
Additive Proofs of Knowledge - A New Notion For

Non-Interactive Proofs

Amitabh Saxena

Dept. of Computer Science and Computer Engineering

La Trobe University, Bundoora, VIC, Australia 3086

February 23, 2007

Abstract

In this paper, we study the opacity property of verifiably encrypted signatures (VES) of Boneh
et al. (proposed in Eurocrypt 2003). Informally, opacity implies that although some given aggregate
signatures can verified, no useful information about the individual signatures is leaked. However,
the very fact that an aggregate signature can be verified leaks certain information - that the indi-
vidual signature is indeed well-formed. Apart from this, is there any other information leaked? In
this paper, we show that there is absolutely no other information leaked about the individual signa-
tures when the aggregation contains only two signatures. In more formal terms, we show that VES
are Zero-Knowledge (ZK). We then extend the ZK property of VES to propose efficient Additive
Non-Interactive Witness-Indistinguishable (A-NIWI) proofs. Intuitively an A-NIWI proof can be
considered as a Proof of Knowledge (PoK) of another A-NIWI proof.

1 Introduction

In this work, we propose a new construction of Non-Interactive Witness Indistinguishable (NIWI) proofs
(of Knowledge), namely Additive-Non-Interactive Witness Indistinguishable (A-NIWI) proofs - a given
NIWI proof π1 of statement m1 can be combined with another NIWI proof π2 of m2 to yield a new NIWI
proof π1,2 of m1 ∧ m2 such that that given π1,2,m1,m2, it is no longer possible to obtain π1 (or π2).
We term this property additiveness and formally give a construction of a NIWI proof that satisfies this
property. We call any NIWI proof system satisfying this property an Additive NIWI (A-NIWI) proof
system. Although this property can be achieved using conventional constructions of NIZK proofs (i.e., by
reducing it to some NP-complete language and then creating a NIZK of the NP-complete language), such
constructions are extremely inefficient and therefore useless in practice. Furthermore, these generic NIZK
constructions are only defined for proofs of membership, while A-NIWI proofs are defined using proofs
of knowledge. Our constructions are based on the opacity property of Verifiably Encrypted Signatures
(VES) [1] and the truncation resilience property of chain signatures [2].

The rest of this paper is organized as follows. In Section 2, we give some background on zero-
knowledge. In Section 3, we give the intuition behind our idea of additive zero-knowledge by showing that
aggregate signatures are zero-knowledge. We then formally define NIZK-PoKs (actually NIZK-PoDPs)
and give a construction of a NIZK-PoK for the solution of a computational Diffie-Hellman (CDH) problem
instance in Section 4. Finally, in Section 5, we present our examples of additive NIWI proofs.

2 Preliminaries

Zero-Knowledge Proofs. Zero-knowledge proofs (introduced by Goldwasser, Micali and Rackoff [3])
are proofs which convince a verifier that a given statement is indeed true without giving any
information as to why it is true. This concept can be intuitively captured by saying that whatever

1

the verifier knows after seeing the proof was already known to the verifier before seeing the proof.
The authors of [3] formalized this concept by requiring that there exist a PPT simulator outputting
a transcript that is identical to the transcript produced by the real prover. Zero-knowledge is
captured by the fact that the simulator generates the identical transcript without knowing the
prover’s secret. Therefore, there must not be any knowledge “leaked” about the secret. In fact, the
entire notion of zero-knowledge proofs can be summarized as follows: To prove that something is
zero-knowledge, simply exhibit a simulator that generates a transcript that cannot be distinguished
from the real thing [4].

Witness Indistinguishability (WI). Another intuitive way to restrict knowledge leakage is using wit-
ness indistinguishable proofs [5, 6]. However, unlike ZK proofs, a WI proof cannot be simulated.
Therefore, there is certainly some information leaked (if it cannot be simulated then more than zero
knowledge has leaked). Informally, a WI proof can be defined as follows. Let x ∈ L for some L ∈
NP such that x has two witness for L. A proof is WI if it convinces a verifier that indeed x ∈ L but
does not reveal which witness was used to construct the proof (even if the verifier knows both wit-
nesses). In the literature, WI proofs are generally used to prove a statement like x1 ∈ L1 ∨ x2 ∈ L2

without revealing which witness (of x1 ∈ L1 or x2 ∈ L2) was used to construct the proof. In this
work we focus on WI proofs of statements of the type x1 ∈ L1 ∧x2 ∈ L2 such that it is infeasible to
decide if the proof was constructed from the individual witnesses of x1 ∈ L1 and x2 ∈ L2 or from
another WI proof of x1 ∈ L1 ∧ x2 ∈ L2.

