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ON THE THRESHOLD METHOD FOR MARKED
SPATIAL POINT PROCESSES

Takayuki Sakaguchi* and Shigeru Mase*

The threshold method in the framework of marked spatial point processes on
a continuous space is discussed. The threshold method is a linear prediction of the
total sum of marks using only the number of points with marks exceeding a given
threshold value. The result is an extension of Mase (1996) to a continuous space and
also the independent mark assumption of Mase (1996) is weakened. It is shown that
the total sum of the marks is linearly predictable if the number of points has a huge
variation and marks satisfy some mixing condition. A simulation study is given to
illustrate the theoretical result.
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1. Introduction

Let Φ = {(Xi,Mi); i = 1, 2, . . . } be a marked spatial point process on
R
d × R, where Xi represents an observational position and Mi an associated

mark. Sometimes it is difficult, inaccurate, or impossible to observe marks which
are relatively small. The threshold method tries to predict the total sum of marks
in a region G ⊂ R

d using only the number of positions with marks exceeding a
given threshold value.

The idea of the threshold method was given by Deneaud et al. (1984), see
also Shimizu (2002). Chiu (1988) remarked the fact that for tropical rain rate
data, there is a surprisingly high correlation between the area average rain rate
and the fractional area where rain rates exceed a certain threshold value. This
phenomenon has been confirmed subsequently in various rainfall data and there
are several papers on how to choose an optimal threshold value, see, e.g., Kedem
and Pavlopoulos (1991), Shimizu et al. (1993) and Short et al. (1993). These
authors assumed the rainfall distribution to be a mixture of a discrete distri-
bution and a positive continuous distribution. Also Mase (1996) discussed why
the threshold method works using a spatial model. Its main conclusion is that
the threshold method works fine if a variation of the number of raining sites is
dominant.

As is easily conceivable, the threshold method is useful in many spatial prob-
lems. However, in general spatial problems, observational locations are not dis-
cretized and are both continuously and randomly located. For example, consider
animals which move in groups in a region. Small herds are difficult to observe,
while larger ones are less difficult to observe. Moreover, even if observed, precise
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counting of sizes of herds may be difficult too. In this case, the threshold method
amounts to predict the total population of animals in a region using only the
number of herds with sizes exceeding a certain threshold value.

In this paper, we study a theoretical basis of the threshold method for marked
spatial point processes which generalizes the result in Mase (1996) to continuous
spaces. In Mase (1996), discrete spatial marked point processes are assumed
to be combinations of non-marked point processes and random fields that are
assumed to be mutually independent. Although every marked point processes,
continuous or not, can be represented as such a combination, the independence
assumption of point processes and random fields may be sometimes dubious and
many examples of position-dependent marks such as nearest neighbor distances
are used in spatial statistics. The present result also includes this kind of position-
dependent mark cases partially.

Let FG be the total sum of marks Mi with Xi ∈ G and BG be the number
of points in G with marks greater than or equal to a certain threshold value. We
consider a linear predictor F̂G = α + βBG and give a condition under which the
prediction error is small. In Section 2, we review the general theory of marked
spatial point processes. In Section 3, formulas for moments of BG and FG are
derived. In Section 4, asymptotic behaviors of these moments as G expands
are given under some mixing type condition. In Section 5, we show our main
result that the threshold method can predict FG well if the variance of Ψ(G),
the number of points in G, diverges faster than the volume of G. Finally, we
illustrate the main result by a simulation study in Section 6.

2. Marked spatial point processes

In this section we summarize basic results from the theory of marked spatial
point processes, see, e.g., Stoyan et al. (1995). A marked spatial point process
on R

d with the mark space R is a collection of pairs

Φ = {(Xi,Mi)}, (Xi,Mi) ∈ R
d × R.

Xi is a random position and its mark Mi is an associated random quantity. Φ is
simple if Xi �= Xj (i �= j). The associated non-marked point process Ψ = {Xi} is
of n-th order if EΨ(A)n < ∞ for any bounded Borel set A ⊂ R

d. Φ is (strongly)
stationary if Φh = {(Xi +h,Mi)} has the same distribution as Φ for any h ∈ R

d.
We will assume Φ is stationary and Ψ is of 2nd order in the following.

