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CHARACTERIZATION OF BALANCED FRACTIONAL
2m FACTORIAL DESIGNS OF RESOLUTION R∗({1}|3)

AND GA-OPTIMAL DESIGNS

Masahide Kuwada*, Yoshifumi Hyodo** and Dong Han***

In this paper, based on the assumption that the four-factor and higher-order
interactions are to be negligible, we consider a balanced fractional 2m factorial de-
sign derived from a simple array such that all the main effects are estimable, i.e.,
resolution R∗({1}|3). In this situation, using the algebraic structure of the triangular
multidimensional partially balanced association scheme and a matrix equation, we
can get designs of four types of resolutions: the first is of resolution R({1}|3), the sec-
ond is of resolution R({0, 1}|3), the third is of resolution R({1, 2}|3), i.e., resolution
VI, and the last is of resolution R({0, 1, 2}|3), i.e., resolution VI. This paper gives the
characterization of designs mentioned above, and also it gives optimal designs with
respect to the generalized A-optimality criterion for 6 ≤ m ≤ 8 when the number of
assemblies is less than the number of non-negligible factorial effects.

Key words and phrases: Association algebra, BFF designs, estimable parametric
functions, GA-optimality criterion, resolution, simple arrays.

1. Introduction

The concept of a balanced array (B-array) was first introduced by Chakravarti
(1956) as a generalization of an orthogonal array. Under certain conditions, a
B-array of strength 2� and two symbols turns out to be a balanced fractional
2m factorial (2m-BFF) design of resolution 2� + 1 (e.g., Srivastava (1970), and
Yamamoto et al. (1975)), where 2� ≤ m. The characteristic roots of the infor-
mation matrix of a 2m-BFF design of resolution V (i.e., � = 2) were obtained by
Srivastava and Chopra (1971). By applying the algebraic structure of the trian-
gular multidimensional partially balanced (TMDPB) association scheme, their
results were extended to 2m-BFF designs of resolution 2� + 1 by Yamamoto et
al. (1976).

As the extension of the concept of resolution, Yamamoto and Hyodo (1984)
discussed the extended concept of resolution for 2m fractions.

Definition 1.1. Under the assumption that the (� + 1)-factor and higher-
order interactions are to be negligible, if the p1-factor, the p2-factor, . . . , and the
pf -factor interactions are estimable, where 0 ≤ p1 < p2 < · · · < pf ≤ �, then a
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design is said to be of resolution R∗({p1, p2, . . . , pf}|�), and in addition, if the
remaining factorial effects are confounded with each other, then a design is said to
be of resolution R({p1, p2, . . . , pf}|�). In particular, when pi = i−1(1 ≤ i ≤ f)
and f = � + 1, it is of resolution 2� + 1, and when pi = i − 1 (1 ≤ i ≤ f) and
f = � or pi = i (1 ≤ i ≤ f) and f = � − 1, it is of resolution 2�.

Note that if a design is of resolution R∗({p1, p2, . . . , pf}|�), then it is also
of resolution R({q1, q2, . . . , qg}|�), where 0 ≤ q1 < q2 < · · · < qg ≤ � and
{q1, q2, . . . , qg} ⊃ {p1, p2, . . . , pf}. For example, a resolution R∗({1}|3) de-
sign is of resolution R({1}|3),R({0, 1}|3),R({1, 2}|3),R({1, 3}|3),R({0, 1, 2}|3),
R({0, 1, 3}|3),R({1, 2, 3}|3) or R({0, 1, 2, 3}|3). Here a resolution R({0, 1, 2}|3)
or R({1, 2}|3) design is of resolution VI, and a resolution R({0, 1, 2, 3}|3) one is
of resolution VII.

Some estimable parametric functions of the interesting factorial effects have
been studied by several authors (e.g., Hyodo (1989), and Kuwada and Yanai
(1998)). Especially using the properties of the TMDPB association algebra and
a matrix equation, Ghosh and Kuwada (2001) obtained some estimable para-
metric functions for 2m-BFF designs. As a generalization of the A-optimality
criterion, Kuwada et al. (2002) have introduced the generalized A-optimality
(GA-optimality) criterion and they have also given GA-optimal 2m-BFF designs
of resolution R∗({0, 1}|3) derived from simple arrays for 6 ≤ m ≤ 8. Here a
simple array is a B-array of full strength and index set {λi | 0 ≤ i ≤ m}, i.e., a
B-array of strength m and size N having m constraints, two symbols and index
set {λi}, and it is written as SA(m; {λi}) for brevity. A necessary and suffi-
cient condition for a B-array of strength 2� to be a 2m-BFF design of resolution
R({1, . . . , � − 1}|�), i.e., resolution 2�, was given by Shirakura (1980).

In this paper, using the properties of the TMDPB association algebra and
the matrix equation, we characterize 2m-BFF designs of resolution R∗({1}|3)
derived from simple arrays, and we give optimal designs with respect to the GA-
optimality criterion for 6 ≤ m ≤ 8 when the number of assemblies (or treatment
combinations) is less than the number of non-negligible factorial effects.

2. Preliminaries

Consider a fractional 2m factorial design, T , say, with N assemblies, where
the four-factor and higher-order interactions are assumed to be negligible and
m ≥ 6. Then the 1× ν3 vector of non-negligible factorial effects is given by Θ′ =
(θ′

0;θ
′
1;θ

′
2;θ

′
3), where A′ is the transpose of a matrix A, ν3 = d0 + d1 + d2 + d3,

dp =
(
m
p

)
, θ′

0 = {θφ}, θ′
1 = {θt | 1 ≤ t ≤ m}, θ′

2 = {θt1t2 | 1 ≤ t1 < t2 ≤ m}
and θ′

3 = {θt1t2t3 | 1 ≤ t1 < t2 < t3 ≤ m}. Here θφ, θt, θt1t2 and θt1t2t3 are the
general mean, the main effect of the t-th factor, the two-factor interaction of the
t1-th and t2-th ones, and the three-factor one of the t1-th, t2-th and t3-th ones,
respectively. Thus the linear model based on T is given by

ε[y(T )] = ET Θ, Var[y(T )] = σ2IN ,



CHARACTERIZATION OF 2m-BFF DESIGNS 183

where y(T ), ET and Ip are an N×1 vector of observations based on T , the design
matrix of size N × ν3 whose elements are either 1 or −1 and the identity matrix
of order p, respectively. Here ε[y ] denotes the expected value of a random vector
y , and σ2 may or may not be known. Then the normal equations for estimating
Θ are given by

MT Θ̂ = E′
Ty(T ),(2.1)

where MT (= E′
T ET ) is the information matrix of order ν3.

Let A
(u,v)
α and D

(u,v)
α (α ≤ u, v ≤ 3; 0 ≤ α ≤ 3) be the du × dv local

association matrices and the ν3×ν3 ordered association matrices of the TMDPB
association scheme, respectively. Further let A

#(u,v)
β and D

#(u,v)
β (β ≤ u, v ≤

3; 0 ≤ β ≤ 3) be respectively the matrices of size du × dv and of order ν3, where
the relationship between A

(u,v)
α and A

#(u,v)
β , and D

(u,v)
α and D

#(u,v)
β are given by

A(u,v)
α

(
= A(v,u)

α

′)
=

u∑
β=0

z
(u,v)
βα A

#(u,v)
β , D(u,v)

α

(
= D(v,u)

α

′)
=

u∑
β=0

z
(u,v)
βα D

#(u,v)
β

(2.2a)

for α ≤ u ≤ v ≤ 3 and 0 ≤ α ≤ 3,

A
#(u,v)
β

(
= A

#(v,u)
β

′)
=

u∑
α=0

zβα
(u,v)A

(u,v)
α , D

#(u,v)
β

(
= D

#(v,u)
β

′)
=

u∑
α=0

zβα
(u,v)D

(u,v)
α

(2.2b)

for β ≤ u ≤ v ≤ 3 and 0 ≤ β ≤ 3,

z
(u,v)
βα =

α∑
b=0

{
(−1)α−b

(
u − β

b

)(
u − b

u − α

)

×
(

m − u − β + b

b

)√(
m − u − β

v − u

)(
v − β

v − u

) /(
v − u + b

b

)}

for u ≤ v,

zβα
(u,v) = φβz

(u,v)
βα

/ {(
m

u

)(
u

α

)(
m − u

v − u + α

)}
for u ≤ v,

φβ =
(

m

β

)
−

(
m

β − 1

)(2.3)

(see Shirakura and Kuwada (1976)), and Yamamoto et al. (1976)). The proper-
ties of A

#(u,v)
β ’s and D

#(u,v)
β ’s are cited in the following:
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u∑
β=0

A
#(u,u)
β = Idu , A

#(u,w)
β A#(w,v)

γ = δβγA
#(u,v)
β , rank

{
A

#(u,v)
β

}
= φβ,

(2.4)

3∑
u=0

u∑
β=0

D
#(u,u)
β = Iν3 , D

#(u,w)
β D#(s,v)

γ = δwsδβγD
#(u,v)
β , rank

{
D

#(u,v)
β

}
= φβ

(see Yamamoto et al. (1976)), where δpq is the Kronecker delta.
Let A = [D(u,v)

α | α ≤ u, v ≤ 3; 0 ≤ α ≤ 3], where [D(u,v)
α ] denotes the algebra

generated by the linear closure of these matrices indicated in the bracket [ ].
Note that A is called the TMDPB association algebra. Then from (2.2a,b), we
get A = [D#(u,v)

β | β ≤ u, v ≤ 3; 0 ≤ β ≤ 3]. Further let Aβ = [D#(u,v)
β | β ≤

u, v ≤ 3] for 0 ≤ β ≤ 3. Then the following is a special case due to Yamamoto
et al. (1976):

Proposition 2.1. (I) The TMDPB association algebra A generated by
D

#(u,v)
β (β ≤ u, v ≤ 3; 0 ≤ β ≤ 3) is semisimple and completely reducible

matrix algebra containing Iν3.
(II) Aβ are the minimal two-sided ideals of A.