Proofs Of Knowledge (PoKs). Till now we restricted ourselves to proofs of statements of the type
x ∈ L for some L ∈ NP. These are called proofs of membership (PoMs). However, a more useful
notion is of proofs of statements of the type I know the witness of x ∈ L. That is, the prover not
only proves that x ∈ L but also proves knowledge of a witness to the fact. Such proofs are called
proofs of knowledge (PoKs) and are formally defined in [7]. Informally, a PoK requires that there
be a knowledge extractor that uses the prover in a black-box manner and extracts the witness for
the statement to be proved [7]. However, this general definition of PoKs cannot be zero-knowledge,
even if a simulator exists because of the simple fact that we are no longer trying to prove that x ∈ L
but just knowledge of a witness to x ∈ L. Unfortunately, along the way we also reveal that x ∈ L.

Proofs Of Decision Power (PoDPs). Let L ∈ NP ∩ co-NP. A zero-knowledge (or WI) proof of deci-
sion power (PoDP) is a PoK for some x ∈ L ∪ co-L that convinces a verifier about the knowledge of
a witness for x but does not reveal whether x ∈ L or x ∈ co-L. Thus, in effect the proof is proof-of-
knowledge of the-ability-to-decide-membership, rather than a proof-of-knowledge-of-membership.
See [8, 9] for a discussion on this concept. PoDPs are more powerful than PoKs because they
reveal even less information (the verifier is convinced of the knowledge of a witness but still cannot
decide membership). All our proofs presented in this paper (whether WI or ZK) will be PoDPs.
Consequently, we only focus on the class NP ∩ co-NP.

Non-Interactive (NI) ZK and WI Proofs. Zero-knowledge (and WI) proofs come in two flavors: in-
teractive and non-interactive (NI). In the interactive variants, there are many exchanges of messages
(called rounds) before the proof is completed. On the other hand, in the non-interactive variants,
the verifier’s role is played by a hash function or some other random source of information (such as
a random oracle) [10, 11, 4, 12]. Depending on whether the proof is ZK of WI, we call it a NIZK
or NIWI proof. Similar to interactive proofs, NI proofs can also be classified as PoMs or PoKs. In
this work, we only focus on NIZK-PoKs and NIWI-PoKs. NIZK-PoKs have many applications.1

Note that WI proofs with two or less rounds are generally called zaps [6]. However, we will use the
term NIWI to specifically denote that the zap is non-interactive.

Additive NIWI Proofs. Suppose given some NIWI proof π1 of x1 ∈ L2, we can “add” to it another
NIWI proof π2 of x2 ∈ L2 to obtain a NIWI proof π(1,2) of x1 ∈ L1 ∧ x2 ∈ L2, then we call

1For instance, in constructing CCA2 secure schemes [11]. The idea is that decryption queries on a ciphertext are only
answered if the adversary can prove (using a NIZK-PoK) the knowledge of the corresponding plaintext. Hence decryption
queries do not help the adversary.

2

the NIWI proof system additive. The WI property of NIWI proofs implicitly implies that it is no
longer possible to extract the proof π1 just given π2, x1, x2. Therefore, although π2 is convincing
of the truth of both statements {x1, x2}, it cannot be used to prove any one of the statements
separately from the other. Additive NIWI proofs arise naturally from the aggregate signatures
of [1] as described next. In the above example we considered PoMs. However, our real examples
will be based on PoKs. The following discussion is intended to give an idea of this.

3 Aggregate Signatures Are Zero-Knowledge

The aggregate signatures of [1] can be briefly described (with some simplifications) as follows. Let G1

and G2 be two cyclic multiplicative groups both of prime order q such that computing discrete logarithms
in G1 and G2 is intractable. A bilinear pairing is a map ê : G1 × G1 7→ G2 that satisfies the following
properties [13, 14, 1].