The intensity measure Λ gives the mean number of marked points Λ(A×L) =
EΦ(A×L) for measurable sets A×L ⊂ R

d×R. Since Φ is stationary, there exists
the intensity λ, the mean number of points Xi per unit volume. The Campbell
formula is basic in the theory of point processes and states:

E
∑

(x,m)∈Φ

f(x,m) =
∫

f(x,m)dΛ(x,m) = λ

∫∫
f(x,m)dM(m)dx(2.1)

for arbitrary measurable function f ≥ 0 on R
d × R. The probability measure

M on R is called the mark distribution. In the following, we assume that M is
supported on [0,∞) (i.e., marks are non-negative) and is not degenerated to 0.
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The Palm distribution P (x,m) is the distribution of Φ under the condition
(x,m) ∈ Φ. From the stationarity, P (x,m) is the translation of P (0,m) by the
vector x. The two-point Palm distribution Pm,l

h is the distribution of Φ under
the condition (0,m), (h, l) ∈ Φ. Let C be the set of all configurations (i.e., locally
finite subsets) of R

d and C be its standard Borel σ-algebra. The Palm distribution
P 0 of Ψ is of the form

P 0(A) = P (Ψ ∈ A | 0 ∈ Ψ)

for any measurable A ∈ C and satisfies∫
f(ψ)dP 0(ψ) =

1
λ|B| E

∑
y∈Ψ∩B

f(Ψ−y)(2.2)

for any C-measurable function f ≥ 0. Here B is any Borel set of positive Lebesgue
measure |B|. The reduced Palm distribution P !

0 of Ψ is the conditional distribu-
tion

P !
0(A) = P (Ψ \ {0} ∈ A | 0 ∈ Ψ).

The second-order reduced moment measure K is defined by

K(A) =
1
λ

∫
ψ(A)dP !

0(ψ)

for any bounded Borel set A ⊂ R
d. The quantity λK(A) is the mean number of

points in A \ {0} under the condition 0 ∈ Ψ.
The second-order factorial moment measure Λ(2) gives the mean number of

different pairs of marked points in Φ,

Λ(2)(A1 × L1 ×A2 × L2) = E
∑ �=

(x,m),(y,n)∈Φ

1A1×L1(x,m)1A2×L2(y, n)(2.3)

for measurable sets A1, A2 ⊂ R
d and L1, L2 ⊂ R, where the summation symbol

with �= means that the sum is taken for all different pairs. Using these measures
second-order moments can be expressed as follows:

E

∫
g(x,m)dΦ(x,m)

∫
h(x,m)dΦ(x,m)(2.4)

=
∫

g(x,m)h(x,m)dΛ(x,m) +
∫

g(x,m)h(y, l)dΛ(2)(x,m, y, l),

where g and h are non-negative measurable functions on R
d × R.

Finally there is a following relation, the two-point refined Campbell theorem,
among these measures:

E
∑ �=

(x,m),(y,l)∈Φ

f(x,m, y, l,Φ)(2.5)

= λ2

∫
· · ·

∫
f(x,m, x + h, l, φx)dP

m,l
h (φ)dMh(m, l)dK(h)dx
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for arbitrary measurable function f ≥ 0 on R
d×R×R

d×R×C. Here Mh(m, l)
is the two-point mark distribution, that is, the joint distribution of marks m and
l under the condition that Φ has points at 0 and h.

