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ELECTROSTATIC VIEWS OF STEIN-TYPE
ESTIMATION OF LOCATION VECTORS

Toshio Ohnishi* and Takemi Yanagimoto*

Stein-type estimation of location vectors is discussed with the aid of the theory
of electrostatics. We consider a class of estimating functions and assess the superiority
of an estimating equation by its mean squared norm. The Coulomb potential function
leads to a Pythagorean relationship with respect to this norm. By making full use of
the Pythagorean relationship, we improve upon the likelihood estimating function.
A further improvement is shown to be feasible under a certain condition which is
described. We pursue possible strong relationships between the superiority over the
likelihood estimating function and physical quantities appearing in the theory of
electrostatics.

Key words and phrases: Coulomb potential function, electrostatics, estimating func-
tion, Green’s formula, James-Stein estimator, James-Stein positive-part estimator,
Pythagorean relationship.

1. Introduction

A number of works have been devoted to elucidating the reason why the
James-Stein estimator (James and Stein, 1961) or its modifiers perform well.
The role of the Stein phenomenon is still increasing in the statistical theory due
to the recent methodological progress in a statistical model containing a high-
dimensional parameter. Since Efron and Morris (1973) pointed out the close re-
lationship between the James-Stein estimator and the empirical Bayes method,
justifications of the reason have been proposed from the Bayes and the empirical
Bayes viewpoints; reviews are found in Lehmann and Casella (1998, Chapter 4)
and Robert (2001, Sections 2.8 and 8.5). Furthermore, decision-theoretic ap-
proaches have been employed by many authors, including Brown (1966), Berger
(1975), Hudson (1978), Shinozaki (1984), George (1986), Brandwein and
Strawderman (1991) and Yanagimoto (1994, 2000).

The aim of this paper is to discuss the Stein-type estimation of location
vectors in terms of estimating functions and to give interpretations from the
viewpoint of electrostatics, a branch of physics. Although Liang and Waclawiw
(1990) pointed out some merits of discussing the Stein phenomenon in terms of
estimating functions in place of estimators, it would appear that there has been
no other work since. Let a p-dimensional random vector x ∈ R

p be distributed
according to a location family f(x−µ) where f(·) is a known density function on
R
p and µ ∈ R

p. As noted in Godambe and Kale (1991), the likelihood estimating
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function
∂

∂µ
log f(x− µ) = −∇ log f(x− µ)(1.1)

with ∇ =
(
∂/∂x1, . . . , ∂/∂xp

)T is optimum among unbiased estimating func-
tions with respect to the trace optimality criterion. With respect to a formally
extended version of this criterion, we attempt to improve upon the likelihood es-
timating function. The equality (1.1), characteristic of a location family, is one of
the motivations to focus on the location family case. Another motivation is that
the density function is defined on R

p and is invariant under the transformation

x → x + x0 and µ → µ + x0,

where x0 is an arbitrary point in R
p. This property will facilitate our physical

interpretations.
A Stein-type estimator is expected to be obtained from an estimating func-

tion of the form

−∇ log f(x− µ) + ∇ log u(x)(1.2)

by choosing a suitable function u(x). When f(x − µ) is the density function
of a normal distribution Np(µ, Ip) with Ip being the p × p identity matrix, the
estimator induced from (1.2) has the form x+∇ log u(x), which was studied by
Stein (1981). In the Bayesian context, the estimating function (1.2) is closely
related to the posterior mean. See Theorem 3.2 in Lehmann and Cassella (1998,
Chapter 4).

If we regard the two functions of x, f(x−µ) and u(x), as potential functions,
then the two vector fields, −∇f(x−µ) and −∇u(x), can be looked upon as forces.
We will use the term ‘relative force’ for such vector fields as −∇ log f(x − µ)
and −∇ log u(x). It should be noted that the estimating function (1.2) is the
difference between the two relative forces induced from f(x− µ) and u(x).

Our primary objective is to find a potential function u∗(x) satisfying the
equality

E

[ ∥∥∇ log f(x− µ)
∥∥2 −

∥∥∥∥∇ log
f(x− µ)

u∗(x)

∥∥∥∥
2

−
∥∥∇ log u∗(x)

∥∥2

]
= 0.(1.3)

Note that this equality implies that E
[
‖∇ log{f(x − µ)/u∗(x)}‖2

]
is less than

E
[
‖∇ log f(x−µ)‖2

]
unless E

[
‖∇ log u∗(x)‖2

]
vanishes. If we assess the superi-

ority of an estimating function by its mean squared norm, then the equality (1.3)
implies that the estimating function −∇ log f(x − µ) + ∇ log u∗(x) dominates
the likelihood estimating function. As noted by Stein (1981) in the Np(µ, Ip)
case, the estimating function −∇ log f(x−µ)+∇ log u∗(x) has a mild optimum
property in the sense that the following function of a ∈ R

E
[ ∥∥∇ log f(x− µ) − a∇ log u∗(x)

∥∥2
]

= (a − 1)2 E
[ ∥∥∇ log u∗(x)

∥∥2
]

+ E
[ ∥∥∇ log f(x− µ)

∥∥2 −
∥∥∇ log u∗(x)

∥∥2
]
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is minimized at a = 1.
There are two advantages in our approach. One is to enable us to apply

techniques developed in electrostatics to the theory of estimation. Actually, the
potential function which we use to derive the Stein-type estimator is the well-
known Coulomb potential function, uC(x − m) = ‖x − m‖2−p with m ∈ R

p.
A generalized version of the James-Stein positive-part estimator is obtained by
modifying the relative force induced from the Coulomb potential function. In
this paper, the Stein identity (Stein, 1981) is replaced by Green’s formula, which
simplifies mathematical handling of the singular point of the Coulomb potential
function. Interpretations from the viewpoints of electrostatics lead us to flexible
treatments to the present problem and also provide us with a new insight of the
Stein-type estimator.

The other advantage is that our approach is applicable to a wide range of
distributions. This is a striking feature of the discussions in terms of estimating
functions, as pointed out by Liang and Waclawiw (1990). One example concerns
estimation of the location vector of a mutually independent Cauchy distribution.
The mean squared error for the maximum likelihood estimator (MLE) is infinite.
Instead, the quantity E

[
‖∇ log f(x−µ)‖2

]
is finite for the Cauchy distribution

since the Fisher information matrix exists. Recall that the Cauchy distribution is
becoming familiar in applications such as the financial engineering. See Nagahara
(1999) for example.

The organization of this paper is as follows. In Section 2, we will formulate
a criterion for assessing the superiority of an estimating function. A justification
of the criterion will be given based on the theory of estimating functions. In Sec-
tion 3, we will derive a Pythagorean relationship playing a fundamental role in
subsequent sections. In Section 4, a location family with spherical symmetry will
be discussed. We will use the Pythagorean relationship to derive an estimating
function superior to the likelihood estimating function. Under a certain condi-
tion, we will also obtain another estimating function superior to the derived one
above. In Section 5, a location family with mutual independence will be dealt
with, and discussions similar to those in Section 4 will be made. In Section 6,
we will give electrostatic views to the results in Sections 3 and 4. Some technical
lemmas necessary for proving propositions in Sections 4 and 5 will be given in
Appendix.