1. Bilinearity : ê(ax, by) = ê(a, b)xy ∀a, b ∈ G1 and x, y ∈ Zq.

2. Non-degeneracy : If g is a generator of G1 then ê(g, g) is a generator of G2.

3. Computability : The map ê is efficiently computable.

For the rest of this paper we will assume that g ∈ G1 is some fixed generator and all problem instances
are with respect to g. For completeness, we define the CDH problem below.

Definition 3.1. Computational Diffie-Hellman (CDH) problem Given (X,Y) ∈ G1
2, compute

the value Z ∈ G1 satisfying ê(X,Y) = ê(Z, g).

The aggregate signature scheme also uses a hash function H : {0, 1} 7→ G1. Let the public keys of two
users be X1 = gx1 ,X2 = gx2 respectively. Let the hashes of the messages to be signed be Y1 = gy1 and
Y1 = gy2 respectively (for unknown y1, y2). Then the the aggregate signature of [1] under public keys
Y1, Y2 corresponds to the value Z2 = gx1y1+x2y2 . Additionally, the corresponding individual signature
under the public key X1 = gx1 turns out to be gx1y1 , the extraction of which will correspond to the
solution of the CDH instance (X1, Y1) = (gx1 , gy1). Call this the signature extraction problem for the
tuple (X1, Y1,X2, Y2, Z2). Without the extra inputs X2, Y2, Z2, this reduces to the ordinary CDH problem
for (X1, Y1). We will prove that these extra inputs give absolutely no information about the solution of
the corresponding CDH instance (X1, Y1).

Observe that given just the CDH instance (X1, Y1) = (gx1 , gy1), we can straightaway transform it into
an instance of the signature extraction problem without knowing either x1 or y1 as follows. Generate
two random integers r, u. Then compute X2 = X1 · g

r = gr+x1 , Y2 = gu/Y1 = gu−y1 , Z2 = X1
u · Y2

r =
gx1u+ru−ry1 . The tuple (X1, Y1,X2, Y2, Z2) forms a valid instance of the signature extraction problem.2

In other words, the aggregate signature leaks absolutely no knowledge about the individual signature!
How is a verifier convinced if there is no knowledge transferred through a signature? The catch here

is that in real signature schemes (such as aggregate signatures), we do not have the freedom to choose
Y2 due to the one-way-ness of the hash function. It is proved in [1, Theorem 3.2] that as long as the
hash function is indistinguishable from a random oracle, and Y1 6= Y2, the aggregate signature scheme is
secure against existential forgery. This motivates some interesting applications:

Zero-Knowledge Signatures. Let Alice have the public key X1 in the above discussion. To sign a
message m1 with resulting hash Y1, Alice first generates a random public key X2 (possibly with
X2 = X1) and a message m2 6= m1. Let Y2 be the hash of m2. Alice computes Z2 as above and
sends (X1,m1,X2,m2, Z2) as her signature on m1. Any verifier can verify that Z2 is indeed Alice’s
signature on m1 by first computing Y1 and Y2. The signature is definitely convincing because with
a high probability Y2 6= Y1, and so the result of [1, Theorem 3.2] stands. However, the signature is
also zero knowledge due to the above argument.

2This was proved in [15]. Note that it is possible to keep r = 0 but we need X1 6= X2 for later use.

3

Suppose Alice is a government official authorized to issue electronic identity cards. The cards
contain two pieces of information: (1) The age, and (2) The state of residence. Bob is a person
who obtained a card from Alice stating his age to be a and state to be s. Bob needs to enter a
club with condition of entry (age ≥ a ∧ state 6= s). If Alice uses the above technique for signing
cards (i.e., by keeping m1 = “Bob’s age is a”, m2 = “Bob’s state is s”, X1 = X2, and handing Z2

to Bob), she can be sure that computing her signature on the statement m1 given her signature on
the statement m1 ∧m2 is as hard as computing the signature on m1 given nothing. On the other
hand, Bob must separate the signature if he wants to enter the club using the card issued by Alice,
which he cannot do. Of course, the same thing can be achieved if Alice signs the message m1 ∧m2

using any standard signature scheme. However, consider the case when the signatures on m1 and
m2 are computed by different officials (as is common).