3. Moment formulas

Let Φ be a simple and stationary marked point process on R
d and Ψ be an

associated 2nd order non-marked point process. For a region G ⊂ R
d, define

BG =
∑

(x,m)∈Φ

1G(x)b(m),

FG =
∑

(x,m)∈Φ

1G(x)f(m)

for non-negative measurable functions b and f . Let c ≥ 0 and consider the case
b(m) = 1[c,∞)(m) and f(m) = m. Then BG is the number of points in G with
marks ≥ c, and FG is the total sum of marks in G. The constant c is called a
threshold value in this case. We will consider a simple linear predictor of FG of
the form:

F̂G = α + βBG.(3.1)

Here α and β are real constants. It can be shown that the minimum of a predic-
tion error E|FG − α− βBG|2 over R

2 is given by

Var {FG}
{

1 − Corr {BG, FG}2
}
.(3.2)

If this error is small enough, we can predict the total sum of marks using (3.1)
with considerable accuracy. Therefore, the question we have to ask is under what
condition this error will be small.

Let µb =
∫
b(m)dM(m) and µf =

∫
f(m)dM(m). Since Φ is stationary,

Campbell theorem (2.1) yields relations

E{BG} = λ|G|µb, E{FG} = λ|G|µf , and E{Ψ(G)} = λ|G|.

Hence we can obtain

Var {Ψ(G)} = λ|G| − λ2|G|2 +
∫

1G(x)1G(y)dΛ(2)(x,m, y, l)

by putting g(x,m) = h(x,m) = 1G(x) in (2.4).

Proposition 1. Define

Covh {b(M), f(L)} =
∫

b(m)f(l)dMh(m, l) − µbµf

and let G−h = {x− h; x ∈ G}. Then the covariance of BG and FG is given by

Cov {BG, FG} = λ2

∫
|G ∩G−h|Covh {b(M), f(L)} dK(h)(3.3)

+ λ|G|Cov {b(M), f(M)} + µbµf Var {Ψ(G)} .
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Proof. Since we have

E {BGFG} = λ|G|
∫

b(m)f(m)dM(m)

+
∫

1G(x)1G(y)b(m)f(l)dΛ(2)(x,m, y, l)

from (2.1) and (2.4), the covariance can be written as

Cov {BG, FG} =
∫

1G(x)1G(y)(b(m)f(l) − µbµf )dΛ(2)(x,m, y, l)(3.4)

+ λ|G|Cov {b(M), f(M)} + µbµf Var {Ψ(G)} .

From (2.3) and (2.5), the first term on the right-hand side of (3.4) is equal to

λ2

∫
|G ∩G−h|

{∫
b(m)f(l)dMh(x,m) − µbµf

}
dK(h).

This completes the proof of (3.3).

4. Asymptotic behaviors of moments

To get our main result, we need to know the asymptotic behavior of moments.
In the following proposition, we assume the existence of a function ξ, which
corresponds to a mixing coefficient of a random field, see Bolthausen (1982).

We partition R
d into congruent cubes

∆i =
{
x = (x1, . . . , xd) ∈ R

d ; 2il − 1 ≤ xl < 2il + 1, l = 1, . . . , d
}

for i = (i1, . . . , id) ∈ Z
d and define d(∆i,∆j) = max1≤k≤d |ik − jk|.

Proposition 2. Assume there exist a non-negative and non-increasing
function ξ on the set of all nonnegative integers and some constants δ,k1 > 0
such that

∞∑
n=1

nd−1ξ(n)δ/(2+δ) < ∞,

‖b(M)‖2+δ =
(∫

b2+δ(m)dM(m)
)1/(2+δ)

< ∞,

‖f(M)‖2+δ =
(∫

f2+δ(m)dM(m)
)1/(2+δ)

< ∞,

and

|Covh {b(M), f(L)} | ≤ k1‖b(M)‖2+δ‖f(M)‖2+δξ(d(∆0,∆i))δ/(2+δ)(4.1)

for any h ∈ ∆i. Then, as G ↑ R
d,

Cov {BG, FG} = O(|G|) + µbµf Var {Ψ(G)} .(4.2)
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Proof. There exists a constant K1 > 0 such that

λ2

∫
|G ∩G−h|Covh {b(M), f(L)} dK(h) + λ|G|Cov {b(M), f(M)}

≤ K1|G|
{∑

i

∫
∆i

|Covh {b(M), f(L)} |dK(h) + |Cov {b(M), f(M)} |
}

.