2. Formulation of a criterion

The dimension p is assumed to be an integer equal to or larger than three.
Suppose that x = (x1, . . . , xp)T has the density function f(x − µ) with µ =
(µ1, . . . , µp)T being a location vector. The function f(·) is assumed to be of class
C1. We consider an estimating function of the form

−∇ log f(x− µ) −U(x),(2.1)

where U(x) is a vector field. The estimator µ̂ is given as the parameter value
which makes the two vector fields −∇ log f(x− µ) and U(x) balance. If we set
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U(x) = 0 in (2.1), then (2.1) coincides with the likelihood estimating function.
As will be seen later, we will put a special emphasis on the case where U(x) is
given as the relative force of a potential function u(x), i.e., U(x) = −∇ log u(x).

The criterion which we adopt in this paper is that we assess the superiority
of the estimating function (2.1) by the following quantity

E
[ ∥∥∇ log f(x− µ) + U(x)

∥∥2
]
,(2.2)

which is expressed also as

E
[ ∥∥∇ log f(x− µ) −∇ log f(x− µ̂)

∥∥2
]
.

This can be regarded as the risk for µ̂. When U(x) = −∇ log u(x), the criterion
(2.2) is the mean squared norm of the difference between the two relative forces,
−∇ log f(x − µ) and −∇ log u(x). The estimating function (2.1) is biased in
general. Setting b(µ) = E

[
−∇ log f(x − µ) − U(x)

]
= E

[
−U(x)

]
, we can

decompose (2.2) into the following two terms,∥∥b(µ)
∥∥2 + E

[ ∥∥∇ log f(x− µ) + U(x) + b(µ)
∥∥2

]
.

Therefore, it seems relevant to use (2.2) as a criterion for the estimating function
(2.1). Similar criterions for biased estimating functions are found in the existing
literature such as Liang and Waclawiw (1990) and Yanagimoto and Yamamoto
(1993).

It can be easily verified that the criterion (2.2) for the likelihood estimating
function is the trace of the Fisher information matrix. As will be clarified by
Theorem 3.2 in the next section, we will be able to employ the unified discussion
for the location families having finite Fisher information matrices. This is one
of the merits of our formulation. Note that the risk for the MLE happens to be
infinite in the traditional formulation where simultaneous estimation is discussed
directly in terms of estimators with the squared error as loss.

The criterion (2.2) can be obtained also as a formal extension of the trace
optimality criterion presented in Godambe and Kale (1991). To show this, set
two matrices A and B as

A = E

[
∂

∂µ

{
∇ log f(x− µ) + U(x)

}T
]

= E

[
− ∂2

∂µ∂µT
log f(x− µ)

]

and

B = E

[{
∇ log f(x− µ) + U(x)

} {
∇ log f(x− µ) + U(x)

}T
]

.

The trace optimality criterion assesses the superiority of (2.1), if unbiased, by
the quantity trA−1BA−1. We will deal with the two cases where f(x − µ) is
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expressed as f(‖x−µ‖) and as
∏p

i=1 f(xi−µi) in Sections 4 and 5, respectively.
In these cases the Fisher information matrix A of f(x−µ) has the form a0Ip with
a0 being positive and independent of µ. Then A−1BA−1 = a−2

0 B, and a formally
extended version of the trace optimality criterion reduces to the criterion (2.2).
Note that we take biased estimating functions into consideration.

3. A Pythagorean relationship

In this section we will derive a Pythagorean relationship under certain con-
ditions. This relationship will be used as a basic tool of improving upon the
likelihood estimating function in the subsequent sections. We will apply Green’s
formula for the Laplacian � =

∑p
i=1 ∂2/∂x2

i instead of the Stein identity (Stein,
1981). The Coulomb potential function uC(·) introduced in Section 1 plays a key
role.

First, let us consider a somewhat general situation. Assume that a function
of class C1, g : R

p → R
+, satisfies∫

Rp

∥∥∇ log g(x)
∥∥2

g(x) dx < ∞(3.1)

and ∫
Rp

‖x−m‖−2 g(x) dx < ∞,(3.2)

where m is a point in R
p. The function g(·) is not necessarily a density function.

The condition (3.2) is equivalent to∫
Rp

∥∥∇ log uC(x−m)
∥∥2

g(x) dx < ∞,

and the Schwarz inequality gives

∫
Rp

∥∥∥∥∇ log
g(x)

uC(x−m)

∥∥∥∥
2

g(x) dx < ∞.

A little calculation leads to the equality

∫
Rp

∥∥∇ log g(x)
∥∥2

g(x) dx−
∫
Rp

∥∥∥∥∇ log
g(x)

uC(x−m)

∥∥∥∥
2

g(x) dx

−
∫
Rp

∥∥∇ log uC(x−m)
∥∥2

g(x) dx

= 2
∫
Rp

∇ g(x)
uC(x−m)

· ∇uC(x−m) dx.

In order to evaluate the right-hand side of this equality, we apply Green’s formula.
Note that Green’s formula is obtained from the divergence theorem, which was
used by Brandwein and Strawderman (1991) in the setting different from ours. In



44 TOSHIO OHNISHI AND TAKEMI YANAGIMOTO

the following two theorems and their proofs, the dot indicates the scalar product,
and the symbols dS and n stand for the surface element and the unit exterior
normal vector, respectively.

Theorem 3.1. In addition to (3.1) and (3.2), assume that

lim
K→∞

∫
‖x‖=K

g(x)
x−m

‖x−m‖2
· ndS = 0.(3.3)

Then the following Pythagorean relationship holds :

∫
Rp

∥∥∇ log g(x)
∥∥2

g(x) dx =
∫
Rp

∥∥∥∥∇ log
g(x)

uC(x−m)

∥∥∥∥
2

g(x) dx

+
∫
Rp

∥∥∇ log uC(x−m)
∥∥2

g(x) dx.

Proof. Let B(x0; r) denote the open ball with center x0 and radius r,
S(x0; r) the boundary of B(x0; r), and B(x0; r) the closure of B(x0; r). And let
K and ε be positive numbers satisfying K > ‖m‖+ε so that B(0; K) ⊃ B(m; ε).
An application of Green’s formula yields the equality∫

V

g(x)
uC(x−m)

�uC(x−m) dx +
∫
V

∇ g(x)
uC(x−m)

· ∇uC(x−m) dx(3.4)

=
∫
S(0;K)

g(x)
uC(x−m)

∇uC(x−m) · ndS

−
∫
S(m; ε)

g(x)
uC(x−m)

∇uC(x−m) · ndS,

where V = B(0; K) \B(m; ε) . The former term in the left-hand side in (3.4)
is zero since uC(x−m) is harmonic on V . The condition (3.3) implies that the
former term in the right-hand side in (3.4) vanishes as K → ∞. In order to
complete the proof, it is sufficient to show that the latter term in the right-hand
side in (3.4) vanishes as ε → +0. This is shown as follows:

∫
S(m; ε)

g(x)
uC(x−m)

∇uC(x−m) · ndS

= −(p − 2)
∫
S(m; ε)

g(x)
x−m

‖x−m‖2
· ndS

= −(p − 2)
∫
S(m; ε)

g(x)
‖x−m‖ dS

= −p − 2
ε

∫
S(m; ε)

g(x) dS

= O
(
εp−2

)
.
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Now, we are to apply this theorem to a density function f(x−µ) such that
f : R

p → R
+ is of class C1. Define two vector-valued functions of µ as

GM (µ; x) = −∇ log f(x− µ)(3.5)

and

GS(µ; x) = −∇ log f(x− µ) + ∇ log uC(x−m)(3.6)

= −∇ log f(x− µ) − p − 2
‖x−m‖

x−m

‖x−m‖ .