Identification. Finally consider the need of Bob when using this card. Bob would like to identify himself
with this card and at the same time ensure that the verifier cannot impersonate him later. This
can be done as follows. Suppose Bob is identifying himself to Carol using Alice’s card. First both
Bob and Carol agree on a common random string Y3 ∈ G1. It is necessary for both Bob and Carol

to ensure that the string is indeed random. Next Bob generates a random private key x3
R
← Z∗

q and
computes the public key X3 = gx3 . Finally he computes the value Z3 = Z2 · Y

x3

3 ∈ G1 and gives
(Z3,X3) to Carol. We prove in the next section that Carol is convinced about Bob’s identity but
cannot get any useful information about Z2 from (Z3,X3).

4 NIZK Proofs of Knowledge

We now give a formal discussion of the above zero-knowledge property. Our examples deal with NIZK-
PoKs (see Section 2). We will use the common-random-string (CRS) model [10]. In this model, both
prover and verifier share a common random string that is decided beforehand. It could even be generated
by a random oracle. The quality of a NIZK proof is determined by the length of the random string it
uses [16]. In our NIZK proofs, the lengths of the statement and the random string are the same.

Let L ∈ NP ∩ co-NP be some language and let W(.) be an oracle that on input x ∈ Σ∗ outputs the
witness to either x ∈ L or x 6∈ L. Define the following protocol between prover P and verifier V . Let k
be a security parameter.

Protocol (P , V)

1. Common Input: Some string x
R
← {0, 1}k is given as common input to both P and V .

2. Prover’s Auxiliary Input: P is given as auxiliary input w ←W(x).

3. Common Random String: P and V agree on a common random string (crs) r
R
← {0, 1}k.

4. Proof Generation: P uses (r, w, x) to compute and outputs a proof π.

5. Proof Verification: V uses a deterministic procedure on input (x, r, π) and outputs either 0 or 1.

Definition 4.1. (P, V) is a NIZK-PoK (and a PoDP) for some L ∈ NP ∩ co-NP if the following hold.

1. Completeness: For all x ∈ Σ∗ and all honest provers P

Pr
[

r, x
R
← Σ∗;w ←W(x);π ← P (x,w, r) : V (x, r, π) = 1

]

= 1 (1)

2. Zero-Knowledge: There exists a universal PPT simulator machine M that on input some random
string x (the problem instance) outputs a tuple (rm, πm) such that V (x, rm, πm) = 1 and the two
distributions {X} and {X}m defined below are statistically indistinguishable.

{X}m
def
= {rm, x, πm}

def
=

[

x
R
← Σ∗; (rm, πm)← S : V (x, rm, πm) = 1

]

4

{X}
def
= {r, x, π}

def
=

[

r, x
R
← Σ∗;w ←W(x);π ← P (x,w, r) : V (x, r, π) = 1

]

3. Proof-of-Knowledge: There exists a universal PPT (knowledge) extractor machine E that functions
as follows. E gives a “random looking” string re to the prover P ∗, who outputs a pair (x, π). If
V (x, re, π) = 1 then E takes in as input (x, re, π) and outputs a string we. We require that for all
P ∗, the strings re are indistinguishable from truly random strings, and

Pr

[

we = w re ← E(x), (x, π)← P ∗(re), V (x, re, π) = 1,
we ← E(x, re, π), w ←W(x)

]

≈ 1 (2)

4.1 NIZK-PoK For A Diffie-Hellman Solution

Let ê : G1 × G1 7→ G2 be a bilinear map as defined in Section 3 such that |G1| = |G2| = q (prime).
Assume that the computational Diffie-Hellman (CDH) problem is hard in G1. Therefore, due to the
Goldreich-Levin Theorem [17], there must exist a hard-core predicate (say δ()) for the solution of the
CDH instance. Let g be some fixed generator of G1 (this can be fixed once-and-for-all by a trusted third
party). Consider the language consisting of pairs of the form (gx, gy) ∈ G2:

L = {(gx, gy)|hard-core predicate δ(gxy) = 1}

Clearly, L ∈ NP ∩ co-NP and the element gxy, the solution to the CDH instance (gx, gy) forms the
witness to both the “yes” and “no” instances. We describe a NIZK-PoK for knowledge of this witness.
Our non-interactive PoKs can be considered as stating the following: “Someone knows the witness to this
NP statement”. Additionally, our PoKs are actually proofs of decision power (PoDP). That is, a prover
proves knowledge of the witness w = gxy to some CCDH instance (gx, gy) without revealing whether
(gx, gy) ∈ L or not. First we define the following problem.