From the present assumption, |Cov {b(M), f(M)} | is finite. In order to prove
the assertion, it is enough to show∑

i

∫
∆i

|Covh {b(M), f(L)} |dK(h) < ∞.(4.3)

There exists a constant K2 > 0 such that∑
i

∫
∆i

|Covh {b(M), f(L)} |dK(h) ≤ K2

∑
i

ξ(d(∆0,∆i))δ/(2+δ)

∫
∆i

dK(h)

from the assumption (4.1). Since we have the inequality

K(∆i) ≤ K3(4.4)

for some constant K3 > 0 from Lemma 1 below, there exist a constant K4 > 0
such that ∑

i

ξ(d(∆0,∆i))δ/(2+δ)K(∆i) ≤ K3

∑
i

ξ(d(∆0,∆i))δ/(2+δ)

≤ K4

∞∑
n=1

nd−1ξ(n)δ/(2+δ) < ∞.

This shows (4.3) and the assertion follows.

Lemma 1. Under the same assumptions as in Proposition 2, we can show
(4.4).

Proof. Let ∆i ⊕ {x} = {z + x; z ∈ ∆i}, x ∈ R
d and Di, i ∈ Z

d, be

Di = ∆i ⊕ b(0,
√
d) =

{
a + b; a ∈ ∆i, b ∈ b(0,

√
d)

}
where b(0,

√
d) is the closed disk with center at 0 and radius

√
d. From the

definition of K,P !
0 and P 0, we have

K (∆i) =
1
λ

∫
ψ(∆i)dP !

0(ψ)

≤ 1
λ

∫
ψ(∆i)dP 0(ψ) =

1
λ2|∆0|

E
∑

x∈Ψ∩∆0

Ψ(∆i + x).



THRESHOLD METHOD FOR MARKED SPATIAL POINT PROCESS 29

The last equation is derived from (2.2). Since the inequality Ψ(∆i + x) ≤ Ψ(Di)
always holds for arbitrary x ∈ ∆0 and Ψ is a stationary and 2nd order point
process, we have

E
∑

x∈Ψ∩∆0

Ψ(∆i + x) ≤ EΨ(Di)Ψ(D0) ≤ EΨ(D0)2 < ∞

by the Schwarz inequality. Hence the assertion follows.

Remark 1. Consider the case f(m) = b(m). Then, by (3.3), the variance
of BG is written as

Var {BG} =λ2

∫
|G ∩G−h|Covh {b(M), b(L)} dK(h)

+ λ|G|Var {b(M)} + µ2
b Var {Ψ(G)} .

The variance of BG is also written as

Var {BG} = O(|G|) + µ2
b Var {Ψ(G)} as G ↑ R

d

provided that the assumptions in Proposition 2 are satisfied.

Remark 2. The function ξ(n) is a kind of mixing coefficients which mea-
sures the dependency between random variables. In fact, it is a measure of the
dependency between marks of points with distance n.

Remark 3. Let X = {Xi} be a non-marked point process, S = {S(x);
x ∈ R

d} be a stationary random field which is independent of X. As a special
case of our model, we can construct the marked point process Φ = {(Xi, S(Xi))}
as in Mase (1996). Let σi be the σ-algebra generated by {S(x); x ∈ ∆i}, and
define a mixing coefficient

η(n)

= sup

{
|P (A1 ∩A2) − P (A1)P (A2) | : A1 ∈ σ0, A2 ∈ σi, sup

1≤k≤d
|ik| ≥ n

}
as in Bolthausen (1982). Then, if there exists a constant δ > 0 such that

∞∑
n=1

nd−1η(n)δ/(2+δ) < ∞,

∫
b2+δ(m)dρ(m) < ∞, and

∫
f2+δ(m)dρ(m) < ∞,

where ρ is the distribution of S(0), we have the inequality

|Covh {b(M), f(L)} |
≤ k2 η(d(∆0,∆i))δ/(2+δ)

×
(∫

b2+δ(m)dρ(m)
)1/(2+δ) (∫

f2+δ(m)dρ(m)
)1/(2+δ)



