second stage being the agi-
tated first crystallizer. Exothermic heat of reaction is
removed by condensing the boiling reaction solvent. A
portion of this condensate is withdrawn to control the
water concentration in the reactor, and the remainder
is refluxed back to the reactor!!.

In order to ensure the quality of PTA, the concen-
tration of 4-CBA should be controlled below a certain
level. However, in practice the concentration of 4-
CBA is analyzed only three times each day by a spec-
troscopic a.na,lyzer[z“'”, As the spectroscopic analysis
is a laboratory technique with obvious time delay, the
analysis values of the concentration of 4-CBA are not
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available for real-time control. In order to measure
the concentration of 4-CBA, an alternative method
is to build a soft sensor model. Using the model, the
concentration of 4-CBA can be inferred from the other
measured process variables such as temperature, pres-
sure, flow, etc. If the concentration of the 4-CBA can
be estimated accurately, an advanced control strategy
can be applied to directly control its concentration to

ensure the quality of the product!4).
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Figure 1 Schematic layout of PX oxidation process

In order to clean the crude TA dryer and adjust the
level of buffer tank, load down and up operations have
to be performed every week. This process will endure
about 8 hours each time. In contrast with the narrow
range of 4-CBA concentration in normal operation,
the 4-CBA concentration during load down or up op-
eration is very broad!). During the load change op-
eration, the data we obtained are different from those
collected during normal operation. The former can
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be regarded as outliers. On the one hand, soft sensor
model is very sensitive to outliers or noises of training
data set, which will affect the accuracy of soft sen-
sor model. On the other hand, in order to predict
the concentration of 4-CBA during load down or up
operation, the outliers and noise can not be simply
removed from the training sample set. In this paper,
a fuzzy support vector regression (FSVR) method is
introduced to deal with the problem. Strategies of
k nearest neighbor (ENN) and support vector data
description (SVDD) are adopted to set fuzzy mem-
bership values of data points in FSVR. This will sig-
nificantly reduce the effect of outliers and noises and
increase the accuracy of soft sensor model.

2 FUZZY SUPPORT VECTOR REGRES-
SION
Support vector machines (SVMs) are a new class
of machine learning algorithms, motivated by results
of statistical learning theory!®l. Because of its well
generalization ability and solid theoretical foundation,
SVM is applied to many research fields(®l. In order
for this property to carry over to the case of regres-
sion, Vapnik devised the so-called e-insensitive loss
function and presented SVR algorithm!”). For a lin-
ear separable problem, given the training sample set
X = {(mliyl))"'s(wuyi)a' e r(whyf)}$ i= 1,1,
z; € R", y; € R, the goal of the learning process is
to find the smallest risk by minimizing the regularized
function as follows!]:
Slwl? +C - Ry lf] 1)

emp

where ||w||? is structure risk which characterizes the
complexity of model and Rf, [f] is experience risk
which represents the training error. Parameter C is
slack factor which determines the trade off between
structure and experience risk. Minimizing Eq. (1) cap-
tures the main insight of statistical learning theory. In
order to obtain a small risk, one needs to control both
training error and model complexity. For a nonlin-
ear problem, data points in input space are mapped
into a high dimension feature space via mapping ¢:
R"™ — H, and then the smallest risk is found in the
space H. The minimization of Eq. (1) is equivalent to
the following quadratic programming (QP) problem

1
1
in = =|w|*+C- &
Join, &= 3 |jw] ;(5 &)
vi — (w-p(x:) +b) <e+ &
st.{ (w-p(@) +b) ~y Se+§ (2)
&6 20,i=1,---,1
where §;, £ are slack variables.
Although SVM is powerful for the problem char-
acterized by small sample, nonlinearity and high

dimension!®), there still exist some problems to be
solved. One of them is the over-fitting problem. How
to set the free parameter is very important in the SVM
training process. Recalling the risk function in Eq. (1),
a larger C' means to assign a higher penalty to error
and thus reduces the rate of error. On the contrary,
a smaller C is to ignore more plausible error and thus
get wider regression margins®!%. No matter the value
of C is large or small, this parameter is fixed during
the training process of SVR. That is to say data points
are equally treated during the training process. This
will lead to a high sensitivity for some special cases,
such as outliers and noises. In order to deal with
the problem, fuzzy membership model is introduced
to SVR and FSVR. In FSVR, each data point has a
membership value p;, 0 < p; < 1. The training data
set becomes (1, Y1, H1), -+, (Tiy Yis fi)s -+ (1, Y1, f12)
and the objection function of optimization question
(2) can be rewritten as follows:

min & = ~|[w|? +C-

Jun, 5 pi&i + &) (3)
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Introducing Lagrange multipliers a,, af, m,, 5], we
obtain the Lagrangian of Eq. (3)
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Let the derivatives with respect to the primal vari-
ables equal to zero, we obtain the four equations