(III) A is decomposed into the direct sum of four two-sided ideals Aβ of A.
(IV) Aβ have D

#(u,v)
β as their bases, and each ideal Aβ is isomorphic to the

complete (4 − β) × (4 − β) matrix algebra with multiplicity φβ.

Let T be a 2m-BFF design derived from an SA(m; {λi}). Then N =∑m
i=0

(
m
i

)
λi, and the information matrix MT associated with T is given by

MT =
3∑

u=0

3∑
v=0

min(u,v)∑
α=0

γ|v−u|+2αD(u,v)
α =

3∑
u=0

3∑
v=0

min(u,v)∑
β=0

κu−β,v−β
β D

#(u,v)
β ,

where

γi =
m∑

j=0

i∑
p=0

(−1)p

(
i

p

)(
m − i

j − i + p

)
λj for 0 ≤ i ≤ 6,

κu,v
β

(
= κv,u

β

)
=

β+u∑
α=0

γv−u+2αz
(β+u, β+v)
βα for 0 ≤ u ≤ v ≤ 3 − β

(see Yamamoto et al. (1976)). Here the relationship between κu,v
β ’s and λi’s are

given in Appendix A. Thus from Proposition 2.1, MT associated with T is isomor-
phic to ‖ κu,v

β ‖ (= Kβ, say) of order (4−β) for 0 ≤ β ≤ 3, i.e., there exists an or-
thogonal matrix Q of order ν3 such that Q′MT Q = diag[K0;K1, . . . , K1;K2, . . . ,
K2;K3, . . . , K3], where the multiplicities of Kβ are φβ. The matrices Kβ are
called the irreducible representations of MT with respect to the ideals Aβ.
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Remark 2.1. The first, the second, . . . , and the last rows (and columns) of
Kβ(0 ≤ β ≤ 3) correspond to the β-factor interactions, the (β + 1)-factor ones,
. . . , and the three-factor ones, respectively.

Proposition 2.2 (see Hyodo (1989)). Let T be an SA(m; {λi}). Then
(I) rank{Kβ} = rβ(0 ≤ β ≤ 3) if and only if exactly rβ of the indices λi(β ≤
i ≤ m − β) are nonzero, where rβ < 4 − β,

(II) if rank{Kβ} = rβ(≤ 4 − β), then the first rβ rows (and columns) of Kβ are
linearly independent.

From Proposition 2.1, we have the following (see Yamamoto et al. (1976)):

Proposition 2.3. Let T be an SA(m; {λi}). Then the information matrix
MT associated with T is nonsingular, i.e., T is of resolution VII, if and only if
every Kβ(0 ≤ β ≤ 3) are positive definite.

The following is due to Shirakura and Kuwada (1975):

Proposition 2.4. Let T be an SA(m; {λi}), and further let T̄ be the com-
plementary array of T , i.e., T̄ is the SA(m; {λ̄i}), where λ̄i = λm−i for 0 ≤ i ≤ m.
Then we have K̄β = ∆βKβ∆β for 0 ≤ β ≤ 3, where K̄β are the irreducible rep-
resentations of MT̄ with respect to the ideals Aβ and ∆β are the (4−β)× (4−β)
diagonal matrices whose (i, i) elements are (−1)i for 0 ≤ i ≤ 3 − β.

3. Estimable parametric functions

In this section, attention is focused on obtaining 2m-BFF designs of resolution
R∗({1}|3), which are derived from simple arrays. A parametric function CΘ of
Θ is estimable for some matrix C of order ν3 if and only if there exists a matrix
X of order ν3 such that XMT = C (e.g., Yamamoto and Hyodo (1984)). If
CΘ is estimable, then its unbiased estimator is given by CΘ̂, and Var[CΘ̂] =
σ2XMT X ′, where Θ̂ is a solution of the equations (2.1). Furthermore since MT

belongs to A, we impose some restrictions on C such that it belongs to A, and
hence X also belongs to A, i.e.,

C = g0,0
0 D

#(0,0)
0 +

3∑
u=2

(
g0,u
0 D

#(0,u)
0 + gu,0

0 D
#(u,0)
0

)
+ D

#(1,1)
0 + D

#(1,1)
1

+
3∑

u=2

3∑
v=2

min(u,v)∑
β=0

gu−β,v−β
β D

#(u,v)
β ,

X =
3∑

u=0

3∑
v=0

min(u,v)∑
β=0

xu−β,v−β
β D

#(u,v)
β ,

where gu,v
β ’s and xu,v

β ’s are some constants. Then from Proposition 2.1, C and
X are isomorphic to ‖ gu,v

β ‖ (= Γβ, say) and ‖ xu,v
β ‖ (= χβ, say), respectively,

where g1,1
0 = g0,0

1 = 1 and gu,1
0 = g1,u

0 = g0,v
1 = gv,0

1 = 0 for u = 0, 2, 3 and
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v = 1, 2, and both Γβ and χβ are of order (4 − β) for 0 ≤ β ≤ 3. Hence
XMT = C is isomorphic to χβKβ = Γβ. Thus in this paper, one of the aim is to
choose the constants gu,v

β ’s of Γβ under some restrictions on the estimability of
non-negligible factorial effects.

At the beginning, we consider a matrix equation ZL = H with parameter
matrix Z of order n, where L =‖ Lij ‖ and H =‖ Hij ‖ (i, j = 1, 2, 3) are

the positive semidefinite matrix of order n with rank{L} = rank
{(

L11 L12
L21 L22

)}
=

n1 + n2(≥ 1) and some matrix of order n with H11 = In1 , H12 = H ′
21 = On1×n2

and H13 = H ′
31 = On1×n3 , respectively. Here Lij and Hij are of size ni × nj ,

n1 +n2 +n3 = n, and Op×q is the zero matrix of size p× q. The matrix equation
ZL = H has a solution if and only if rank{L′} = rank{L′;H ′}. Thus we have
the following (see Ghosh and Kuwada (2001)):

Lemma 3.1. The matrix equation ZL = H has a solution if and only if
(I) n3 = 0, where H22 is arbitrary, or
(II) n3 ≥ 1 and in addition

(i) when n2 = 0, L33 = On3×n3, and furthermore H33 = On3×n3,
(ii) when n2 ≥ 1, there exists a matrix W of size n3 × n2 such that (L31;L32;

L33) = W (L21;L22;L23), and furthermore H ′
23 = WH ′

22 and H ′
33 = WH ′

32,
where H22 and H32 are arbitrary.

In Lemma 3.1, the matrix equation ZL = H has a solution Z such that

Z = HL−1 for (I),

(
L−1

11 Z13

0 Z33

)
for (II)(i), where Zi3 (i = 1, 3) are arbitrary,

and







In1 0
0 H22

0 H32




(
L11 L12

L21 L22

)−1

−




0 Z13W

0 Z23W

0 Z33W


 ;




Z13

Z23

Z33





 for (II)(ii), where

Zi3 (i = 1, 2, 3) are arbitrary. Since rank{L} = n1 + n2, H11 = In1 , H12 =
H ′

21 = On1×n2 and H13 = H ′
31 = On1×n3 , we have n1 ≤ rank{H} ≤ n1 + n2.

Furthermore, since H22 (if n2 ≥ 1) is arbitrary, we can get H22 with rank{H22} =
n2, and hence rank{H} = n1 + n2. Thus if n2 ≥ 1 and n3 ≥ 1, then there exists
a matrix U of size n3 × n2 such that H32 = UH22. While from Lemma 3.1,
if rank{Kβ} = 4 − β for some β (0 ≤ β ≤ 3), then we put Γβ = I4−β, and if
rank{K0} = 3, then we put g0,2

0 = g2,0
0 = 0, where g0,0

0 = 0 and g2,2
0 = 0.

Let K∗
0 = PK0P

′ and K∗
γ = Kγ (1 ≤ γ ≤ 3), where P = diag

[(
0 1
1 0

)
; I2

]
.