Definition 4.2. Class-CDH (CCDH) problem. Given X,Y ∈ G1, output 1 if (X,Y) ∈ L, otherwise
output 0.

Define the following protocol between P and V .

Protocol (P, V).

1. Common input: CCDH instance (X1, Y1) = (gx1 , gy1) ∈ G1
2.

2. Provers auxiliary input: Witness to the CCDH instance W = gx1y1 ∈ G1.

3. Common reference string: An element Y2
R
← G1 s.t. Y1 6= Y2. Let Y2 = gy2 for unknown y2.

4. Proof generation: P generates x1
R
← Z∗

q and computes Z2 = W ·Y2
x2 ∈ G1. It outputs (X2, Z2) ∈

G1
2. The complete proof is the tuple (X1, Y1,X2, Y2, Z2, g).

5. Proof verification: Accept the above proof if the following holds:

ê(X1, Y1) · ê(X2, Y2)
?
= ê(Z2, g) (3)

Theorem 4.3. The above non-interactive protocol (P, V) is a NIZK proof of knowledge of the witness to
the CCDH decision problem instance (X1, Y1).

Proof. The proof is fairly straightforward. First note that completeness is trivial to verify:

LHS = ê(X1, Y1) · ê(X2, Y2) = ê(gx1 , gy1) · ê(gx2 , gy2) = ê(gx1y1+x2y2 , g) = RHS

Zero Knowledge: We first prove that the protocol is zero-knowledge. The input is again the

CCDH instance (X1, Y1). Simulator M generates two random elements r, u
R
← Z∗

q . It then computes

5

X2 = X1 · g
r, Y2 = gu/Y1 and Z2 = X1

u · Y2
r. It outputs X2, Y2, Z2 as the simulated transcript. The

tuple (X1, Y1,X2, Y2, Z2) is identical to a real transcript.
Proof of Knowledge: To show that the protocol is a proof of knowledge of the CDH solution, we

construct the extractor E as follows. E is given the CCDH instance (X1, Y1) and black-box access to a

prover that computes the above proof. E generates a random element y2
R
← Z∗

q and sets Y2 = gy2 . It
gives Y2 as the random string to the prover P , who will output a proof of the form (X2, Z2) such that
tuple (X1, Y1,X2, Y2, Z2, g) satisfies Equation 3. In this case E computes W = Z2/(X2)

y2 and outputs
W as the witness to the CCDH instance.

5 Additive Non-Interactive Proofs

Another observation in the above protocol is that given the PoK (X1, Y1,X2, Y2, Z2, g), we can generate
a new CCDH instance (X3, Y3) = (gx3 , gy3) and form the tuple (X1, Y1,X2, Y2,X3, Y3, Z3, g), such that
Z3 = Z2 ·g

x3y3 behaves like a PoK of Z2. We call this property “additiveness” - whenever a non-interactive
PoK Zi can be converted into a new non-interactive PoK Zi+1 of Zi. This is formalized in this section.
First we define the following problem.

5.1 The Composite Class-CDH problem

Let Si = {(X1, Y1), (X2, Y2), . . . , (Xi, Yi)} be a set containing i CCDH instances. Define Zi ∈ G1 to be
the value such that

∏

(Xj ,Yj)∈Si

ê(Xj , Yj) = ê(Zi, g) (4)

Definition 5.1. Composite Class-CDH (CCCDH) problem. Given Si, compute Zi.

We say that Zi is the CCCDH solution of the set Si. It is easy to see that the the CCCDH problem
is as hard as the CDH problem.

Lemma 5.1. The CCCDH problem is hard if and only if the CDH problem is hard.

Proof. The “only if” part is trivial and we will not prove it. For the “if” part, consider an adversary A
who can always output the CCCDH solution of any set Si. We can use A to solve any CDH instance

(X,Y) of the CDH problem as follows. Generate random x′, y′ R
← Z∗

q and compute X ′ = gx′

; Y ′ = gy′

.
The set Si = {(X,Y), (X ′, Y ′)} is given to A, who outputs the CCCDH solution Zi of Si. In this case
Z/gx′y′

is the solution of our CDH instance.