30 TAKAYUKI SAKAGUCHI AND SHIGERU MASE

for some k2 > 0, see Bolthausen (1982). Note that Covh {b(M), f(L)} =
Cov {b(S(0)), f(S(h))} in this case. Hence we can show that

Cov {BG, FG} = O(|G|) +
(∫

bdρ

) (∫
fdρ

)
Var {Ψ(G)} ,

Var {BG} = O(|G|) +
(∫

bdρ

)2

Var {Ψ(G)} ,

Var {FG} = O(|G|) +
(∫

fdρ

)2

Var {Ψ(G)} .

Remark 4. In order to get covariance estimates like (4.2), generally, it
seems necessary to use mixing-type conditions. But, for particular problems, we
may get direct evaluations. For example, let consider a stationary Poisson point
process X with the intensity µ and let the associated mark Mx for x ∈ X be its
nearest neighbor distance min{|x − y|; y ∈ X, y �= x}. Fix two points x, y ∈ X
with h = |x−y|. It is known that, given x, y, X\{x, y} is also a stationary Poisson
point process with the same mean µ. The distribution Fh of Mx,My is a mixture
of the form 1[0,h)(r)p(r)dr + exp(−µπh2)δh(dr), where p(r) = 2πµr exp(−µπr2)
and δh is the Dirac measure. Let Mh be the joint distribution of (Mx,My). Mh

has the density p(r)p(s) if r + s < h. Assume that∫
b4(r)p(r)dr < ∞, and

∫
f4(r)p(r)dr < ∞,

and

b(r) = O(exp(µπr2/4)), and f(r) = O(exp(µπr2/4)).

Then we have

|Covh{b(Mx), f(My)}| =
∫
r≥h/2 or s≥h/2

b(r)f(s)[dMh(r, s) − dFh(r)dFh(s)]

≤ k exp(−µπh2/8),

for some constant k > 0, since∣∣∣∣∣
∫
s≥h/2

b(r)f(s)dMh(r, s)

∣∣∣∣∣
4

≤
∣∣∣∣∣
∫
s≥h/2

b2(r)dMh(r, s)
∫
s≥h/2

f2(s)dMh(r, s)

∣∣∣∣∣
2

≤
∫

b4(r)dFh(r)
∫

f4(s)dFh(s)

(∫
s≥h/2

dFh(s)

)2

,
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and ∣∣∣∣∣
∫
s≥h/2

b(r)f(s)dFh(r)dFh(s)

∣∣∣∣∣
4

≤
∣∣∣∣∣
∫

b2(r)dFh(r)
∫
s≥h/2

f2(s)dFh(s)
∫
s≥h/2

dFh(r)

∣∣∣∣∣
2

≤
∫

b4(r)dFh(r)
∫

f4(r)dFh(r)

(∫
s≥h/2

dFh(r)

)2

,

by the Schwarz inequality, similar inequalities also hold for integrals over the
domain {r; r ≥ h/2}, and

∫
b4(r)dFh(r)

∫
f4(s)dFh(s)

(∫
s≥h/2

dFh(s)

)2

≤
(∫

b4(r)p(r)dr + b4(h) exp(−µπh2)
)

×
(∫

f4(r)p(r)dr + f4(h) exp(−µπh2)
)
× exp(−µπh2/2).

Therefore, for some K > 0,∑
i

∫
∆i

|Covh {b(Mx), f(My)} |dK(h) ≤ K
∑
i

exp(−µπd(∆0,∆i)2/8) < ∞

holds.

One important model for which we can get the estimate (4.2) directly is the
model Φ = {(Xi, S(Xi))} where S is a stationary Gaussian random field. For
details about Gaussian random fields, see, e.g., Cressie (1993).