The following theorem implies that the three vectors GM (µ; x), GS(µ; x) and
GM (µ; x)−GS(µ; x) form on the average a right triangle with GM (µ; x) being
its hypotenuse.

Theorem 3.2. Assume that the Fisher information matrix of f(x − µ)
exists. Then the following Pythagorean relationship holds :

E
[ ∥∥GM (µ; x)

∥∥2 −
∥∥GS(µ; x)

∥∥2 −
∥∥GM (µ; x) −GS(µ; x)

∥∥2
]

= 0.(3.7)

Proof. All we need to do is to show that the three conditions (3.1)–(3.3)
with g(x) = f(x − µ) are satisfied. The existence of the Fisher information
matrix implies that f(x − µ) satisfies (3.1). By transforming to the spherical
coordinates around m, we see that the contribution of the singular point x = m
to the integral (3.2) is zero when p ≥ 3. Thus f(x−µ) satisfies (3.2). Let K be
a positive number larger than ‖m‖. Note that∣∣∣∣∣

∫
‖x‖=K

f(x− µ)
x−m

‖x−m‖2
· ndS

∣∣∣∣∣
≤

∫
‖x‖=K

f(x− µ)
‖x−m‖

∣∣∣∣ x−m

‖x−m‖ · x

‖x‖

∣∣∣∣ dS

≤
∫
‖x‖=K

f(x− µ)
‖x−m‖ dS

≤ 1
K − ‖m‖

∫
‖x‖=K

f(x− µ) dS.

Since f(x− µ) is a density function on R
p, we see that

lim
K→∞

∫
‖x‖=K

f(x− µ) dS = 0.

Thus (3.3) is satisfied.

This theorem makes it clear that the unified discussion is applicable to all the
location families having finite Fisher information matrices, which is one of the
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advantages of our formulation over the traditional one. We present an illustrative
example.

Example 3.1. Consider a p-variate spherical t distribution having the den-
sity function

f(x− µ) =
Γ ((φ0 + p)/2)

(πφ0)p/2Γ (φ0/2)

(
1 +

‖x− µ‖2

φ0

)−(φ0+p)/2

(3.8)

with φ0 being a known positive constant. The mean squared norm of the likeli-
hood estimating function

E
[ ∥∥∇ log f(x− µ)

∥∥2
]

=
p(p + φ0)
p + φ0 + 2

exists for any φ0 > 0 although the mean squared error for the MLE µ̂M

E
[ ∥∥µ̂M − µ

∥∥2
]

=
pφ0

φ0 − 2

does not exist if φ0 ≤ 2.

Here we note mathematical handling of the case when the observation x
equals m. As shown by the proof of Theorem 3.2, the contribution of the singular
point x = m to the expectation in (3.7) is zero. Therefore we will formally
discard the case x = m in the subsequent sections. If the equation with respect
to µ, GS(µ; x) = 0, has a solution for x �= m, then we can regard GS(µ; x) as an
estimating function. Otherwise, we introduce an estimating function G̃S(µ; x),
a modification of GS(µ; x), whose explicit form will be given in Sections 4 and
5.

Electrostatic views of the results in this section will be discussed further in
Section 6. In addition, two corollaries to Theorems 3.1 and 3.2 will be obtained
there.

4. Spherically symmetric case

In the following two sections, we will discuss the two cases, the spherically
symmetric and the mutually independent cases. Further improvements on both
GS(µ; x) and its modification G̃S(µ; x) will be shown to be possible under
certain conditions. We begin with the former case in this section.

The likelihood estimating function (3.5) is expressed as

GM (µ; x) = −f ′(‖x− µ‖)
f(‖x− µ‖)

x− µ

‖x− µ‖ .

We focus on the case where the density function of x is in the family

S0 =
{

f(‖x− µ‖)
∣∣∣∣ f ′(r) < 0 on R

+ and lim
r→+0

f ′(r) = 0
}
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so that the MLE µ̂M is obtained as x from the equation GM (µ; x) = 0.
The function GS(µ; x) in (3.6) reduces to be of the form

GS(µ; x) = −f ′(‖x− µ‖)
f(‖x− µ‖)

x− µ

‖x− µ‖ − p − 2
‖x−m‖

x−m

‖x−m‖ .(4.1)

Suppose that x �= m. Then a necessary and sufficient condition for the existence
of the solution to the equation GS(µ; x) = 0 is that the function −f ′(r)/f(r) is
not bounded to the above. In order to simplify later discussions, we introduce
two subfamilies of S0 as

S1 =
{

f(‖x− µ‖) ∈ S0

∣∣∣∣ −f ′(r)
f(r)

is not bounded to the above
}

and

S2 =
{

f(‖x− µ‖) ∈ S0

∣∣∣∣ −f ′(r)
f(r)

attains its maximum in R
+

}
.

When f(‖x − µ‖) ∈ S1 or f(‖x − µ‖) ∈ S2, Theorem 3.2 can be applied to
improving upon GM (µ; x). If the equation −f ′(r)/f(r) = c has solutions, we
set the least one as rS(c) for our later use. Electrostatic views of the estimating
functions introduced in Subsections 4.1 and 4.2 will be given in Section 6.

4.1. The case of the subfamily S1

Applying Theorem 3.2 gives the following proposition.

Proposition 4.1. The estimating function GS(µ; x) is superior to the
likelihood estimating function GM (µ; x).

Next, we will show that GS(µ; x) can be improved upon under the condition

−f ′(r)
rf(r)

is non-increasing on R
+ and lim

r→+0

−f ′(r)
rf(r)

exists.(4.2)

In the expression (4.1) of GS(µ; x), the quantity (p−2)/‖x−m‖ becomes large
when x is close to m. As suggested in Berger and Bock (1976), it is expected that
eliminating the singularity will lead us to better estimation. So let us consider
the following estimating function

G+
S (µ; x) = − f ′(‖x− µ‖)

f(‖x− µ‖)
x− µ

‖x− µ‖(4.3)

− min
{

h0‖x−m‖ ,
p − 2

‖x−m‖

}
x−m

‖x−m‖ ,

where h0 = limr→+0{−f ′(r)}/{rf(r)}.