Then applying Lemma 3.1 to the matrix equations χ∗
βK∗

β = Γ ∗
β (0 ≤ β ≤ 3)

with parameter matrices χ∗
β, where χ∗

0 = Pχ0P
′, Γ ∗

0 = PΓ0P
′, χ∗

γ = χγ and
Γ ∗

γ = Γγ (1 ≤ γ ≤ 3), we have the following:

Lemma 3.2. Let T be an SA(m; {λi}). Then a necessary condition for the
main effects to be estimable is that at least three of λi (0 ≤ i ≤ m) are nonzero
and in addition at least two of these suffixes are greater than or equal to 1 and
less than or equal to m − 1.
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The proof will be given in Appendix B.

Note that from Lemma 3.2, if T is of resolution R∗({1}|3), then rank{K∗
0} ≥

3 and rank{K∗
1} ≥ 2. While from Proposition 2.2 and Appendix A, if T is

of resolution R∗({3}|3), then at least one of λi (3 ≤ i ≤ m − 3) is nonzero,
and hence rank{K∗

3} = 1 and rank{K∗
2} ≥ 1. Furthermore if rank{K∗

2} = 1,
then from Lemma 3.1, the three-factor interactions are confounded with the two-
factor ones. Thus we have rank{K∗

2} = 2 and rank{K∗
1} ≥ 2. Moreover, if

rank{K∗
1} = 2, then the three-factor interactions are confounded with the main

effects and the two-factor ones, and hence rank{K∗
1} = 3 and rank{K∗

0} ≥ 3.
Similarly if rank{K∗

0} = 3, then the three-factor interactions are confounded
with the general mean, the main effects and the two-factor ones, and hence
rank{K∗

0} = 4. Therefore from Proposition 2.3, if T is of resolution R∗({3}|3),
then it is of resolution VII. This implies that if T is of resolution R(S ∪ {3}|3),
where S ⊂ {0, 1, 2}, then it is of resolution VII. Thus from Proposition 2.3,
a resolution R∗({1}|3) design with det(MT ) = 0, i.e., det(K∗

β) = 0 for some
β (0 ≤ β ≤ 3), is of resolution R({1}|3),R({0, 1}|3),R({1, 2}|3) or R({0, 1, 2}|3).

Lemma 3.3. Let T be an SA(m; {λi}) with det(MT ) = 0. Then a necessary
condition for T to be a 2m-BFF design of resolution R∗({1}|3) is the following:
(I) if rank{K∗

0} = 3, then there exist λi = 0 (i = p, q, r; 0 ≤ p < q < r ≤ m)
such that (m−2p)(m−2q)+(m−2q)(m−2r)+(m−2r)(m−2p)+(3m−2)(=
w̃0, say) = 0, and λj = 0(j = p, q, r; 0 ≤ j ≤ m), and furthermore the last row
of K∗

0 is expressed by the sum of −{(m− 2p)(m− 2q)(m− 2r) + m(3m− 2p−
2q − 2r)}/

√
6m(m − 1)(m − 2)(= w0, say) times the second one of K∗

0 and of
−(3m − 2p − 2q − 2r)/

√
3(m − 2)(= w∗

0, say) times the third,
(II) if rank{K∗

1} = 2, then there exist λi = 0(i = s, t; 1 ≤ s < t ≤ m−1) such that
(m−2s)(m−2t)+(m−2)(= w̃1, say) = 0, and λj = 0 (j = s, t; 1 ≤ j ≤ m−1),
and furthermore the last row of K∗

1 is expressed by −(m−s− t)
√

2/(m − 3)(=
w1, say) times the second one of K∗

1 ,
(III) rank{K∗

2} ≥ 1, and if rank{K∗
2} = 1, then there exists λu = 0 (2 ≤ u ≤

m− 2) and λj = 0 (j = u; 2 ≤ j ≤ m− 2), and furthermore the last row of K∗
2

is expressed by −(m − 2u)/
√

m − 4(= w2, say) times the first one of K∗
2 .

The proof will be given in Appendix C.

It follows from (2.2b) and (2.4) that (a) every element of A
#(u,u)
0 θu (0 ≤

u ≤ 3) represents the average of the u-factor interactions, (b) the elements
of A

#(u,u)
γ θu (1 ≤ γ ≤ u ≤ 3) represent the contrasts among these effects,

(c) any two contrasts A
#(u,u)
β θu and A

#(u,u)
γ θu (1 ≤ β = γ ≤ u; 2 ≤ u ≤ 3)

are orthogonal and (d) there exist φβ independent parametric functions of θu in
A

#(u,u)
β θu (0 ≤ β ≤ u ≤ 3). Thus from (2.4), Proposition 2.3 and Lemmas 3.1

and 3.3, the following yields:

Lemma 3.4. Let T be a 2m-BFF design of resolution R∗({1}|3) with
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det(MT ) = 0, and furthermore
(I) if det(K∗

β) = 0 for some β (0 ≤ β ≤ 3), then

A
#(β,β)
β θβ, A

#(β+1,β+1)
β θβ+1, . . . , A

#(3,3)
β θ3

are estimable,
(II) if rank{K∗

0} = 3, then

g0,0
0 A

#(0,0)
0 θ0 + g0,3

0 A
#(0,3)
0 θ3 = g0,0

0

(
A

#(0,0)
0 θ0 + w0A

#(0,3)
0 θ3

)
,

A
#(1,1)
0 θ1,

g2,2
0 A

#(2,2)
0 θ2 + g2,3

0 A
#(2,3)
0 θ3 = g2,2

0

(
A

#(2,2)
0 θ2 + w∗

0A
#(2,3)
0 θ3

)
,

g3,0
0 A

#(3,0)
0 θ0 + g3,2

0 A
#(3,2)
0 θ2 + g3,3

0 A
#(3,3)
0 θ3

=
(
u0A

#(3,0)
0

) (
g0,0
0 A

#(0,0)
0 θ0 + g0,3

0 A
#(0,3)
0 θ3

)
+

(
u∗

0A
#(3,2)
0

) (
g2,2
0 A

#(2,2)
0 θ2 + g2,3

0 A
#(2,3)
0 θ3

)
are estimable, where w0, w∗

0, u0 and u∗
0 are the constants such that (κ3,1

0 , κ3,0
0 ,

κ3,2
0 , κ3,3

0 ) = w0(κ
0,1
0 , κ0,0

0 , κ0,2
0 , κ0,3

0 )+w∗
0(κ

2,1
0 , κ2,0

0 , κ2,2
0 , κ2,3

0 ), (g0,3
0 , g2,3

0 , g3,3
0 )′ =

w0(g
0,0
0 , 0, g3,0

0 )′ + w∗
0(0, g2,2

0 , g3,2
0 )′ and (g3,0

0 , g3,2
0 , g3,3

0 ) = u0(g
0,0
0 , 0, g0,3

0 ) + u∗
0(0,

g2,2
0 , g2,3

0 ), and gu,u
0 (u = 0, 2) are arbitrary,

(III) if rank{K∗
1} = 2, then

A
#(1,1)
1 θ1,

g1,1
1 A

#(2,2)
1 θ2 + g1,2

1 A
#(2,3)
1 θ3 = g1,1

1 (A#(2,2)
1 θ2 + w1A

#(2,3)
1 θ3),

g2,1
1 A

#(3,2)
1 θ2 + g2,2

1 A
#(3,3)
1 θ3 = (u1A

#(3,2)
1 )(g1,1

1 A
#(2,2)
1 θ2 + g1,2

1 A
#(2,3)
1 θ3)

are estimable, where w1 and u1 are the constants such that (κ2,0
1 , κ2,1

1 , κ2,2
1 ) =

w1(κ
1,0
1 , κ1,1

1 , κ1,2
1 ), (g1,2

1 , g2,2
1 )′ = w1(g

1,1
1 , g2,1

1 )′ and (g2,1
1 , g2,2

1 ) = u1(g
1,1
1 , g1,2

1 ),
and g1,1

1 is arbitrary,
(IV) if rank{K∗

2} = 1, then

g0,0
2 A

#(2,2)
2 θ2 + g0,1

2 A
#(2,3)
2 θ3 = g0,0

2

(
A

#(2,2)
2 θ2 + w2A

#(2,3)
2 θ3

)
,

g1,0
2 A

#(3,2)
2 θ2 + g1,1

2 A
#(3,3)
2 θ3 =

(
u2A

#(3,2)
2

) (
g0,0
2 A

#(2,2)
2 θ2 + g0,1

2 A
#(2,3)
2 θ3

)
are estimable, where w2 and u2 are the constants such that (κ1,0

2 , κ1,1
2 ) =

w2(κ
0,0
2 , κ0,1

2 ), (g0,1
2 , g1,1

2 )′ = w2(g
0,0
2 , g1,0

2 )′ and (g1,0
2 , g1,1

2 ) = u2(g
0,0
2 , g0,1

2 ), and
g0,0
2 is arbitrary.