Proposition 3. Let S be a stationary Gaussian random field and its cor-
relation function be the c(h). We assume that∫

b2(m)dρ(m) < ∞, and
∫

f2(m)dρ(m) < ∞,(4.5)

and c∗(r) = sup|h|=r c(h) is a non-increasing function such that

∞∑
n=1

nd−1c∗(n) < ∞.(4.6)

Then, as G ↑ R
d,

Cov {BG, FG} = O(|G|) +
(∫

bdρ

) (∫
fdρ

)
Var {Ψ(G)} .
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Proof. For simplicity, let ES(0) = 0 and Var {S(0)} = 1. By the Schwarz
inequality,

|Cov {b(S(0)), f(S(h))} |2

=

∣∣∣∣∣
∫ ∫

b(x)f(y)
e−R/2

2π

[
1√

1 − c2(h)
e−(Q−R)/2 − 1

]
dxdy

∣∣∣∣∣
2

≤
∫

b2dρ

∫
f2dρ

∫ ∫
e−R/2

2π

[
1√

1 − c2(h)
e−(Q−R)/2 − 1

]2

dxdy

=
∫

b2dρ

∫
f2dρ× c2(h)

1 − c2(h)

where Q = (x2 − 2c(h)xy + y2)/(1 − c2(h)) and R = x2 + y2. Since c(h) → 0 as
|h| → ∞, there exists a finite set I ⊂ Z

d such that

c2(h)
1 − c2(h)

≤ 2c2(h) if h ∈
⋃

i∈Zd\I
∆i.

Then we have ∫
|Cov {b(S(0)), f(S(h))} |dK(h)

≤
∑
i∈I

∫
∆i

|Cov {b(S(0)), f(S(h))} |dK(h)

+ K5

∑
i∈Zd\I

c∗(d(∆0,∆i))K(∆i) < ∞

for some constant K5 > 0. Hence, the assertion follows.

5. Main result

Now we are in position to state a sufficient condition under which the thresh-
old method works fine.

Proposition 4. Assume there exists a non-negative and non-increasing
function ξ on the set of all nonnegative integers and some constants δ,k4 > 0
such that

∞∑
n=1

nd−1ξ(n)δ/(2+δ) < ∞,

‖M‖2+δ =
(∫

m2+δdM(m)
)1/(2+δ)

< ∞,

and

|Covh

{
1[c,∞)(M), L

}
| ≤ k4‖1[c,∞)(M)‖2+δ‖L‖2+δξ(d(∆0,∆i))δ/(2+δ)
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for any h ∈ ∆i. Then,

min
α,β

E

∣∣∣∣∣ FG√
Var {FG}

− α− β
BG√

Var {BG}

∣∣∣∣∣
2

→ 0 as G ↑ R
d,

if the conditions

1
|G| Var {Ψ(G)} → ∞ as G ↑ R

d(5.1)

and
∫ ∞
c dM �= 0 are satisfied.

Proof. The mean squared prediction error is given by

min
α,β

E

∣∣∣∣∣ FG√
Var {FG}

− α− β
BG√

Var {BG}

∣∣∣∣∣
2

= 1 − Corr {BG, FG}2

from (3.2). Since Corr {BG, FG} is of the form

O(|G|) +
∫ ∞
c dM

∫ ∞
0 mdM(m) Var {Ψ(G)}√

O(|G|) + (
∫ ∞
c dM)2 Var {Ψ(G)}

√
O(|G|) + (

∫ ∞
0 mdM(m))2 Var {Ψ(G)}

by Proposition 2, the assertion follows.

Remark 5. Consider the model Φ = {(Xi, S(Xi))} where S is a stationary
Gaussian random field. We can show the same assertion as in Proposition 4
without using the function ξ if the assumptions (4.6) and (5.1) are satisfied for
b(m) = 1[c,∞)(m) and f(m) = m.

Remark 6. From Proposition 4, we can see that the threshold method
works fine if the condition (5.1) is satisfied. Furthermore, we can predict FG/|G|
from BG/|G| if Var {Ψ(G)} = O(|G|2) since

min
α,β

E

∣∣∣∣FG

|G| − α− β
BG

|G|

∣∣∣∣2 =
Var {FG}

|G|2
{

1 − Corr {BG, FG}2
}
→ 0.