Proposition 4.2. Under the condition (4.2), the estimating function
G+

S (µ; x) is superior to the estimating function GS(µ; x).
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Proof. Let B = B(m; r0) stand for the open ball with center m and
radius r0 = {(p − 2)/h0}1/2. Noting that G+

S (µ; x) differs from GS(µ; x) only
for x ∈ B, we see that

E
[ ∥∥GS(µ; x)

∥∥2
]
− E

[ ∥∥G+
S (µ; x)

∥∥2
]

=
∫
B

∥∥∥∥−f ′(‖x− µ‖)
f(‖x− µ‖)

x− µ

‖x− µ‖ − p − 2
‖x−m‖

x−m

‖x−m‖

∥∥∥∥
2

f(‖x− µ‖) dx

−
∫
B

∥∥∥∥−f ′(‖x− µ‖)
f(‖x− µ‖)

x− µ

‖x− µ‖ − h0 (x−m)
∥∥∥∥

2

f(‖x− µ‖) dx.

The proof is completed by applying Lemma 2 in Appendix with y = x − m,
a = µ−m, w1(r) = −f ′(r) / {rf(r)}, w2(r) = f(r) and w3(r) = (p−2) r−2.

Let us derive expressions of the two estimators µ̂S and µ̂+
S , which are induced

from GS(µ; x) and G+
S (µ; x), respectively. When an estimating function yields

multiple estimators, we choose the one closest to the MLE. This choice will be
applied also in subsequent sections. Note that choice of an estimator is not
essential in our approach. For various approaches for multiple root problems see
Small et al. (2000). The expressions we obtain are

µ̂S = x− rS

(
p − 2

‖x−m‖

)
x−m

‖x−m‖(4.4)

and

µ̂+
S = x− rS

(
min

{
h0‖x−m‖ ,

p − 2
‖x−m‖

})
x−m

‖x−m‖ .(4.5)

The condition (4.2) together with the definition of rS(·) yields that

lim
c→+0

rS(h0c)
c

= 1.(4.6)

Therefore, it follows that

‖µ̂+
S −m‖ = o

(
‖x−m‖

)
, as ‖x−m‖ → +0.

This favorable property of µ̂+
S is consistent with Proposition 4.2, which shows

the superiority of G+
S (µ; x) over GS(µ; x). The following example shows that

the estimator µ̂+
S is a generalization of the James-Stein positive-part estimator

to a location family f(‖x− µ‖) ∈ S1 satisfying the condition (4.2).

Example 4.1. Consider the Np (µ, Ip) case where (4.2) is satisfied. The
estimators (4.4) and (4.5) are respectively the James-Stein estimator and the
James-Stein positive-part estimator,

µ̂S = x− p − 2
‖x−m‖

x−m

‖x−m‖
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and

µ̂+
S = x− min

{
‖x−m‖ ,

p − 2
‖x−m‖

}
x−m

‖x−m‖ .

4.2. The case of the subfamily S2

Set c1 = max{−f ′(r)/f(r)} and r1 = (p − 2)/c1. Treatments parallel to
those in the previous subsection can be used in this subsection, except for the
fact that the equation GS(µ; x) = 0 does not always have any solution. It does
not have any solution if ‖x−m‖ < r1. By truncating the factor (p−2)/‖x−m‖
in GS(µ; x) at the value c1, we define the estimating function as

G̃S(µ; x) = −f ′(‖x− µ‖)
f(‖x− µ‖)

x− µ

‖x− µ‖ − min
{

c1 ,
p − 2

‖x−m‖

}
x−m

‖x−m‖ .(4.7)

The following proposition is fundamental in proving the superiority of G̃S(µ;
x) over GM (µ; x). In fact, the superiority is obtained as a corollary of the
proposition and Theorem 3.2.

Proposition 4.3. The estimating function G̃S(µ; x) satisfies the in-
equality ∥∥G̃S(µ; x)

∥∥2 ≤
∥∥GS(µ; x)

∥∥2

for any x ∈ R and µ ∈ R.

Proof. It is clear for x �∈ B(m; r1) that G̃S(µ; x) = GS(µ; x). A simple
calculation shows for x ∈ B(m; r1) that∥∥GS(µ; x)

∥∥2 −
∥∥G̃S(µ; x)

∥∥2

=
(

p − 2
‖x−m‖ − c1

) {
p − 2

‖x−m‖ + c1 + 2
f ′(‖x− µ‖)
f(‖x− µ‖)

x− µ

‖x− µ‖ · x−m

‖x−m‖

}

≥
(

p − 2
‖x−m‖ − c1

) {
p − 2

‖x−m‖ + c1 + 2
f ′(‖x− µ‖)
f(‖x− µ‖)

}
≥ 0.

Corollary 4.1. The estimating function G̃S(µ; x) is superior to the
likelihood estimating function GM (µ; x).

We can derive an estimating function superior to G̃S(µ; x) under the con-
dition (4.2) in Subsection 4.1.

Proposition 4.4. Under the condition (4.2), the estimating function

G̃+
S (µ; x) = − f ′(‖x− µ‖)

f(‖x− µ‖)
x− µ

‖x− µ‖(4.8)

− min
{

h0‖x−m‖ , c1 ,
p − 2

‖x−m‖

}
x−m

‖x−m‖
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is superior to the estimating function G̃S(µ; x), where h0 = limr→+0{−f ′(r)}/
{rf(r)}.

Proof. Set w(r) = min
{
c1, (p − 2)r−1

}
and B = B(m; r2) with r2 being

the unique solution to h0r = w(r). It is shown that min
{
h0r, c1, (p − 2) r−1

}
=

h0r if r < r2 and that min
{
h0r, c1, (p − 2) r−1

}
= w(r) otherwise. Noting that

G̃+
S (µ; x) = G̃S(µ; x) for x �∈ B, we have

E
[ ∥∥G̃S(µ; x)

∥∥2
]
− E

[ ∥∥G̃+
S (µ; x)

∥∥2
]

=
∫
B

∥∥∥∥−f ′(‖x− µ‖)
f(‖x− µ‖)

x− µ

‖x− µ‖ − w(‖x−m‖) x−m

‖x−m‖

∥∥∥∥
2

f(‖x− µ‖) dx

−
∫
B

∥∥∥∥−f ′(‖x− µ‖)
f(‖x− µ‖)

x− µ

‖x− µ‖ − h0 (x−m)
∥∥∥∥

2

f(‖x− µ‖) dx.

The proof is completed by applying Lemma 2 in Appendix with y = x − m,
a = µ−m, w1(r) = −f ′(r) / {rf(r)}, w2(r) = f(r), and w3(r) = w(r)/r.

Let µ̌S and µ̌+
S denote the two estimators induced from G̃S(µ; x) and

G̃+
S (µ; x), respectively. They are expressed as

µ̌S = x− rS

(
min

{
c1 ,

p − 2
‖x−m‖

})
x−m

‖x−m‖

and

µ̌+
S = x− rS

(
min

{
h0‖x−m‖ , c1 ,

p − 2
‖x−m‖

})
x−m

‖x−m‖ .

Again, the equality (4.6) gives that

‖µ̌+
S −m‖ = o

(
‖x−m‖

)
, as ‖x−m‖ → +0.

Such a desirable property of µ̌+
S is consistent with Proposition 4.4.