{
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Substituting the above equation into Eq. (4), Wolfe

Chinese J. Ch. E. 13 (5) 642 (2005)



644 Chinese J. Ch. E. (Vol. 13, No. 5)

dual is obtained as follows:
1 !
maxW = — sZ(a,— +al)+ Z[a,- - o) )yi—
i=1 i=1
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According to Mercer condition!®, there exist a
mapping ¢ and a kernel function K(:,:) which sat-
isfies K (z;, ;) = @(.) - ¢(x;). Substituting the ker-
nel function into Eq. (6) and solving the optimization
problem, we obtain the regression function as follows:

]
fl@) = (i~ af)K(x;, @) +b (7)

i=1

From Eq. (6) we can see that the upper bound of
Lagrange multipliers a,, a; is a function of fuzzy mem-
bership p;. Thus this method is called fuzzy support
vector regression.

In Table 1, we summarize the common types of
kernels. The parameters p and d are user-specified.

Table 1 Three common types of kernels used in SVR

Kernel’s types K(xi,x;)
linearly kernel x, T
polynomial kernel (i - 25) + 1]‘*

Gauss RBF kernel e—plizi-z;I?

3 FUZZY MEMBERSHIP MODEL

Fuzzy membership model is very important which
determines the performance of FSVR. For the sequen-
tial learning problem, Lin proposed a membership
model®!

l1—0
th—t

tio —
ti—t

pi = f(t) = ®)
where o is a sufficiently small positive number, ¢t; <

..t,--» < t; are the time when data samples are col-
lected. In this model, the last data sample is thought
to be the most important and its membership equals
1, the first data sample be the least important and
its membership equals . Eq.(8) is called time-based
model. This model lacks solid theoretical founda-
tion and only suits for sequential learning problem.
Time-based membership model has another form as
follows!12:

1

t; —
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Another type of membership model is space-based
model which determines the fuzzy membership ac-
cording to the spatial distribution of data samples.
Huang proposed a membership model based on out-
lier detection method*%

1- __||m,_—n:_||:__ +o, zTmEM
i = max(fj; — Z) (10)
v, 0<v<o, =m=0

The outlier set O is detected from training set, and
the rest part of the training set is called main body set
M. T is the cluster center of all data points in M. For
x; € M, the membership values are defined accord-
ing to their distance to the center of the main body.
For an outlier, the membership of sample is equal to
a sufficiently small positive number v. In this model,
outliers are equally treated and membership values of
outliers are assigned the same values.

In this paper, strategies based on kNN method and
SVDD are used to set the fuzzy membership values of
data points.

3.1 Strategy of using kNN

Given two samples 71, zz € R", the distance be-
tween two samples in the feature space H is defined
by

d(z1,z2) =[lo(z1) — (22)ll2
='\/K($1,:E1) - 2K($1,$2} + K(xz,&.“g]
(11)

For each point x;, we can find a set Siv‘ that con-
sists of k nearest neighbors of &, according to the def-
inition of Eq. (11). The average distance between @;
and each element of S¥ is defined as

di = 2 0 K (@im) — 2K (@i,2;) + K(2,25)
(12)

For data points z; and z in Fig.2, S{ and S§
can be obtained as Sf = {z2,73,24,75} and S§ =
{x7,x8,T9,x10} according to Eq.(11). The average
distance d, and dg can be calculated according to
Eq.(12). From Fig.2, we can see that d; is smaller
than de.

We observe this situation and assume that the data
point with a larger value of d; can be considered as
outlier and should make less contribution to the re-
gression accuracy. For this assumption, we can build
a relationship between the fuzzy membership p; and
the value of d;. The maximal and minimal value of d;
are defined as

dmax = max(d;|z; € X), dmin = min(d;|x; € x)
(13)
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The fuzzy membership function is defined as follows:

di - dmiu )f

,u.,-=1-—(1-—0)(d (14)

max — dmin

where ¢ < 1. f is the parameter that controls the
degree of mapping function as shown in Fig. 3.

Figure 2 The values of dy and dg in SVR
® support vector; [J non-support vector;
regression line; -+« - regression margin line
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Figure 3 The fuzzy membership function
based on kNN

When d; is close to dyi,, data point @; is near the
regression line whose fuzzy membership y; is close to
1. With the increase of d;, ®; is away from the re-
gression line and the fuzzy membership of x; will de-
crease. When d; is close to dyax, @; can be regarded
as an outlier and y; is close to a sufficiently small pos-
itive number o. This can effectively reduce the effect
of outliers.