5.2 Additive Witness Indistinguishable Proofs

We now present a construction of an Additive Non-Interactive Witness-Indistinguishable Proof of Knowl-
edge (A-NIWI-PoK). An A-NIWI-PoK can be instantly transferred into another another A-NIWI-PoK
such that the new proof behaves like a PoK of the older PoK (and may include additional statements).
Define the following protocol between a prover P and some verifier V .

Protocol (P, V)

1. Common Input: A set Sn = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} containing n CCDH instances with
respect to a common generator g such that Yi 6= Yj if i 6= j.

2. Prover’s Auxiliary Input: Zn, the CCCDH solution of Sn. P will prove knowledge of Zn.

3. Common Random String: An element Yn+1
R
← G1 such that Yn+1 6= Yj for 1 ≤ j ≤ n,

4. Proof Generation: P generates xn+1
R
← Z∗

q and sets (Xn+1, Zn+1)← (gxn+1 , Zn · Y
xn+1

n+1) ∈ G1
2.

It outputs (Xn+1, Zn+1). Observe that Zn+1 is the CCCDH solution of Sn+1 = Sn∪{(Xn+1, Yn+1)}.

6

5. Proof Verification: V verifies that Zn+1 is indeed the CCCDH solution of Sn+1.

Theorem 5.2. The pair (Zn+1, Sn+1) is a NIWI-PoK of the CCCDH solution Zn of Sn for all n ≥ 1.

Proof. Similar to ZK proofs, a WI proof has completeness, witness-indistinguishability and knowledge
extractor requirements [5, 6]. Completeness is trivial.

Witness-Indistinguishability: The claim is true for n = 1 (because ZK implies WI). For any n > 1,
given the set Sn and random string Yn+1, we can construct a pair (Xn+1, Zn+1) such that Zn+1 is the
CCCDH solution of Sn+1 = Sn ∪ {(Xn+1, Yn+1)}. This can be done in at least two different ways: (1)
Using the CCCDH solution Zn of Sn and the witness for CCDH instance (Xn+1, Yn+1). (2) Using the
CCCDH solution of Sn+1\{(X1, Y1)} and the witness for CCDH instance (X1, Y1). Clearly, it is infeasible
to distinguish which strategy was used.

Proof of Knowledge: We must construct an extractor En+1 that that works as follows. First
En+1 outputs a random string Yn+1, which is given to the prover. The prover then outputs a tuple
(Sn,Xn+1, Zn+1) such that Sn is a set containing n CCDH instances and Zn+1 is the CCCDH solution
of Sn ∪ {(Xn+1, Yn+1)}. Finally, En+1 takes as input (Sn,Xn+1, Zn+1) and outputs Zn, the CCCDH
solution of Sn. We construct this extractor as follows.

En+1 generates yn+1
R
← Z∗

q and computes Yn+1 = gyn+1 ∈ G1. En+1 gives Yn+1 to some prover P
who outputs a tuple (Sn,Xn+1, Zn+1) such that Sn contains n CCDH instances and Zn+1 is the CCCDH

solution of Sn+1 = Sn ∪ {(Xn+1, Yn+1)}. From this En+1 computes Zn = Zn+1 ·X
−yn+1

n+1 and outputs Zn

as the CCCDH solution of Sn.

5.2.1 Additiveness

Observe that any given NIWI-PoK (Zn, Sn) can be instantly transferred into a new NIWI-PoK (Zn+1, Sn+1)
of (Zn, Sn) (in other words, (Zn+1, Sn+1) proves knowledge of (Zn, Sn)). We call this property additive-
ness and any NIWI-PoK exhibiting this property an Additive NIWI-PoK (A-NIWI-PoK).

5.2.2 Is It Zero-Knowledge?

The witness indistinguishability property of above NIWI-PoK (combined with the intractability of the
CCCDH problem) ensures that Zn+1 does not leak any “useful” information about the secret Zn. How-
ever, we have been unable to construct a simulator and it is quite likely that the above proof is not
zero-knowledge. To see why it may not be zero-knowledge (and still be witness hiding), observe that
given the pair (Z3, S3) with |S3| = 3, an adversary may be able to obtain some information about all the
CCCDH solutions Z∗

2 for the 3 sets S∗

2 (S3 with |S∗

2 | = 2 without getting any information about the
witnesses of the individual CCDH instances of S3.