Example 4.2. Suppose that x has the density function (3.8) of a spherical t

distribution. Note that (3.8) satisfies the condition (4.2). Setting r1 = 2φ1/2
0 (p−

2)/(p + φ0), we obtain an expression of µ̌S as

µ̌S =




x−
√

φ0
x−m

‖x−m‖ if x ∈ B(m; r1),

x−
√

φ0

{
1 −

√
1 − r2

1‖x−m‖−2

}
x−m

r1
otherwise.
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When φ0 ≤ 3p − 8, we set r2 = φ
1/2
0 /2 and obtain

µ̌+
S =




x− 2r2
2

{
1 −

√
1 − r−2

2 ‖x−m‖2

}
x−m

‖x−m‖2
if ‖x−m‖ < r2,

x− 2r2
x−m

‖x−m‖ if r2 ≤ ‖x−m‖ < r1,

x− 2r2

r1

{
1 −

√
1 − r2

1 ‖x−m‖−2

}
(x−m) otherwise.

When φ0 > 3p − 8, we set r2 = {φ0(p − 2)/(p + φ0)}1/2 and obtain

µ̌+
S =




x− φ0

2

{
1 −

√
1 − (4/φ0) ‖x−m‖2

} x−m

‖x−m‖2
if ‖x−m‖ < r2,

x− φ0

2

{
1 −

√
1 − (4r4

2/φ0) ‖x−m‖−2

}
x−m

r2
2

otherwise.

5. Mutually independent case

We proceed with the case where the density function of x is a member of the
family

I0 =

{
p∏

i=1

f(xi − µi)

∣∣∣∣∣ the equation f ′(t) = 0 has a unique solution
and f(t) attains its maximum at this point

}
.

Fortunately, arguments similar to those in the previous section can be employed
also in this section. In fact, Theorem 3.2 will be again used to improve upon the
likelihood estimating function. A difference lies in the fact that component-wise
inequalities are obtained in this section.

The MLE is given as µ̂M = x − t0 1 with t0 being the unique solution to
f ′(t) = 0 and 1 = (1, . . . , 1)T ∈ R

p. It is obtained from the likelihood estimating
function GM (µ; x) in (3.5), whose i-th component has the form

GM,i (µ; x) = −f ′(xi − µi)
f(xi − µi)

.

The i-th component of GS(µ; x) in (3.6) is of the form

GS,i (µ; x) = −f ′(xi − µi)
f(xi − µi)

− p − 2
‖x−m‖

xi − mi

‖x−m‖ .

Suppose that x �= m. Then a necessary and sufficient condition for the
existence of the solution to the equation GS,i (µ; x) = 0 is that the range of
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−f ′(t)/f(t) is R. We will focus on the two subfamilies of I0,

I1 =

{
p∏

i=1

f(xi − µi) ∈ I0

∣∣∣∣ the range of
−f ′(t)
f(t)

is R

}

and

I2 =

{
p∏

i=1

f(xi − µi) ∈ I0

∣∣∣∣ the range of
−f ′(t)
f(t)

is a bounded closed interval

}
.

In place of rS(c) in Section 4, we define tS(c) as the solution to the equation
f ′(t) / f(t) + c = 0 which is the closest to t0.

5.1. The case of the subfamily I1

Theorem 3.2 gives the following proposition.

Proposition 5.1. The estimating function GS(µ; x) is superior to the
likelihood estimating function GM (µ; x).

To improve upon GS(µ; x), we assume the following condition

f(t) is even,
−f ′(t)
tf(t)

is non-increasing on R
+, and lim

t→0

−f ′(t)
tf(t)

exists,(5.1)

which is the counterpart of the condition (4.2) in Section 4. This condition
implies that f ′(0) = 0 and therefore that µ̂M = x.

Proposition 5.2. Under the condition (5.1), define G+
S (µ; x) as

G+
S (µ; x) =

(
G+

S,1 (µ; x), . . . , G+
S,p (µ; x)

)T
,

G+
S,i (µ; x) = −f ′(xi − µi)

f(xi − µi)
− min

{
h0‖x−m‖, p − 2

‖x−m‖

}
xi − mi

‖x−m‖ ,

where h0 = limt→ 0{−f ′(t)} / {tf(t)}. Then the estimating function G+
S (µ; x)

is superior to the estimating function GS(µ; x). Especially, it holds for each
i ∈ {1, . . . , p} and for any µ ∈ R that

E
[ {

G+
S,i (µ; x)

}2
]
≤ E

[ {
GS,i (µ; x)

}2
]
.

Proof. Set B = B(m; r0) with r0 = {(p − 2)/h0}1/2 . Since G+
S,i (µ; x)

differs from GS,i (µ; x) only for x ∈ B, we have

E
[ {

GS,i (µ; x)
}2

]
− E

[ {
G+

S,i (µ; x)
}2

]

=
∫
B

∣∣∣∣−f ′(xi − µi)
f(xi − µi)

− p − 2
‖x−m‖

xi − mi

‖x−m‖

∣∣∣∣
2 p∏

j=1

f(xj − µj) dx

−
∫
B

∣∣∣∣−f ′(xi − µi)
f(xi − µi)

− h0(xi − mi)
∣∣∣∣
2 p∏

j=1

f(xj − µj) dx.
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Here note that {−f ′(t)} / {tf(t)} is even since f(t) is even. In order to prove
the latter part, we have only to apply Lemma 4 in Appendix with yi = xi − mi,
ai = µi−mi, w1(s) = −f ′(s) / {sf(s)}, w2(s) = f(s), and w3(s, r) = (p−2) r−2.
The former part follows from the latter.

The latter part of Proposition 5.2 shows that G+
S (µ; x) dominates GS(µ; x)

component-wisely. This is a stronger and more general version of the result in
Efron and Morris (1973, Section 2). We will obtain a similar proposition in
Subsection 5.2.

Let µ̂S and µ̂+
S be induced from GS(µ; x) and G+

S (µ; x), respectively. The
i-th components of these estimators are expressed as

µ̂S,i = xi − tS

(
p − 2

‖x−m‖
xi − mi

‖x−m‖

)
(5.2)

and

µ̂+
S,i = xi − tS

(
min

{
h0‖x−m‖ ,

p − 2
‖x−m‖

}
xi − mi

‖x−m‖

)
.(5.3)

The condition (5.1) and the definition of tS(·) yield the equality

lim
c→0

tS(h0c)
c

= 1,(5.4)

which implies that∣∣µ̂+
S,i − mi

∣∣ = o
(
|xi − mi|

)
, as ‖x−m‖ → +0 (1 ≤ i ≤ p).

Example 5.1. Suppose that x is distributed according to the generalized
inverse Gaussian distribution having the density function

p∏
i=1

1
2ηλ0

i Kλ0(τ0)
xλ0−1
i exp

{
−τ0

2

(
ηi
xi

+
xi

ηi

)}
,

where τ0 and λ0 are known positive constants and Kλ(·) is the modified Bessel
function of the third kind. The density function for yi = log xi is given by
f(yi − µi), where µi = log ηi and f(y) = exp(λ0y − τ0 cosh y) / {2Kλ0(τ0)}. The
transformed density function belongs to I1. Theorem 3.2 can be applied to
obtaining a Pythagorean relationship

E

[
p∑

i=1

{
λ0 −

τ0

2

(
xi

ηi
− ηi

xi

)}2
]

= E


 p∑

i=1

{
λ0 −

τ0

2

(
xi

ηi
− ηi

xi

)
+

(p − 2)(log xi − mi)∑p
j=1(log xj − mj)2

}2



+ E

[
(p − 2)2∑p

i=1(log xi − mi)2

]
.
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We obtain an expression of the estimator η̂S = (η̂S,1, . . . , η̂S,p)T as

η̂S,i =
{√

a2
i (x, m) + 1 − ai(x, m)

}
xi (1 ≤ i ≤ p),

where

ai(x, m) =
1
τ0

{
λ0 +

(p − 2)(log xi − mi)∑p
j=1(log xj − mj)2

}
.