3.2 Strategy of using SVDD

The idea of SVDD was introduced in Refs. [12,13].
Data samples in input space are mapped into a high
dimensional feature space, then fuzzy membership
value of each input sample is confirmed according to
its distance to the center of the smallest enclosing hy-
persphere.

Let T = {x,---,xi, -, 21} be a data set of [
points, &; € R", i« = 1,--+,l, in order to obtain
the data domain description of training set, we try to
find the smallest enclosing hypersphere which are de-
scribed by center a and radius R . If the data samples
are not spherically distributed in input space, we can
map them into a high dimensional feature space via

mapping &: R" — F, where F is the feature space.
Then in the high dimensional feature space, we look
for the smallest enclosing hypersphere by solving the
QP problem as follows:

i
minW(EivR,ﬂ) = R2 +CZ§|
i=1
s.t. { [®(x:) — al* < R? + &

€>0,0,=1,2,1 (15)

where C is slack factor which determines the trade
off between the volume of the sphere and the num-
ber of target objects rejected. Introducing Lagrange
multipliers 3;, §; finally we obtain the Wolf dual as
follows:

i !
max Q(B) = Y_ K(wmi, )8 — Y Bib(wi,z;)

i=1 1,j=1

st. 0<G6;<Ci=1,2,---,1 (16)

After solving the QP problem, we obtain the op-
timal Lagrange multipliers of each data sample. The
distance between the data sample and the center of
feature space hypersphere is defined as!'?

l
D*(x;) = Y BiBiK (xi,x;) + K (i, @:)—

i,j=1

I
23" K(z;,.)8; (17)

i=1

Then the radius of the smallest enclosing hypersphere
is determined by R = D(a;)|V0 < 8; < C. and the
membership function is defined as

. —_— 2 -!
1- M) +0,R < D(2;) < Dpax
H, = D(Dm}ax _DDmm
;) — Lmin
_— in "'-<-. i "'<“
1 Dmax - Drnin ! Dm D(ﬂ: ) R

(18)
where Dyax, Dmin are maximal and minimal values
of D(z;), repectively. The membership function is
shown in Fig. 4.
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Figure 4 Fuzzy membership changing with distance
form the center of the smallest enclosing sphere
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For a point @; in input space, distance between
mapping P(x;) and the center of the small enclosing
hypersphere satisfies Dy, € D(®;) € Dpax, when
Dpin € D(®,) € R, x, belongs to the data descrip-
tion. The data point is near the regression margin,
such as the points 3 and 4 in Fig. 2. With the increase
of D(x,), their membership values will linearly de-
crease. When R < D(z;) € Dpyax, point @; is far away
from the regression margin, shown as the points 6, 7 in
Fig. 2. Membership value of @; is a quadratic function
of D(z;)(f = 2). With the increase of D(z;), mem-
bership value of @; rapidly increases. When D(z;) is
closing to Dpax, u; is closing to a sufficiently small
positive number o.

From the definition of kNN-based FSVR and
SVDD-based FSVR, we can see that both of them
need to compute the kernel functions during the pro-
cess of determining fuzzy membership model. But an
extra QP problem needs to be solved in SVDD-based
FSVR [see Eq.(16)]. Thus the SVDD-based FSVR
is more time-consuming than kNN-based FSVR. As
discussed in Ref. [8], the QP problem of SVM spends
most of the training time on calculating kernel func-
tions. Hence if we cache the most usually used kernel
functions into memory during the process of deter-
mining fuzzy membership model, the training time of
SVDD-based FSVR will be significantly reduced as it
does not need to calculate kernel functions again in
the process of training.

4 SIMULATION RESULTS

According to the prior knowledge and experience,
the key variables affect the oxidation process as well
as the concentration of 4-CBA, are the residence time
of reactants, the ratio of PX to acetic acid, the in-
gredient and concentration of catalyst, reaction tem-
perature and pressure, the partial pressure of oxygen
and water content in the reactor. After the compari-
son between those key variables and industrial process
variables, 10 process variables are selected as input
variables of the soft sensor model(?), as listed in Table
2. The schematic layout of PX oxidation process in
Fig. 1 shows that there exists a substantial time delay
between each process variable and the product qual-
ity variable. Every tank has a residence time varying
from 15min to 71 min. The total time delay of the
process is about 200 min.

A total of 403 data samples were collected includ-
ing normal operation and load down operation from
the distributed control system (DCS) of a practical PX
oxidation process. These data were divided into two
sets, with one set having 171 samples to be used for
training, and the other having 232 samples for testing.
Firstly, we trained the SVR in the training set, with
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kernel function being Gauss RBF kernel with parame-
ters p = 8 and C = 64 obtained by cross-validation!®!.
The predicted result on the testing set is shown in
Fig.5(a). Root-mean-square-error (RMSE) is shown
in Table 3.