Note that from (2.4), we have A
#(1,1)
0 + A

#(1,1)
1 = Im and A

#(1,1)
0 A

#(1,1)
1 =

A
#(1,1)
1 A

#(1,1)
0 = Om×m. Thus θ1 is estimable if and only if A

#(1,1)
0 θ1 and

A
#(1,1)
1 θ1 are estimable. The following can be easily proved:
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Lemma 3.5. (I) Let x and y be integer variables of the homogeneous linear
equation (HLE) or the homogeneous system of linear equations (HSLEs), where
0 ≤ x < y ≤ m and m(≥ 6) is an integer, then we have the following :
(i) m(m−2x)+(m−2x)(m−2y)+m(m−2y)+(3m−2) = 0 and (m−2x)(m−

2y) + (m − 2) = 0 have x = (k2 − k + 2)/2 and y = (k2 + k + 2)/2, where
m = k2 +1(k ≥ 3), and hence m(m−2x)(m−2y)+m(3m−2x−2y) = 0.

(ii) (m − 2x)(m − 2y) + (m − 2) = 0 has (a) y = n + 1 when x = 1, where
m = 2n+1(n ≥ 3), (b) x = n when y = m− 1, where m = 2n+1(n ≥ 3),
(c) y = 4 when x = 2, where m = 6, (d) x = 2 when y = m − 2, where
m = 6, and (e) y = (m+1)/2+(x−1)/(m−2x) when 3 ≤ x < y ≤ m−3,
where y is an integer, x < m/2 < y and m − x − y = 0.

(iii) (m− 2x)(m− 2y) + (m− 2) = 0 and m− x− y = 0 have (a) x = 2 and
y = 4 when m = 6, and (b) x = (k2 − k + 2)/2 and y = (k2 + k + 2)/2
when m ≥ 7, and hence 3 ≤ x < y ≤ m − 3, where m = k2 + 2 (k ≥ 3).

(II) Let x, y and z be integer variables of the HLE or the HSLEs, where 0 ≤ x <
y < z ≤ m and m(≥ 6) is an integer, then we have the following :
(i) (m− 2x)(m− 2y) + (m− 2y)(m− 2z) + (m− 2z)(m− 2x) + (3m− 2) = 0

has (a) z = 5 when m = 6, x = 1 and y = 2, (b) z = 7 when m = 9,
x = 1 and y = 2, (c) no solution when m = 6, 9, x = 1 and y = 2,
(d) z = (3m−y+2)/4−y(y−5)/{4(m−y−1)} when x = 1, where z is an
integer, m ≥ 7 and 3 ≤ y < z ≤ m−3, (m−2x)(m−2y)(m−2z)+m(3m−
2x− 2y− 2z) = 0 and 3m− 2x− 2y− 2z = 0, (e) y = 2(< 3) when m = 9,
x = 1 and z = m − 2, (f) no solution when m = 9, x = 1 and z = m − 2,
(g) y = 3 when x = 1 and z = m−1, where m = 6 and 3 ≤ y ≤ m−3, and
hence (m−2x)(m−2y)(m−2z)+m(3m−2x−2y−2z) = 0, (h) z = (3m−
y +1)/4−y(y−7)/{4(m−y−2)} when x = 2, where z is an integer, m ≥
7, 3 ≤ y < z ≤ m−3, (m−2x)(m−2y)(m−2z)+m(3m−2x−2y−2z) = 0
and 3m− 2x− 2y − 2z = 0, (i) y = 3, 4, 5 or 6 when x = 2 and z = m− 2,
where m = 9, and hence (m−2x)(m−2y)(m−2z)+m(3m−2x−2y−2z) = 0
and 3m− 2x− 2y − 2z = 0, (j) x = (k − 1)(k − 2)/6, y = (k + 1)(k + 2)/6
and z is arbitrary when 3 ≤ x < y < z ≤ m − 3 and m − x− y = 0, where
m = (k2 + 2)/3, y < z ≤ (k2 − 7)/3 and k = 3h + 1 or 3h + 2 (h ≥ 2),
and hence (m − 2x)(m − 2y)(m − 2z) + m(3m − 2x − 2y − 2z) = 0 and
3m − 2x − 2y − 2z = 0, and (k) z = m/2 + {(m − 2x)(m − 2y) + (3m −
2)}/{4(m−x−y)} when 3 ≤ x < y < z ≤ m−3 and m−x−y = 0, where z
is an integer, m ≥ 8, (m−2x)(m−2y)(m−2z)+m(3m−2x−2y−2z) = 0
and 3m − 2x − 2y − 2z = 0.

(ii) (m−2x)(m−2y)+(m−2y)(m−2z)+(m−2z)(m−2x)+(3m−2) = 0 and
(m− 2x)(m− 2y)(m− 2z)+m(3m− 2x− 2y− 2z) = 0 have (a) y = (k2 −
k+2)/2 and z = (k2 +k+2)/2 when x = 0, where m = k2 +1(k ≥ 3), and
hence 3m−2x−2y−2z = 0, (m−2y)(m−2z)+(m−2) = 0 and m−y−z = 0,
(b) x = k(k−1)/2 and y = k(k+1)/2 when z = m, where m = k2 +1(k ≥
3), and hence 3m − 2x − 2y − 2z = 0, (m − 2x)(m − 2y) + (m − 2) = 0
and m − x − y = 0, (c) y = 3 and z = 5 when m = 6 and x = 1, and
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hence 3m− 2x− 2y − 2z = 0, (d) y = (m + 1)/2 + (2− f)/{2(m− 4)} and
z = (m+1)/2+(2+f)/{2(m−4)} when m ≥ 7 and x = 1, where y and z are
integers and f =

√
(m − 2)2 + m(m − 4)(m − 6) is a positive integer, and

hence 3m−2x−2y−2z = 0, (e) x = 1 and y = 3 when m = 6 and z = m−1,
and hence 3m− 2x− 2y − 2z = 0, (f) x = (m− 1)/2− (2 + f)/{2(m− 4)}
and y = (m−1)/2− (2−f)/{2(m−4)} when m ≥ 7 and z = m−1, where
x and y are integers, and f is the same equation as in (d) and it is an
integer, and hence 3m−2x−2y−2z = 0, and (g) y = {m(m−2x)2 +(m−
1)(m − 2x) − m2 − f}/[2{(m − 2x)2 − m}] and z = {m(m − 2x)2 + (m −
1)(m − 2x) − m2 + f}/[2{(m − 2x)2 − m}] when 2 ≤ x < y < z ≤ m − 2,
where y and z are integers, 0 ≤ x < (m −√

m)/2, 3m − 2x − 2y − 2z = 0
and f =

√
m(m − 2x)4 − (3m2 − 1)(m − 2x)2 + m2(3m − 2) is a positive

integer.
(iii) (m−2x)(m−2y)+(m−2y)(m−2z)+(m−2z)(m−2x)+(3m−2) = 0 and

3m−2x−2y−2z = 0 have y = (3m−2x−f)/4 and z = (3m−2x+f)/4,
where y and z are integers and f =

√
−3(m − 2x)2 + 12m − 8 is a positive

integer. In particular, (a) if x = 0, then −3(m − 2x)2 + 12m − 8 < 0
for m ≥ 6, and (b) if x = 1, then (b-1) −3(m − 2x)2 + 12m − 8 > 0
when m = 6, 7, and (b-2) −3(m − 2x)2 + 12m − 8 < 0 when m ≥ 8.
When m = 6 and x = 1, we have f = 4, y = 3 and z = 5, and hence
(m − 2x)(m − 2y)(m − 2z) = 0, and when m = 7 and x = 1, we have
f = 1, y = 9/2 and z = 5.

(iv) (m − 2x)(m − 2y) + (m − 2y)(m − 2z) + (m − 2z)(m − 2x) + (3m −
2) = 0, (m − 2x)(m − 2y)(m − 2z) + m(3m − 2x − 2y − 2z) = 0 and
3m − 2x − 2y − 2z = 0 have x = (k − 1)(k − 2)/6, y = (k2 + 2)/6 and
z = (k+1)(k+2)/6, where m = (k2+2)/3 and k = 6h−2 or 6h+2 (h ≥ 1).

Remark 3.1. In Lemma 3.5, we have the following:
(A) The HLE given by (I)(ii)(e) has a solution (x, y). For example, m = 10 and

(x, y) = (3, 6).
(B) The HLEs given by (II)(i)(d), (h) and (k) have a solution (x, y, z). For

example, m = 9 and (x, y, z) = (1, 5, 6) for (d), m = 14 and (x, y, z) = (2, 7, 9)
for (h), and m = 13 and (x, y, z) = (3, 7, 9) for (k).

(C) In the HSLEs given by (II)(ii), the (g) case has a solution (x, y, z). For
example, m = 21 and (x, y, z) = (6, 10, 14), where f = 240. While the (d) and
(f) cases have no solution for 7 ≤ m ≤ 30.

(D) The HSLEs given by (II)(iii) has a solution (x, y, z). For example, m = 18
and (x, y, z) = (5, 10, 12), where f = 4.