These results extend those of Mase (1996). Note that the condition Var {Ψ(G)} =
O(|G|2) implies the non-ergodicity of Ψ.

6. Simulation study

In this section, we illustrate the previous theoretical result by numerical
experiments. We assume the distribution P of X is a mixture

P = 0.1P 1 + 0.4P 2 + 0.35P 3 + 0.15P 4
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(a) Hard-core process with R = 0.5.
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(b) Hard-core process with R = 1.3.
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(c) Poisson process with λ = 0.5.

0 2 4 6 8 10

0
2

4
6

8
1
0

(d) Poisson process with λ = 1.

Figure 1. Realizations of four point processes in a 10 × 10 square region.

and distributions P i are:

P 1 : Pure hard-core process with hard-core distance R = 0.5,
P 2 : Pure hard-core process with hard-core distance R = 1.3,
P 3 : Poisson process with intensity λ = 0.5,
P 4 : Poisson process with intensity λ = 1.

A pure hard-core process is a point process that distances of arbitrary pairs
of points are larger than 2R. Figure 1 shows their realizations. The process X
can be considered to model a phenomenon that the degree of interactions between
points varies. As to algorithms of generating X, see, e.g., van Lieshout (2000).

Let S be a stationary and isotropic Gaussian random field. Its mean vector
is (20, 20, . . . , 20)t and the covariance matrix is given as

10 10 − γ(x1 − x2) . . . 10 − γ(x1 − xn)
10 − γ(x2 − x1) 10 . . . 10 − γ(x2 − xn)

...
...

. . .
...

10 − γ(xn − x1) 10 − γ(xn − x2) . . . 10

 .
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Figure 2. Var {Ψ(G)} for the mixture process versus |G|1.76.

Table 1. Threshold values c and corresponding coefficient of determination R2-value for the

mixture process.

c 13 14 15 16 17 18 19 20

R2 0.9599 0.9644 0.9618 0.9473 0.9225 0.8755 0.7860 0.6353

Here, γ is an exponential semivariogram

γ(h) = 10(1 − exp(−|h|/10)),

see, e.g., Cressie (1993) for details about semivariograms and their corresponding
Gaussian random fields. Note that this model satisfies (4.5) and (4.6) for b(m) =
1[c,∞)(m) and f(m) = m. In total, 100 marked point processes are generated.

Figure 2 is the graph of Var {Ψ(G)} versus |G|1.76. It is seen that Var {Ψ(G)}
� |G|1.76 and, hence, the data satisfy the condition (5.1). Therefore, the thresh-
old method should work fine.

Table 1 is the result of the threshold method. We can see that the sum of
marks can be predicted well even for a wide range of threshold values.

Next, we also generate ergodic Poisson processes with intensity 0.5. Figure 3
is the graph of Var {Ψ(G)} versus |G|0.93 and shows Var {Ψ(G)} � |G|0.93. The
condition (5.1) is not satisfied.

Table 2 seems to show that the threshold method may work even for the
ergodic process P 1 if we choose an appropriate threshold value, say c = 14. But
almost all marks are larger than 14 in this case and this is nothing but the effect
of the law of large numbers.
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Figure 3. Var {Ψ(G)} for the Poisson process with λ = 0.5 versus |G|0.93.

Table 2. Threshold values c and corresponding coefficient of determination R2-values for the

Poisson process with λ = 0.5.

c 13 14 15 16 17 18 19 20

R2 0.6447 0.7039 0.6956 0.6641 0.6456 0.6474 0.6535 0.6455

7. Conclusions and remarks

In this paper, the threshold method was studied in the framework of the
theory of marked point processes on R

d. We showed that the threshold method
works fine if the correlation of marks becomes weaker as the distance of points
becomes larger and (5.1) is satisfied.

We did not discuss how to estimate regression coefficients. Of course, if
complete training data are available, we can estimate the coefficients directly.
Even if we can only get thresholded data as assumed in this paper, we can still
employ, e.g., the method of Shimizu et al. (1993), or Short et al. (1993).
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