5.2. The case of the subfamily I2

Set c1 = max{−f ′(t) / f(t)} and d1 = min{−f ′(t) / f(t)}. The equation
GS,i (µ; x) = 0 does not have any solution unless d1 ≤ (p − 2)(xi − mi)/‖x −
m‖2 ≤ c1. In this subsection we will use the notation

T[a,b]

(
c(x)

)
=




a if c(x) < a,
b if c(x) > b,
c(x) otherwise,

where a and b are real numbers such that a < b and c(x) is a function on R
p.

Define a new estimating function as

G̃S(µ; x) =
(

G̃S,1 (µ; x), . . . , G̃S,p (µ; x)
)T

,

G̃S,i (µ; x) = −f ′(xi − µi)
f(xi − µi)

− T[d1,c1]

(
p − 2

‖x−m‖
xi − mi

‖x−m‖

)
.

Then we obtain the following proposition and its corollary.

Proposition 5.3. The estimating function G̃S(µ; x) satisfies the in-
equality ∥∥G̃S(µ; x)

∥∥2 ≤
∥∥GS(µ; x)

∥∥2

for any x ∈ R and µ ∈ R. Especially, it holds for each i ∈ {1, . . . , p} and for
any x ∈ R and µ ∈ R that{

G̃S,i (µ; x)
}2 ≤

{
GS,i (µ; x)

}2
.

Proof. Note that

GS,i (µ; x) =
{
−f ′(xi − µi)

f ′(xi − µi)
− c1

}
+

{
c1 −

p − 2
‖x−m‖

xi − mi

‖x−m‖

}

=
{
−f ′(xi − µi)

f ′(xi − µi)
− d1

}
+

{
d1 −

p − 2
‖x−m‖

xi − mi

‖x−m‖

}
.

Hence we obtain the latter part, from which the former follows.
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Corollary 5.1. The estimating function G̃S(µ; x) is superior to the
likelihood estimating function GM (µ; x).

A further improvement can be made on G̃S(µ; x) under the condition (5.1)
in Subsection 5.1. Since d1 = −c1, it follows that

G̃S,i (µ; x) = −f ′(xi − µi)
f(xi − µi)

− T[−c1,c1]

(
p − 2

‖x−m‖
xi − mi

‖x−m‖

)

= −f ′(xi − µi)
f(xi − µi)

− min
{

c1‖x−m‖
|xi − mi|

,
p − 2

‖x−m‖

}
xi − mi

‖x−m‖ .

Proposition 5.4. Under the condition (5.1), define G̃+
S (µ; x) as

G̃+
S (µ; x) =

(
G̃+

S,1 (µ; x), . . . , G̃+
S,p (µ; x)

)T
,

G̃+
S,i (µ; x) = −f ′(xi − µi)

f(xi − µi)

− min
{

h0‖x−m‖, c1‖x−m‖
|xi − mi|

,
p − 2

‖x−m‖

}
xi − mi

‖x−m‖ ,

where h0 = limt→ 0{−f ′(t)} / {tf(t)}. Then the estimating function G̃+
S (µ; x)

is superior to the estimating function G̃S(µ; x). Especially, it holds for each
i ∈ {1, . . . , p} and for any µ ∈ R that

E

[{
G̃+

S,i (µ; x)
}2

]
≤ E

[{
G̃S,i (µ; x)

}2
]

.

Proof. Setting w(s, r) = min
{
c1r/s, (p − 2)/r

}
and Bi =

{
x ∈ R

p
∣∣

h0‖x−m‖ < w
(
|xi − mi|, ‖x−m‖

)}
, we see that

E

[{
G̃S,i (µ; x)

}2
]
− E

[{
G̃+

S,i (µ; x)
}2

]

=
∫
Bi

∣∣∣∣−f ′(xi − µi)
f(xi − µi)

− w (|xi − mi|, ‖x−m‖) xi − mi

‖x−m‖

∣∣∣∣
2 p∏

j=1

f(xj − µj) dx

−
∫
Bi

∣∣∣∣−f ′(xi − µi)
f(xi − µi)

− h0(xi − mi)
∣∣∣∣
2 p∏

j=1

f(xj − µj) dx.

The latter part is obtained by applying Lemma 4 in Appendix with yi = xi−mi,
ai = µi − mi, w1(s) = −f ′(s) / {sf(s)}, w2(s) = f(s), and w3(s, r) = w(s, r)/r.
The former part follows from the latter.

Let µ̌S and µ̌+
S denote the estimators induced from G̃S(µ; x) and G̃+

S (µ; x),
respectively. The i-th components of these estimators are of the form
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µ̌S,i = xi − tS

(
min

{
c1‖x−m‖
|xi − mi|

,
p − 2

‖x−m‖

}
xi − mi

‖x−m‖

)

and

µ̌+
S,i = xi − tS

(
min

{
h0‖x−m‖, c1‖x−m‖

|xi − mi|
,

p − 2
‖x−m‖

}
xi − mi

‖x−m‖

)
.

Just as in Subsection 5.1, the equality (5.4) gives an intuitively good property of
µ̌+
S : ∣∣ µ̌+

S,i − mi

∣∣ = o
(
|xi − mi|

)
, as ‖x−m‖ → +0 (1 ≤ i ≤ p).

Example 5.2. Consider the case where x is distributed according to a
mutually independent t distribution having the density function

p∏
i=1

1√
φ0B(φ0/2, 1/2)

{
1 +

(xi − µi)2

φ0

}−(φ0+1)/2

,

where φ0 is a known positive constant. Note that this density function satisfies
the condition (5.1). The density function with small φ0 is useful in the field of the
financial engineering (Nagahara, 1999). Especially when φ0 = 1, it is the density
function of a mutually independent Cauchy distribution. The solution t0 to
f ′(t) = 0 is zero, and f ′(t)/f(t)+c = 0 has two solutions for |c| ≤ (φ0+1)/2φ1/2

0 .
The one closer to t0 = 0 is given as

tS(c) =
2φ0c

φ0 + 1 +
√

(φ0 + 1)2 − 4φ0c2
.

The i-th component of µ̌S is expressed as

µ̌S,i =




xi −
√

φ0 if
(p − 2)(xi − mi)

‖x−m‖2
>

φ0 + 1
2
√

φ0
,

xi +
√

φ0 if
(p − 2)(xi − mi)

‖x−m‖2
< −φ0 + 1

2
√

φ0
,

xi − tS

(
(p − 2)(xi − mi)

‖x−m‖2

)
otherwise.