The following is the main theorem of this paper:

Theorem 3.1. Let T be a 2m-BFF design of resolution R∗({1}|3) derived
from an SA(m; {λi}), where det(MT ) = 0 and m ≥ 6. Then the following
yields:
(I) T is of resolution R({1}|3) if and only if one of Table 3.1(i) through (vii)
holds,
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(II) T is of resolution R({0, 1}|3) if and only if one of Table 3.2(i) through (vii)
holds,

(III) T is of resolution R({1, 2}|3), i.e., resolution VI, if and only if Table 3.3(i)
holds,

(IV) T is of resolution R({0, 1, 2}|3), i.e., resolution VI, if and only if one of
Table 3.4(i) through (v) holds.

The proof will be given in Appendix D.

Note that in Tables 3.1(i) through (iv), 3.2(i), (iv), (v) and (vi), and 3.4(i),
an array given by (b) is the complementary array of (a) (e.g., Shirakura and
Kuwada (1975)).

Table 3.1. Resolution R({1}|3) designs.

No. indices of nonzero λ’s constraints conditions

(i)(a) 1, 2, 5 6

(b) 1, 4, 5 6

(ii)(a) 1, 2, 7 9

(b) 2, 7, 8 9

(iii)(a) 1, q, r m m ≥ 7, 3 ≤ q < r ≤ m − 3,

3m − 2 − 2q − 2r �= 0,

(m − 2)(m − 2q)(m − 2r)

+m(3m − 2 − 2q − 2r) �= 0,

r = (3m − q + 2)/4 − q(q − 5)/{4(m − q − 1)}
: integer

(b) p, q, m − 1 m m ≥ 7, 3 ≤ p < q ≤ m − 3,

m + 2 − 2p − 2q �= 0,

(m − 2)(m − 2p)(m − 2q)

−m(m + 2 − 2p − 2q) �= 0,

q = 1 + (m − 1)(m − 6)/{4(p − 1)} : integer

(iv)(a) 2, q, r m m ≥ 7, 3 ≤ q < r ≤ m − 3,

3m − 4 − 2q − 2r �= 0,

(m − 4)(m − 2q)(m − 2r)

+m(3m − 4 − 2q − 2r) �= 0,

r = (3m − q + 1)/4 − q(q − 7)/{4(m − q − 2)}
: integer

(b) p, q, m − 2 m m ≥ 7, 3 ≤ p < q ≤ m − 3,

m + 4 − 2p − 2q �= 0,

(m − 4)(m − 2p)(m − 2q)

−m(m + 4 − 2p − 2q) �= 0,

q = 2 + (m − 2)(m − 9)/{4(p − 2)} : integer

(v) 2, q, 7 9 3 ≤ q ≤ 6

(vi) (k − 1)(k − 2)/6,

(k + 1)(k + 2)/6,

r

(k2 + 2)/3 k = 3h + 1 or 3h + 2 (h ≥ 2),

(k + 1)(k + 2)/6 < r ≤ (k2 − 7)/3

(vii) p, q, r m m ≥ 8, 3 ≤ p < q < r ≤ m − 3,

(m − 2p)(m − 2q) + (m − 2q)(m − 2r)

+(m − 2r)(m − 2p) + (3m − 2) = 0,

(m − 2p)(m − 2q)(m − 2r)

+m(3m − 2p − 2q − 2r) �= 0,

3m − 2p − 2q − 2r �= 0
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Table 3.2. Resolution R({0, 1}|3) designs.

No. indices of nonzero λ’s constraints conditions

(i)(a) 0 (or m), 1, 2, m − 1 m

(b) 0 (or m), 1, m − 2, m − 1 m

(ii) 0 (or m), 1, u, m − 1 m m ≥ 7, 3 ≤ u ( �= m/2) ≤ m − 3

(iii) 0, s, t, m m m ≥ 7, 3 ≤ s < m/2 < t ≤ m − 3,

m − s − t �= 0,

t = (m + 1)/2 + (s − 1)/(m − 2s) : integer

(iv)(a) 0, 1, n + 1, 2n + 1 2n + 1 n ≥ 3

(b) 0, n, 2n, 2n + 1 2n + 1 n ≥ 3

(v)(a) 0, (k2 − k + 2)/2,

(k2 + k + 2)/2

k2 + 1 k ≥ 3

(b) k(k − 1)/2, k(k + 1)/2,

k2 + 1

k2 + 1 k ≥ 3

(vi)(a) 1, q, r m m ≥ 7, 3 ≤ q < r ≤ m − 3,

q = (m + 1)/2 + (2 − f)/{2(m − 4)} : integer,

r = (m + 1)/2 + (2 + f)/{2(m − 4)} : integer,

f = {(m − 2)2 + m(m − 4)(m − 6)}1/2

: positive integer

(b) p, q, m − 1 m m ≥ 7, 3 ≤ p < q ≤ m − 3,

p = (m − 1)/2 − (2 + f)/{2(m − 4)} : integer,

q = (m − 1)/2 − (2 − f)/{2(m − 4)} : integer,

f = {(m − 2)2 + m(m − 4)(m − 6)}1/2

: positive integer

(vii) p, q, r m 2 ≤ p < q < r ≤ m − 2,
√

m < m − 2p ≤ m,

3m − 2p − 2q − 2r �= 0,

q = {m(m − 2p)2 + (m − 1)(m − 2p) − m2 − f}
/[2{(m − 2p)2 − m}] : integer,

r = {m(m − 2p)2 + (m − 1)(m − 2p) − m2 + f}
/[2{(m − 2p)2 − m}] : integer,

f = {m(m − 2p)4

−(3m2 − 1)(m − 2p)2 + m2(3m − 2)}1/2

: positive integer

Table 3.3. Resolution R({1, 2}|3) designs.

No. indices of nonzero λ’s constraints conditions

(i) p, q, r m 2 ≤ p < q < r ≤ m − 2, (m − 2p)(m − 2q)(m − 2r) �= 0,

q = (3m − 2p − f)/4 : integer,

r = (3m − 2p + f)/4 : integer,

f = {−3(m − 2p)2 + 12m − 8}1/2 : positive integer

Table 3.4. Resolution R({0, 1, 2}|3) designs.

No. indices of nonzero λ’s constraints conditions

(i)(a) 0 (or m), 1, 2, m − 2 m

(b) 0 (or m), 2, m − 2, m − 1 m

(ii) 1, 2, m − 2, m − 1 m λ0 ≥ 0, λm ≥ 0

(iii) 0 (or 2n), 1, n, 2n − 1 2n n ≥ 3

(iv) 0, (k2 − k + 2)/2, (k2 + k + 2)/2, k2 + 2 k2 + 2 k ≥ 2

(v) (k − 1)(k − 2)/6, (k2 + 2)/6, (k + 1)(k + 2)/6 (k2 + 2)/3 k = 6h − 2 or 6h + 2 (h ≥ 1)

4. GA-optimal designs

If N ≥ ν3, then there exists a 2m-BFF design of resolution VII (e.g.,
Shirakura (1976)). Thus in this section, we only consider a design with N < ν3,
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and hence det(MT ) = 0, i.e., det(K∗
β) = 0 for some β (0 ≤ β ≤ 3). Since

2
(
m
3

)
−ν3 = {(m2 +m+6)(m−7)+36}/6 > 0 for m ≥ 7, and 2

(
m
2

)
+

(
m
3

)
−ν3 =

{m(m − 6) + 3(m − 6) + 16}/2 > 0 for m ≥ 6, we have the following:

Lemma 4.1. 2
(
m
3

)
> ν3 for m ≥ 7, and 2

(
m
2

)
+

(
m
3

)
− ν3 > 0 for m ≥ 6.

Remark 4.1. It follows from Lemma 4.1 that 2m-BFF designs of resolution
R∗({1}|3) given by Tables 3.1(iii) through (vii), 3.2(iii), (v), (vi), (vii), 3.3(i),
and 3.4(iv) except for k = 2, and (v) except for k = 4 have N ≥ ν3, and the
remaining have N < ν3.