Table 2 The all variables of process model

Dead time Normal
No. Variables .
min value
input variables
1 para-xylene to feed 205 28243.57
mixing tank, kg-h™!
2 feed to reactor, kg-h~! 180 143008.71
3 catalyst concentration, 185 361.07
pgg~t
4 reactor temperature, °C 110 188.05
5 level of reactor, % 110 BR.99
6 reactor condenser to 95 673.23
water withdraw, kg-h™!
7 vent Oz concentration 95 4.08
from the reactor,
% (by volume)
8 total water withdrawal, 90 40939.27
kg-h~!
9 first crystallizer 75 184.88
temperature, °C
10 vent Og concentration 70 4.07
from the first
crystallizer, % (by volume)
output variable
11 the concentration of 0 2702
4-CBA in the crude TA,
pgg™!

In order to obtain the parameters of kKNN-based
FSVR, for a point x;, we employed ENN algorithm
to calculate d; to obtain d,;;,, = 8.6482 and d,.x =
9.3754(k = 32). Let f = 2 and ¢ = 0.01, according
to Eq. (14), we obtained the membership function as
follows:

pi = —1.87d? + 32.38d, — 139.02 (19)

To find the parameters of SVDD-based FSVR, we
used SVDD algorithm to train on the data set. Ker-
nel function is Gauss RBF kernel with p = 10 and
C = 0.1. After training we obtained R = 12.648 and
Dyax = 12,661 and Dy, = 12.407. Let f = 2 and
o = 0.01, according to Eq. (18), we obtained the mem-
bership model as follows:

15.50D%(@;) — 392.49D(x;) + 2484.68,
12.648 < D(x;) < 12.661
-3.94D(x;) + 49.85,
12.407 < D(z;) < 12.648

M, =

(20)

Using the obtained membership models, we started

to train kNN-based and SVDD-based FSVR on the
training set, respectively. Kernel function and slack
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factor are the same as in SVR. The predicted results
are given in Figs. 5(c) and (d).

g
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samples
(a) SVR

4-CBA concentration

22 43 64 85 106 127 148 169 190 211 232
samples

(b) Time-based FSVR

4-CBA concentration

[ 22 43 64 85 106 127 148 169 190 211 232
samples
(c) kNN-based FSVR

3500

3000

2500+

2000

4-CBA concentration

1500

1 22 43 64 85 106 127 148 169 190 211 232
samples
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Figure 5 Predicted results of SVR, time-based
FSVR, kNN-based FSVR and SVDD-based FSVR
------ real values; predicted results

We can see that the accuracy of kANN-based or
SVDD-based FSVR is higher than that of SVR. Be-
cause of the influence of outliers which are produced
by load down operation in PX oxidation process, SVR
does not work well and its accuracy is expected to be
lower. On the contrary, in kNN-based and SVDD-
based FSVR, different data samples are assigned with

different fuzzy membership values. Thus the predicted
results of kNN-based and SVDD-based FSVR fit the

real value curve very well, and their accuracies are

higher than that of SVR.

Table 3 RMSE of different algorithms

Algorithm RMSE
SVR 0.1071
time-based FSVR 0.08911
kNN-based FSVR 0.06292
SVDD-based FSVR 0.05173

Finally, we trained the time-based FSVR on the
training set with the same kernel parameters and slack
factor as in kNN-based FSVR. Fig.5(b) presents the
predicted result. From Table 3 we can see that the
accuracy of time-based FSVR is lower than that of
kNN-based and SVDD-based FSVR. It indicates that
time-based membership model is not suitable for the
case when the training set includes noises.

5 CONCLUSIONS

In this paper, a fuzzy support vector regression
method is presented to deal with over-fitting prob-
lem caused by outliers. Membership models based on
kNN and SVDD method are also proposed to fuzzify
all the training data. The proposed soft sensor models
based on kNN and SVDD are applied to predict the
concentration of 4-CBA in a PTA production process.
Simulation results indicate that the proposed methods
indeed reduce the effect of outliers and yield higher ac-
curacy than either SVR or time-based FSVR.

NOMENCLATURE
C slack variables
d coefficient of polynomial kernel
d(xy,z2) distance between the samples x;, =2
f degree of mapping function
H feature space
K(g,9) kernel function
L; class label of training sample
1 number of training samples
M main body set
outlier set
P scale parameter of Gaussian kernel
R input space
t; time when data samples are collected
w weight value vector
®; training sample
z cluster center of all data points
i class label of training sample
ai,af Lagrange coefficients
&, slack variables
i fuzzy membership values of sample &;
o sufficiently small positive number
X sample set in input space
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