The i-th component of µ̌+
S is given as
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µ̌+
S,i =




xi − tS

(
(φ0 + 1)(xi − mi)

φ0

)

if |xi − mi| <
√

φ0

2
and ‖x−m‖2 <

(p − 2)φ0

φ0 + 1
,

xi −
√

φ0

if xi − mi ≥
√

φ0

2
and

(p − 2)(xi − mi)
‖x−m‖2

>
φ0 + 1
2
√

φ0
,

xi +
√

φ0

if xi − mi ≤ −
√

φ0

2
and

(p − 2)(xi − mi)
‖x−m‖2

< −φ0 + 1
2
√

φ0
,

xi − tS

(
(p − 2)(xi − mi)

‖x−m‖2

)
otherwise.

6. Electrostatic views

In this section we are to throw light on the arguments in Sections 3 and 4
from the viewpoint of electrostatics. Electrostatics is the theory of electricity
without time-dependency. In this theory, the dimension p is three, and things
are described by the Poisson differential equation

�u(x) = −4πρ(x),(6.1)

where u(x) is an electrostatic potential function and ρ(x) is the corresponding
electric charge density, the amount of electric charge per unit volume. See Purcell
(1985, Section 2.10) for details. A naturally extended version of the equation (6.1)
to the p-dimensional case is

�u(x) = −(p − 2)ωpρ(x)(6.2)

with ωp being the surface area of the p-dimensional unit ball.
Let δp(·) denote the p-dimensional Dirac δ-function. It should be noted that

�uC(x−m) = −(p − 2)ωp δp(x−m).

Since δp(x−m) represents the electric charge density of a point-charge of mag-
nitude one and located at m, the function uC(x − m) is interpreted as the
electrostatic potential function produced by that point-charge.

Theorems 3.1 and 3.2 use the electrostatic potential function which one
point-charge produces. These are generalized in the following way. Suppose
that k positive point-charges of magnitude α1, . . . , αk are located at k different
points m1, . . . ,mk, respectively. It can be easily verified from (6.2) that these
point-charges produce the electrostatic potential function

∑k
i=1 αiuC(x − mi).

This fact is well known as the principle of superposition in electrostatics. This
electrostatic potential function is used in the following two corollaries. Note that
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these corollaries are closely related to the notion of multiple shrinkage estimation
proposed by George (1986).

Corollary 6.1. In addition to the condition (3.1), assume that

∫
Rp

∥∥∥∥∥∇ log
k∑

i=1

αiuC(x−mi)

∥∥∥∥∥
2

g(x) dx < ∞(6.3)

and that

lim
K→∞

∫
‖x‖=K

g(x)

{
∇ log

k∑
i=1

αiuC(x−mi)

}
· ndS = 0.(6.4)

Then the following Pythagorean relationship holds :

∫
Rp

∥∥∇ log g(x)
∥∥2

g(x) dx =
∫
Rp

∥∥∥∥∥∇ log
g(x)∑k

i=1 αiuC(x−mi)

∥∥∥∥∥
2

g(x) dx

+
∫
Rp

∥∥∥∥∥∇ log
k∑

i=1

αiuC(x−mi)

∥∥∥∥∥
2

g(x) dx.

Proof. The proof is similar to that of Theorem 3.1. Let ε be a positive
number less than mini�=j ‖mi −mj‖/2. And let K be a positive number larger
than maxi ‖mi‖ + ε. We apply Green’s formula to the following integral

∫
V

∇ g(x)∑k
i=1 αiuC(x−mi)

· ∇
k∑

i=1

αiuC(x−mi) dx,

where V = B(0;K)\
⋃k

j=1 B(mj ; ε). The proof is completed by considering the
limit K → ∞ and ε → +0.

Corollary 6.2. Assume that the Fisher information matrix of f(x−µ)
exists. Then the following Pythagorean relationship holds :

E
[ ∥∥∇ log f(x− µ)

∥∥2
]

= E




∥∥∥∥∥∇ log
f(x− µ)∑k

i=1 αiuC(x−mi)

∥∥∥∥∥
2



+ E




∥∥∥∥∥∇ log
k∑

i=1

αiuC(x−mi)

∥∥∥∥∥
2

 .

Proof. Suffice it to say that the three conditions (3.1), (6.3) and (6.4)
with g(x) = f(x−µ) are satisfied. The proof is parallel to that of Theorem 3.2
and is therefore omitted.
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Next, we will give another representation of each of the three estimating
functions in Section 4, G+

S (µ; x), G̃S(µ; x) and G̃+
S (µ; x). Each representation

will enable us to interpret each of the estimating functions from the viewpoint of
an electrostatic potential function and the corresponding electric charge density.
We introduce three electrostatic potential functions as

u+
C(x) =

{
r2−p
0 exp

{
h0

(
r2
0 − ‖x‖2

)
/2

}
if ‖x‖ < r0,

‖x‖2−p otherwise,
(6.5)

ũC(x) =

{
r2−p
1 exp

{
c1 (r1 − ‖x‖)

}
if ‖x‖ < r1,

‖x‖2−p otherwise,
(6.6)

and

ũ+
C(x) =




r2−p
1 exp

{
c1 (r1 − r2)

}
exp

{
h0

(
r2
2 − ‖x‖2

)
/2

}
if ‖x‖ < r2,

r2−p
1 exp

{
c1 (r1 − ‖x‖)

}
if r2 ≤ ‖x‖ < r1,

‖x‖2−p otherwise,

(6.7)

where h0 = limr→+0{−f ′(r)/rf(r)}, r0 = {(p − 2)/h0}1/2, c1 = max{−f ′(r)/
f(r)}, r1 = (p − 2)/c1 and r2 = c1/h0 as defined in Section 4. For simplicity, we
assume that (p − 2)h0 > c2

1 in (6.7) so that r2 < r1. The graphs of uC(x) and
u+
C(x) as functions of r = ‖x‖ are presented in Figure 1, showing that u+

C(r) is
much smaller than uC(r) for small r, say, r < 0.3. Those of uC(x), ũC(x) and
ũ+
C(x) as functions of r = ‖x‖ are drawn in Figure 2. We observe the inequalities

among the three potential functions, ũ+
C(r) ≤ ũC(r) ≤ uC(r). In addition the

strict inequalities ũ+
C(r) < ũC(r) < uC(r) hold for small values of r. By using

these electrostatic potential functions, we find the following expressions:

G+
S (µ; x) = −∇ log f(‖x− µ‖) + ∇ log u+

C(x−m),

G̃S(µ; x) = −∇ log f(‖x− µ‖) + ∇ log ũC(x−m),

G̃+
S (µ; x) = −∇ log f(‖x− µ‖) + ∇ log ũ+

C(x−m).

Recalling the equation (6.2), we obtain the electric charge densities corre-
sponding to the electrostatic potential functions (6.5)–(6.7) as

ρ+
C(x) =




p − 2
ωp r2

0

(
p

p − 2
− ‖x‖2

r2
0

)
u+
C(x) if ‖x‖ < r0,

0 otherwise,

ρ̃C(x) =




p − 2
ωp r2

1

(
p − 1
p − 2

r1

‖x‖ − 1
)

ũC(x) if ‖x‖ < r1,

0 otherwise,
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Figure 1. The functions uC(r) in the dotted line and u+
C(r) in the solid line for p = 3 and h0 = 1.