As shown in Section 3, if a parametric function CΘ is estimable (and hence
there exists a matrix X such that XMT = C), then Var[CΘ̂] = σ2XMT X ′.
Using a solution Z of the matrix equation ZL = H given by Lemma 3.1, after
some calculations, we have

ZLZ ′ =




L−1
11 if n2 = n3 = 0,(
In1

0

)
L−1

11 (In1 ; 0) if n2 = 0 and n3 ≥ 1,(
In1 0
0 H22

) (
L11 L12

L21 L22

)−1 (
In1 0
0 H ′

22

)
if n2 ≥ 1 and n3 = 0,


In1 0
0 H22

0 H32




(
L11 L12

L21 L22

)−1 (
In1 0 0
0 H ′

22 H ′
32

)
if n2 ≥ 1 and n3 ≥ 1,

where H22 and H32 are arbitrary. Since C and X belong to the TMDPB associa-
tion algebra A, XMT X ′ is isomorphic to χβKβχ′

β for 0 ≤ β ≤ 3. Thus we can get

(I) χ∗
0K

∗
0χ∗

0
′ =







1 0 0
0 g0,0

0 0
0 0 g2,2

0

0 g3,0
0 g3,2

0







κ1,1
0 κ1,0

0 κ1,2
0

κ0,1
0 κ0,0

0 κ0,2
0

κ2,1
0 κ2,0

0 κ2,2
0




−1 


1 0 0 0
0 g0,0

0 0 g3,0
0

0 0 g2,2
0 g3,2

0


 ,

if rank{K∗
0} = 3,

K∗−1
0 if rank{K∗

0} = 4,

(II) χ∗
1K

∗
1χ∗

1
′ =







1 0
0 g1,1

1

0 g2,1
1




(
κ0,0

1 κ0,1
1

κ1,0
1 κ1,1

1

)−1 (
1 0 0
0 g1,1

1 g2,1
1

)
if rank{K∗

1} = 2,

K∗−1
1 if rank{K∗

1} = 3,

(III) χ∗
2K

∗
2χ∗

2
′ =




(
g0,0
2

g1,0
2

)(
κ0,0

2

)−1 (
g0,0
2 g1,0

2

)
if rank{K∗

2} = 1,

K∗−1
2 if rank{K∗

2} = 2,
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(IV) χ∗
3K

∗
3χ∗

3
′ =

{
vanish if rank{K∗

3} = 0,

K∗−1
3 if rank{K∗

3} = 1,

where χ∗
β and Γ ∗

β are given in Section 3, and gu,u
0 (u = 0, 2) and g2−γ,2−γ

γ (1 ≤
γ ≤ 2) are arbitrary, and furthermore there exist constants u0, u∗

0 and uγ such
that g3,0

0 = u0g
0,0
0 , g3,2

0 = u∗
0g

2,2
0 and g3−γ,2−γ

γ = uγg2−γ,2−γ
γ , respectively. Thus

from Lemma 3.4, if rank{K∗
0} = 3, then we put

g0,0
0

(
= g0,0

0 (α), say
)

=




1 if α = 0,

1 /(1 + |w0|) if α = 1,

1
/√

1 + (w0)2 if α = 2,

g2,2
0

(
= g2,2

0 (α), say
)

=




1 if α = 0,

1 /(1 + |w∗
0|) if α = 1,

1
/√

1 + (w∗
0)2 if α = 2,

and if rank{K∗
γ} = 3 − γ (1 ≤ γ ≤ 2), then we put

g2−γ,2−γ
γ

(
= g2−γ,2−γ

γ (α), say
)

=




1 if α = 0,

1 /(1 + |wγ |) if α = 1,

1
/√

1 + (wγ)2 if α = 2,

where (I) if rank{K∗
0} = 3, then the last row of K∗

0 is expressed by the sum of
w0 times the second one of K∗

0 and of w∗
0 times the third, (II) if rank{K∗

1} = 2,
then the last row of K∗

1 is expressed by w1 times the second one of K∗
1 , and

(III) if rank{K∗
2} = 1, then the last row of K∗

2 is expressed by w2 times the first
one of K∗

2 . Here w0, w∗
0, w1 and w2 are given in Lemma 3.3.

Let

χ̃∗
0(α) =

{
diag[1; g0,0

0 (α); g2,2
0 (α)] if rank{K∗

0} = 3,

I4 if rank{K∗
0} = 4,

χ̃∗
1(α) =

{
diag[1; g1,1

1 (α)] if rank{K∗
1} = 2,

I3 if rank{K∗
1} = 3,

χ̃∗
2(α) =

{
g0,0
2 (α) if rank{K∗

2} = 1,

I2 if rank{K∗
2} = 2,

χ̃∗
3(α) =

{
vanish if rank{K∗

3} = 0,

1 if rank{K∗
3} = 1.

Further let K̃∗
β be the matrices given by the first rβ rows and columns of K∗

β ,
where rβ = rank{K∗

β} ≥ 1 for 0 ≤ β ≤ 3. Then from Proposition 2.1 and Lemma
3.4, the variance-covariance matrix of the linearly independent estimators in CΘ̂
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is isomorphic to σ2χ̃∗
β(α)K̃∗−1

β χ̃∗
β(α)′ for 0 ≤ β ≤ 3 (0 ≤ α ≤ 2). Thus for a

2m-BFF design T of resolution R∗({1}|3) derived from an SA(m; {λi}), we define
ST (α) as follows:

ST (α) =
∑
β

φβ tr{χ̃∗
β(α)K̃∗−1

β χ̃∗
β(α)′},

where
∑

β is the summation over all the values of β such that if rank{K∗
3} = 0,

then 0 ≤ β ≤ 2, and if rank{K∗
3} = 1, then 0 ≤ β ≤ 3, and φβ is given by

(2.3). Note that σ2ST (α) are the trace of the variance-covariance matrix of the
linearly independent estimators in CΘ̂, and hence the GA-optimality criterion
that will be defined below is based on the average of the variances of the linearly
independent estimators. Thus in a sense, it refers to the average variance. The
following is due to Kuwada et al. (2002):

Definition 4.1. Let T be a 2m-BFF design of resolution R∗({1}|3) with
N assemblies derived from an SA(m; {λi}). If ST (α) ≤ ST ∗(α) for any T ∗ being
a 2m-BFF design of resolution R∗({1}|3) with N assemblies derived from an
SA(m; {λ∗

i }), then T is said to be GAα-optimal (0 ≤ α ≤ 2).

Using Theorem 3.1 and Remark 4.1, we can obtain GAα-optimal 2m-BFF
designs of resolution R∗({1}|3), where N < ν3. All GAα-optimal designs for 6 ≤
m ≤ 8 are the same designs as GAα-optimal ones of resolution R∗({0, 1}|3) (see
Kuwada et al. (2002)) except for m = 6 and (N, α) = (27, 0), (27, 1), (27, 2), (39,
1). While GAα-optimal 26-BFF designs of resolution R∗({1}|3) with N = 27 and
α (0 ≤ α ≤ 2) and with N = 39 and α = 1 are given by SA(6; {0, 1, 0, 0, 1, 1, 0})
and its complement and SA(6; {0, 1, 0, 0, 1, 3, 0}) and its complement, respec-
tively, where {λi} = {λ0, λ1, . . . , λ6}. Note that both designs are given by Table
3.1(i), and that we have ST (0) = 1.5353, ST (1) = 0.9844 and ST (2) = 1.1200 for
N = 27, and ST (1) = 0.7359 for N = 39.

Appendix A: Relationship between κu,v
β ’s and λi’s

κ0,0
0 (= N) =

m∑
i=0

(
m

i

)
λi,

κ0,1
0

(
= κ1,0

0

)
= −

(
1

/√
m

) m∑
i=0

(
m

i

)
(m − 2i)λi,

κ0,2
0

(
= κ2,0

0

)
=

[
1

/{
2

√(
m

2

)}]
m∑

i=0

(
m

i

) {
(m − 2i)2 − m

}
λi,
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κ0,3
0

(
= κ3,0

0

)
= −

[
1

/{
6

√(
m

3

)}]

×
m∑

i=0

(
m

i

)
(m − 2i)

{
(m − 2i)2 − (3m − 2)

}
λi,

κ1,1
0 = (1/m)

m∑
i=0

(
m

i

)
(m − 2i)2λi,

κ1,2
0

(
= κ2,1

0

)
= −

[
1

/{
m

√
2(m − 1)

}] m∑
i=0

(
m

i

)
(m − 2i)

{
(m − 2i)2 − m

}
λi,

κ1,3
0

(
= κ3,1

0

)
=

[
1

/{
2m

√
3
(

m − 1
2

)}]

×
m∑

i=0

(
m

i

)
(m − 2i)2

{
(m − 2i)2 − (3m − 2)

}
λi,

κ2,2
0 =

[
1

/{
4
(

m

2

)}] m∑
i=0

(
m

i

) {
(m − 2i)2 − m

}2
λi,

κ2,3
0

(
= κ3,2

0

)
= −

[
1

/{
4
(

m

2

)√
3(m − 2)

}]

×
m∑

i=0

(
m

i

)
(m − 2i)

{
(m − 2i)2 − m

} {
(m − 2i)2 − (3m − 2)

}
λi,

κ3,3
0 =

[
1

/{
36

(
m

3

)}] m∑
i=0

(
m

i

)
(m − 2i)2

{
(m − 2i)2 − (3m − 2)

}2
λi,

κ0,0
1 = 4

m−1∑
j=1

(
m − 2
j − 1

)
λj ,

κ0,1
1

(
= κ1,0

1

)
= −

(
4

/√
m − 2

) m−1∑
j=1

(
m − 2
j − 1

)
(m − 2j)λj ,

κ0,2
1

(
= κ2,0

1

)
=

{
2

/√(
m − 2

2

)}
m−1∑
j=1

(
m − 2
j − 1

) {
(m − 2j)2 − (m − 2)

}
λj ,

κ1,1
1 = {4 /(m − 2)}

m−1∑
j=1

(
m − 2
j − 1

)
(m − 2j)2λj ,

κ1,2
1

(
= κ2,1

1

)
= −

[
4

/{
(m − 2)

√
2(m − 3)

}]

×
m−1∑
j=1

(
m − 2
j − 1

)
(m − 2j)

{
(m − 2j)2 − (m − 2)

}
λj ,

κ2,2
1 =

{
1

/(
m − 2

2

)} m−1∑
j=1

(
m − 2
j − 1

) {
(m − 2j)2 − (m − 2)

}2
λj ,
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κ0,0
2 = 16

m−2∑
k=2

(
m − 4
k − 2

)
λk,

κ0,1
2

(
= κ1,0

2

)
= −

(
16/

√
m − 4

) m−2∑
k=2

(
m − 4
k − 2

)
(m − 2k)λk,

κ1,1
2 = {16 /(m − 4)}

m−2∑
k=2

(
m − 4
k − 2

)
(m − 2k)2λk,

κ0,0
3 = 64

m−3∑
h=3

(
m − 6
h − 3

)
λh.