6 Summary

In this paper we introduced the concept of additive proofs of knowledge using the underlying properties
of aggregate signatures of [1]. There is one major difference between the additive proofs we described
here and other ZK or WI proofs studied in the literature. Current models of NIZK and NIWI are
based on proving a disjunction of statements (i.e., x1 ∈ L1 ∨ x2 ∈ L2) such that information about
individual statements cannot be obtained. In contrast, A-NIWI proofs are essentially based on proving
a conjunction of statements (i.e., x1 ∈ L1 ∧ x2 ∈ L2) such that information about individual statements
cannot be obtained. Additionally, our model of additive-NIWI-PoKs should not be confused with the idea
of multiple non-interactive zero-knowledge proofs under general assumptions of Feige, Lapidot and Shamir
(FLS) [16], where the authors propose the use of a single random string to prove multiple statements.
Their proofs are proofs of membership, while ours are proofs of knowledge (in fact proofs of decision
power).

Although the WI property of the protocol of Section 5.2 is sufficient to guarantee that nothing sig-
nificant about the constituent NIWIs is revealed, zero-knowledge would be desirable. We can use the

7

technique of the simulator in the proof of Theorem 4.3 and achieve additive NIZK property at the cost
of increasing the size of the proof to 2n at n levels. As an open question, we would like to ask whether
constant-size efficient additive NIZK PoKs exist.

In summary, we feel that this “additive” WI property of non-interactive proofs is intriguing and should
be further investigated, especially because it may have applications in e-commerce.

References

[1] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In Eli Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes
in Computer Science, pages 416–432. Springer, 2003.

[2] Amitabh Saxena and Ben Soh. One-way signature chaining: A new paradigm for group cryptosystems
and e-commerce. Cryptology ePrint Archive, Report 2005/335, 2005.

[3] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems.
SIAM J. Comput., 18(1):186–208, 1989.

[4] Oded Goldreich. Foundations of Cryptography I, volume Basic Tools. Cambridge University Press,
2001.

[5] U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols. In STOC ’90:
Proceedings of the twenty-second annual ACM symposium on Theory of computing, pages 416–426,
New York, NY, USA, 1990. ACM Press.

[6] Cynthia Dwork and Moni Naor. Zaps and their applications. In FOCS ’00: Proceedings of the 41st
Annual IEEE Symposium on Foundations of Computer Science, pages 283–293, Washington, DC,
USA, 2000. IEEE Computer Society.

[7] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. Lecture Notes in Computer
Science, 740:390–420, 1993.

[8] Giovanni Di Crescenzo, Kouichi Sakurai, and Moti Yung. Zero-knowledge proofs of decision power:
new protocols and optimal round-complexity. In ICICS ’97: Proceedings of the First International
Conference on Information and Communication Security, pages 17–27, London, UK, 1997. Springer-
Verlag.

[9] Giovanni Di Crescenzo, Kouichi Sakurai, and Moti Yung. On zero-knowledge proofs (extended
abstract): “from membership to decision”. In STOC ’00: Proceedings of the thirty-second annual
ACM symposium on Theory of computing, pages 255–264, New York, NY, USA, 2000. ACM Press.

[10] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications.
In STOC ’88: Proceedings of the twentieth annual ACM symposium on Theory of computing, pages
103–112. ACM Press, 1988.

[11] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and cho-
sen ciphertext attack. In CRYPTO ’91: Proceedings of the 11th Annual International Cryptology
Conference on Advances in Cryptology, pages 433–444, London, UK, 1992. Springer-Verlag.

[12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for np. In
Serge Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages
339–358. Springer, 2006.

[13] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. J. Cryptology,
17(4):297–319, 2004.

8

[14] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. SIAM J.
Comput., 32(3):586–615, 2003.

[15] Jean-Sébastien Coron and David Naccache. Boneh et al.’s k-element aggregate extraction assumption
is equivalent to the Diffie-Hellman assumption. In Chi-Sung Laih, editor, ASIACRYPT, volume 2894
of Lecture Notes in Computer Science, pages 392–397. Springer, 2003.

[16] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge proofs under
general assumptions. SIAM J. Comput., 29(1):1–28, 2000.

[17] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In STOC ’89:
Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages 25–32, New
York, NY, USA, 1989. ACM Press.

9