Figure 2. The functions uC(r) in the dotted line, ũC(r) in the solid thin line and ũ+
C(r) in the

solid thick line for p = 3, c1 = 1 and h0 = 2.

and

ρ̃+
C(x) =




p − 2
ωp r1r2

(
p

p − 2
− ‖x‖2

r1r2

)
ũ+
C(x) if ‖x‖ < r2,

p − 2
ωp r2

1

(
p − 1
p − 2

r1

‖x‖ − 1
)

ũ+
C(x) if r2 ≤ ‖x‖ < r1,

0 otherwise,

respectively. Note that the above functions are all non-negative. The behavior
of ρ+

C(x) as a function of r = ‖x‖ is illustrated in Figure 3, indicating that ρ+
C(r)

is decreasing and has a point of discontinuity. Those of ρ̃C(x) and ρ̃+
C(x) as

functions of r = ‖x‖ are graphed in Figure 4. We learn that ρ̃+
C(r) is bounded to

the above while the value of ρ̃C(r) becomes large as r approaches zero. We also
find that the two functions ρ̃+

C(r) and ρ̃C(r) cross at some r less than 0.5.
Let us compute the total electric charge in each case. Integration by parts

gives that ∫
Rp

ρ+
C(x) dx =

∫
Rp

ρ̃C(x) dx =
∫
Rp

ρ̃+
C(x) dx = 1.
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Figure 3. The function ρ+
C(r) for the same parameter setting as in Figure 1.

Figure 4. The functions ρ̃C(r) in the thin line and ρ̃+
C(r) in the thick line for the same parameter

setting as in Figure 2.

This shows that in each case the total electric charge is the same as that due
to δp(x). The electric charge density δp(x) is concentrated in the origin. In
comparison with δp(x), the electric charge density ρ+

C(x) represents that of an
electrically charged ball with center 0 and radius r0. Similarly, ρ̃C(x) and ρ̃+

C(x)
are interpreted as those of electrically charged balls with center 0 and radius r1.
The difference between ρ̃C(x) and ρ̃+

C(x) is restricted within the ball with center
0 and radius r2.

Appendix
Four technical lemmas are presented here. Lemma 1 is used to prove Lemma

2, which is essential to Propositions 4.2 and 4.4 in Section 4. Lemma 3 gives
Lemma 4, which is applied to proving Propositions 5.2 and 5.4 in Section 5.

Lemma 1. Suppose that w1(r) (r ≥ 0) is non-increasing and that w2(r) (r ≥
0) satisfies the condition that B =

{
y ∈ R

p |w2(‖y‖) > 0
}

is not empty. Then,
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it holds for any a ∈ R
p that∫
B

a · yw1(‖y − a‖)w2(‖y‖) dy ≥ 0,

when the left-hand side exists.

Proof. Let y be an arbitrary point in B. We have only to consider y �= 0
since the integrand takes the value zero for y = 0. The point −y is also in B
because of the spherical symmetry of B. Note that ‖y−a‖ ≤ ‖y+a‖ if a ·y ≥ 0
and that ‖y − a‖ > ‖y + a‖ otherwise. By evaluating the integrand for y and
−y, we find that

a · yw1(‖y − a‖)w2(‖y‖) + a · (−y)w1(‖ − y − a‖)w2(‖ − y‖)
= a · y {w1(‖y − a‖) − w1(‖y + a‖)} w2(‖y‖)
≥ 0.

Lemma 2. Suppose that w1(r) (r ≥ 0) and w2(r) (r ≥ 0) are both non-
increasing and also that w2(r) is non-negative. Suppose further that w3(r) (r ≥ 0)
satisfies the condition that B =

{
y ∈ R

p |w3(‖y‖) > w1(0)
}

is not empty. Then,
it holds for any a ∈ R

p that∫
B

∥∥∥w1(‖y − a‖) (y − a) − w3(‖y‖)y
∥∥∥2

w2(‖y − a‖) dy

≥
∫
B

∥∥∥w1(‖y − a‖) (y − a) − w1(0)y
∥∥∥2

w2(‖y − a‖) dy,

when both sides exist.

Proof. Note that∥∥∥w1(‖y − a‖) (y − a) − w3(‖y‖)y
∥∥∥2

−
∥∥∥w1(‖y − a‖) (y − a) − w1(0)y

∥∥∥2

=
{
w3(‖y‖) + w1(0) − 2w1(‖y − a‖)

} {
w3(‖y‖) − w1(0)

}
‖y‖2

+ 2a · yw1(‖y − a‖)
{
w3(‖y‖) − w1(0)

}
.

It is found for y ∈ B that{
w3(‖y‖) + w1(0) − 2w1(‖y − a‖)

} {
w3(‖y‖) − w1(0)

}
‖y‖2 w2(‖y − a‖) ≥ 0.

By replacing w1(r) with w1(r)w2(r) and w2(r) with w3(r) −w1(0) in Lemma 1,
we have ∫

B
a · yw1(‖y − a‖)w2(‖y − a‖)

{
w3(‖y‖) − w1(0)

}
dy ≥ 0.
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Lemma 3. Suppose that w1(s) (s ≥ 0) and w2(s) (s ≥ 0) are both non-
increasing and also that w2(s) is non-negative. Suppose further that w3(s, r) (s ≥
0, r ≥ 0) satisfies the condition that Bi =

{
y ∈ R

p |w3(|yi|, ‖y‖) > 0
}

is not
empty. Then, it holds for each i ∈ {1, . . . , p} and for any a = (a1, . . . , ap)T ∈ R

p

that ∫
Bi

aiyi w1(|yi − ai|)w3(|yi|, ‖y‖)
p∏

j=1

w2(|yj − aj |) dy ≥ 0,

when the left-hand side exists.

Proof. The proof is similar to that of Lemma 1. We have only to evaluate
the integrand for a pair of points, y = (y1, . . . , yi, . . . , yp)T and ỹ = (y1, . . . , yi−1,
−yi, yi+1, . . . , yp)T .

Lemma 4. Suppose that w1(s) (s ≥ 0) and w2(s) (s ≥ 0) are both non-
increasing and also that w2(s) is non-negative. Suppose further that w3(s, r) (s ≥
0, r ≥ 0) satisfies the condition that Bi =

{
y ∈ R

p |w3(|yi|, ‖y‖) > w1(0)
}

is not
empty. Then, it holds for each i ∈ {1, . . . , p} and for any a = (a1, . . . , ap)T ∈ R

p

that ∫
Bi

{
w1(|yi − ai|) (yi − ai) − w3(|yi|, ‖y‖) yi

}2
p∏

j=1

w2(|yj − aj |) dy

≥
∫
Bi

{
w1(|yi − ai|) (yi − ai) − w1(0) yi

}2
p∏

j=1

w2(|yj − aj |) dy,

when both sides exist.

Proof. The proof is similar to that of Lemma 2. We use Lemma 3 instead
of Lemma 1.
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