Appendix B: The proof of Lemma 3.2
It follows from Remark 2.1 that the first, the second, the third and the last

rows (and columns) of K∗
0 correspond to the main effects, the general mean,

the two-factor interactions and the three-factor ones, respectively, and that the
first, the second and the last rows (and columns) of K∗

1 correspond to the main
effects, the two-factor ones and the three-factor ones, respectively. Thus from
Proposition 2.2 and Appendix A, if rank{K∗

1} = 1, then the second and the
last rows of K∗

1 are expressed by −(m − 2p)/
√

m − 2 times the first one of K∗
1 ,

and by {(m − 2p)2 − (m − 2)}/
√

2(m − 2)(m − 3) times the first, respectively,
where λp = 0 (1 ≤ p ≤ m − 1) and λj = 0 (j = p; 1 ≤ j ≤ m − 1). Hence
from Lemma 3.1, if the main effects are estimable, then we have m − 2p = 0
and (m − 2p)2 − (m − 2) = 0. However there does not exist an integer p such
that m − 2p = 0 and (m − 2p)2 − (m − 2) = 0 for m ≥ 6. Thus at least two of
λi (1 ≤ i ≤ m−1) are nonzero, and hence rank{K∗

1} ≥ 2 and rank{K∗
0} ≥ 2. On

the other hand, if rank{K∗
0} = 2, then exactly two of λi (0 ≤ i ≤ m) are nonzero,

i.e., λq = 0 and λr = 0 (0 ≤ q < r ≤ m). In this case, the third and the last rows
of K∗

0 are expressed by the sum of −(m − q − r)
√

2/(m − 1) times the first one
of K∗

0 and of −{(m − 2q)(m − 2r) + m}/
√

2m(m − 1) times the second, and by
the sum of {4(m − q − r)2 − (m − 2q)(m − 2r) − (3m − 2)}/

√
6(m − 1)(m − 2)

times the first and of
√

2(m − 2q)(m − 2r)(m − q − r)/
√

3m(m − 1)(m − 2)
times the second, respectively. Furthermore from the results mentioned above,
1 ≤ q < r ≤ m − 1 holds, and hence rank{K∗

1} = 2. Thus the last row of K∗
1

is expressed by the sum of −{(m − 2q)(m − 2r) + (m − 2)}/
√

2(m − 2)(m − 3)
times the first one of K∗

1 and of −
√

2(m − q − r)/
√

m − 3 times the second.
Hence from Lemma 3.1, if the main effects are estimable, then m − q − r = 0,
4(m−q−r)2−(m−2q)(m−2r)−(3m−2) = 0 and (m−2q)(m−2r)+(m−2) = 0
hold. However there do not exist integers q and r (1 ≤ q < r ≤ m − 1) such
that m − q − r = 0, 4(m − q − r)2 − (m − 2q)(m − 2r) − (3m − 2) = 0 and
(m− 2q)(m− 2r)+ (m− 2) = 0 for m ≥ 6. Thus at least three of λi (0 ≤ i ≤ m)
are nonzero, and hence rank{K∗

0} ≥ 3. Therefore we have the required results.
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Appendix C: The proof of Lemma 3.3
From Proposition 2.2, Lemma 3.2 and Appendix A, if rank{K∗

0} = 3, then
the last row of K∗

0 is expressed by the sum of −{(m−2p)(m−2q)+(m−2q)(m−
2r)+(m−2r)(m−2p)+(3m−2)}/

√
6(m − 1)(m − 2) times the first one of K∗

0 ,
of w0 times the second and of w∗

0 times the third, where λi = 0 (i = p, q, r; 0 ≤
p < q < r ≤ m) and λj = 0 (j = p, q, r; 0 ≤ j ≤ m), and if rank{K∗

1} = 2,
then the last row of K∗

1 is expressed by the sum of −{(m − 2s)(m − 2t) + (m −
2)}/

√
2(m − 2)(m − 3) times the first one of K∗

1 and of w1 times the second,
where λi = 0 (i = s, t; 1 ≤ s < t ≤ m − 1) and λj = 0 (j = s, t; 1 ≤ j ≤ m − 1).
Thus from Lemma 3.1, if T is of resolution R∗({1}|3) with det(MT ) = 0, then
w̃0 = w̃1 = 0 hold. Moreover from Proposition 2.2, rank{K∗

2} = 0 if and only if
λi = 0 for all i (2 ≤ i ≤ m− 2), and hence we have rank{K∗

1} ≤ 2. On the other
hand, from Lemma 3.2, we have rank{K∗

1} ≥ 2, and hence rank{K∗
1} = 2, i.e.,

λ1 = 0 and λm−1 = 0. However from (II), the suffixes of λ1 and λm−1, i.e., s = 1
and t = m−1, do not satisfy the condition such that w̃1 = 0 for m ≥ 6, and hence
rank{K∗

2} ≥ 1. Furthermore from Remark 2.1, Proposition 2.2 and Appendix
A, if rank{K∗

2} = 1, then the last row of K∗
2 is expressed by w2 times the first

one of K∗
2 , where λu = 0 (2 ≤ u ≤ m − 2) and λj = 0 (j = u; 2 ≤ j ≤ m − 2).

Therefore the proof is complete.

Appendix D: The proof of Theorem 3.1
If rank{K∗

0} = 4, then from Lemma 3.4, the general mean is estimable. Thus
if the general mean is confounded (or aliased) with the remaining effects, then
rank{K∗

0} = 3 and w0 = 0 hold, where λi = 0 (i = p, q, r; 0 ≤ p < q < r ≤
m), λj = 0 (j = p, q, r; 0 ≤ j ≤ m) and w0 is given in Lemma 3.3.

(I) Let T be of resolution R({1}|3), then from the results mentioned above,
we have rank{K∗

0} = 3, and hence from Lemma 3.3, there exist λi = 0 (i =
p, q, r; 0 ≤ p < q < r ≤ m) such that w̃0 = 0, and λj = 0 (j = p, q, r; 0 ≤ j ≤ m),
where w̃0 is given in Lemma 3.3. Moreover (i) if p = 0, then from Lemma
3.2, we have rank{K∗

1} = 2, i.e., 1 ≤ q < r ≤ m − 1, and hence from Lemma
3.3, w̃1 = 0 holds, where put s = q and t = r in w̃1 given in Lemma 3.3.
However from Lemma 3.5(I)(i), we have w0 = 0, and hence there does not exist
an SA(m; {λi}). (ii) If p = 1, and furthermore (ii-a) if q = 2 < r ≤ m, then
from Lemma 3.5(II)(i)(a), (b) and (c), we get m = 6 and r = 5, and m = 9 and
r = 7. When m = 6, p = 1, q = 2 and r = 5, we have w0 = 0, w∗

0 = 0, w2 = 0,
rank{K∗

1} = 3, rank{K∗
2} = 1 and K∗

3 = 0, where w∗
0 is given in Lemma 3.3

and put u = q in w2 given in Lemma 3.3, and when m = 9, p = 1, q = 2
and r = 7, we have w0 = 0, w∗

0 = 0, rank{K∗
γ} = 4 − γ (1 ≤ γ ≤ 2) and

K∗
3 = 0. Thus we get Table 3.1(i)(a) and (ii)(a). (ii-b) If 3 ≤ q < r ≤ m− 3 and

m ≥ 7, then from Lemma 3.5(II)(i)(d), we have rank{K∗
γ} = 4 − γ (1 ≤ γ ≤ 3),

where w0 = 0 and w∗
0 = 0, and hence Table 3.1(iii)(a), (ii-c) if 3 ≤ q < r =

m− 2, then from Lemma 3.5(II)(i)(e) and (f), there does not exist an array, and
(ii-d) if 3 ≤ q ≤ m − 3 and r = m − 1, then from Lemma 3.5(II)(i)(g), we
get m = 6 and q = 3, and hence there does not exist an array since w0 = 0.
(iii) If p = 2, and furthermore (iii-a) if 3 ≤ q < r ≤ m − 3, then from Lemma
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3.5(II)(i)(h), we have rank{K∗
γ} = 4 − γ (1 ≤ γ ≤ 3), where w0 = 0 and

w∗
0 = 0, and hence Table 3.1(iv)(a), and (iii-b) if 3 ≤ q ≤ m − 3 and r = m − 2,

then from Lemma 3.5(II)(i)(i), we get m = 9, 3 ≤ q ≤ 6, w0 = 0, w∗
0 = 0

and rank{K∗
γ} = 4 − γ (1 ≤ γ ≤ 3), and hence we get Table 3.1(v). (iv) If

3 ≤ p < q < r ≤ m − 3, m − p − q = 0 and m ≥ 8, then from Lemma
3.5(II)(i)(j), we have w0 = 0, w∗

0 = 0 and rank{K∗
γ} = 4 − γ (1 ≤ γ ≤ 3), and

hence Table 3.1(vi). (v) If 3 ≤ p < q < r ≤ m − 3, m − p − q = 0 and m ≥ 8,
then from Lemma 3.5(II)(i)(k), we have rank{K∗

γ} = 4 − γ (1 ≤ γ ≤ 3), where
w0 = 0 and w∗

0 = 0, and hence Table 3.1(vii). (vi) If 1 ≤ p < q < r = m or
p = 2 < q ≤ m−3 and r = m−1, then from Proposition 2.4 and in addition (i) or
(ii-c) mentioned above, there does not exist an array. (vii) By using Proposition
2.4, Table 3.1(i)(b), (ii)(b), (iii)(b) and (iv)(b) can be easily obtained. Conversely
if one of Table 3.1(i) through (vii) holds, then from Lemmas 3.1 and 3.3, it can
be easily shown that T is of resolution R({1}|3).

(II) Let T be of resolution R({0, 1}|3). Then (A) if rank{K∗
0} = 4 and in

addition, (i) if rank{K∗
1} = 3, and furthermore if rank{K∗

2} = 2, then from
Lemma 3.4, all the factorial effects up to the two-factor interactions are estimable.
Thus rank{K∗

2} = 1, i.e., λ0 + λm = 0, λi = 0 (i = 1, u, m − 1; 2 ≤ u ≤ m − 2)
and λj = 0 (j = 0, 1, u, m − 1, m; 2 ≤ j ≤ m − 2), and hence from Lemma 3.4,
w2 = 0 holds. In particular, (i-a) if u = 2 or m − 2, then we have w2 = 0
and K∗

3 = 0, and hence we get Table 3.2(i)(a) and (b), and (i-b) if m ≥ 7 and
3 ≤ u = m/2 ≤ m − 3, then we have w2 = 0 and K∗

3 = 0, and hence Table
3.2(ii). (ii) If rank{K∗

1} = 2, i.e., λi = 0 (i = 0, s, t, m; 1 ≤ s < t ≤ m − 1)
and λj = 0 (j = 0, s, t, m; 1 ≤ j ≤ m − 1), then from Lemma 3.3, w̃1 = 0
holds, and furthermore (ii-a) if rank{K∗

2} = 2, i.e., 2 ≤ s < t ≤ m − 2, then
(ii-a-1) when s = 2 < t ≤ m − 2 or 2 ≤ s < t = m − 2, from Lemma 3.5(I)(ii)(c)
or (d), we have w1 = 0, where w1 is given in Lemma 3.3, and hence there does not
exist an array since all the factorial effects up to the two-factor interactions are
estimable, and (ii-a-2) when 3 ≤ s < t ≤ m−3, from Lemma 3.5(I)(ii)(e), we get
Table 3.2(iii), where w1 = 0, s = m/2 and t = m/2, and (ii-b) if rank{K∗

2} = 1,
i.e., s = 1 and 2 ≤ t ≤ m− 2 or 2 ≤ s ≤ m− 2 and t = m− 1, then from Lemma
3.5(I)(ii)(a) or (b), we get w1 = 0 and w2 = 0, where put u = t in w2 given in
Lemma 3.3 when s = 1 and 2 ≤ t ≤ m − 2, and put u = s when 2 ≤ s ≤ m − 2
and t = m − 1, and hence Table 3.2(iv)(a) and (b). (B) If rank{K∗

0} = 3, i.e.,
λi = 0 (i = p, q, r; 0 ≤ p < q < r ≤ m) and λj = 0 (j = p, q, r; 0 ≤ j ≤ m), then
from Lemma 3.3, w̃0 = w0 = 0 hold. (i) If p = 0 < q < r ≤ m or 0 ≤ p < q <
r = m, then from Lemma 3.5(II)(ii)(a) or (b), we have w∗

0 = 0, w̃1 = 0, w1 =
0, rank{K∗

1} = 2 and rank{K∗
γ} = 4− γ (2 ≤ γ ≤ 3), where put (s, t) = (q, r) in

w̃1 and w1 given in Lemma 3.3 when p = 0 < q < r ≤ m, and put (s, t) = (p, q)
when 0 ≤ p < q < r = m, and hence we get Table 3.2(v)(a) and (b). (ii) If
p = 1 < q < r ≤ m−1 or 1 ≤ p < q < r = m−1, then from Lemma 3.5(II)(ii)(c)
and (d), or (e) and (f), we have w∗

0 = 0 and rank{K∗
γ} = 4 − γ (1 ≤ γ ≤ 3), and

hence Table 3.2(vi)(a) and (b). (iii) If 2 ≤ p < q < r ≤ m− 2, then from Lemma
3.5(II)(ii)(g), rank{K∗

γ} = 4 − γ (1 ≤ γ ≤ 3) hold, where 0 ≤ p < (m −√
m)/2
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and w∗
0 = 0, and hence we get Table 3.2(vii). It follows from Lemmas 3.1 and

3.3 that the sufficient condition can be easily proved.
(III) Let T be of resolution R({1, 2}|3), then rank{K∗

0} = 3 holds, and hence
λi = 0 (i = p, q, r; 0 ≤ p < q < r ≤ m) and λj = 0 (j = p, q, r; 0 ≤ j ≤ m), and in
addition w̃0 = w∗

0 = 0 and w0 = 0 hold. From Lemma 3.5(II)(iii), there does not
exist an array with p = 0 and 1 ≤ q < r ≤ m or p = 1 and 2 ≤ q < r ≤ m. Thus
from Proposition 2.4, we only consider 2 ≤ p < q < r ≤ m − 2. In this cases,
we have rank{K∗

γ} = 4 − γ (1 ≤ γ ≤ 3), and hence we get Table 3.3(i), where
w0 = 0. From Lemmas 3.1 and 3.3, the sufficient condition can be easily shown.
(IV) Let T be of resolution R({0, 1, 2}|3), then (A) if rank{K∗

0} = 4, and in
addition (i) if rank{K∗

1} = 3, and furthermore (i-a) if rank{K∗
2} = 2, then from

Proposition 2.3, we get K∗
3 = 0. Thus we have (i-a-1) λ0 + λm = 0, λi = 0 (i =

1, 2, m − 2) and λj = 0 (j = 0, 1, 2, m − 2, m; 3 ≤ j ≤ m − 1),
(i-a-2) λ0 +λm = 0, λi = 0 (i = 2, m− 2, m− 1) and λj = 0 (j = 0, 2, m− 2, m−
1, m; 1 ≤ j ≤ m− 3), and (i-a-3) λ0 ≥ 0, λi = 0 (i = 1, 2, m− 2, m− 1), λm ≥ 0
and λj = 0 (j = 0, 1, 2, m − 2, m − 1, m; 3 ≤ j ≤ m − 3), and hence we get Table
3.4(i)(a), (b) and (ii). (i-b) If rank{K∗

2} = 1, i.e., λ0 + λm = 0, λ1 = 0, λu =
0 (2 ≤ u ≤ m − 2), λm−1 = 0 and λj = 0 (j = 0, 1, u, m − 1, m; 2 ≤ j ≤ m − 2),
then from Lemma 3.3, w2 = 0 holds. Thus we have u = n, where m = 2n,
and hence K∗

3 = 0. Therefore we get Table 3.4(iii). (ii) If rank{K∗
1} = 2, i.e.,

λi = 0 (i = 0, s, t, m; 1 ≤ s < t ≤ m−1) and λj = 0 (j = 0, s, t, m; 1 ≤ j ≤ m−1),
then from Lemma 3.3, w̃1 = w1 = 0 hold. Thus from Lemma 3.5(I)(iii), we get
Table 3.4(iv). In particular, if k = 2, i.e., m = 6, then we have s = 2 and t = 4,
and hence rank{K∗

2} = 2 and K∗
3 = 0, and if k ≥ 3, then rank{K∗

γ} = 4− γ (2 ≤
γ ≤ 3). (B) If rank{K∗

0} = 3, i.e., λi = 0 (i = p, q, r; 0 ≤ p < q < r ≤ m) and
λj = 0 (j = p, q, r; 0 ≤ j ≤ m), then from Lemma 3.3, we have w̃0 = w0 = w∗

0 = 0.
Thus from Lemma 3.5(II)(iv), we get Table 3.4(v). In particular, if k = 4, we have
p = 1, q = 3, r = 5, w2 = 0, rank{K∗

γ} = 4 − γ (γ = 1, 3) and rank{K∗
2} = 1,

and if k ≥ 5, then rank{K∗
γ} = 4 − γ (1 ≤ γ ≤ 3). Sufficient conditions can be

easily obtained.
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