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ESTIMATION OF MOMENT PARAMETER
IN ELLIPTICAL DISTRIBUTIONS

Yosihito Maruyama* and Takashi Seo**

As a typical non-normal case, we consider a family of elliptically symmetric dis-
tributions. Then, the moment parameter and its consistent estimator are presented.
Also, the asymptotic expectation and the asymptotic variance of the consistent es-
timator of the general moment parameter are given. Besides, the numerical results
obtained by Monte Carlo simulation for some selected parameters are provided.
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1. Introduction

The general moment parameter includes the important kurtosis parameter
in the study of multivariate statistical analysis for elliptical populations. The
kurtosis parameter, especially with relation to the estimation problem, has been
considered by many authors. Mardia (1970, 1974) defined a measure of multi-
variate sample kurtosis and derived its asymptotic distribution for samples from
a multivariate normal population. Also, the testing normality was considered by
using the asymptotic result. The related discussion of the kurtosis parameter
under the elliptical distribution has been given by Anderson (1993), and Seo and
Toyama (1996). Henze (1994) has discussed the asymptotic variance of the mul-
tivariate sample kurtosis for general distributions. Here we deal with the estima-
tion of the general moment parameters in elliptical distributions. In particular,
we make a generalization of the results of Anderson (1993) and give an extension
of asymptotic properties in Mardia (1970, 1974), Seo and Toyama (1996). In
general, it is not easy to derive the exact distribution of test statistics or the
percentiles for the testing problem under the elliptical populations, and so the
asymptotic expansion of the statistics is considered. Especially that given up
to the higher order includes not only the kurtosis parameter but the more gen-
eral higher order moment parameters as well. Then we have to speculate about
the estimation of the moment parameters as a practical problem. The present
paper is organized in the following way. First, the probability density function,
characteristic function and subclasses of the elliptical distribution are explained.
Secondly, we prove the results concerning the moments and define the moment
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parameter. These are done in Section 2. Although Berkane and Bentler (1986,
1987) computed the moments of an elliptically distributed random vector in a
different way, we can confirm that our results coincide with theirs. In Section 3,
we construct the consistent estimator of the general moment parameters by the
moment method. In addition, the asymptotic properties of those estimators for
the elliptical distribution are presented in the two cases for which the population
covariance matrix is known and unknown. From the results, another estimator
that has bias correction with respect to the sample size is proposed. In the last
instance, we investigate the bias and the MSE of the estimators by Monte Carlo
simulation applied to some selected parameters, and moreover evaluate the confi-
dence intervals for the general moment parameter with the asymptotic properties
in Section 4.

2. Moments for elliptical population

Let the p-variate random vector X be distributed as the p-variate elliptical
distribution with parameters µ and Λ, which is denoted by Ep(µ,Λ), where Λ is
some positive definite symmetric matrix. If the probability density function of
X exists, it has the form

f(x) = cp|Λ|−1/2g
(
(x − µ)′Λ−1(x − µ)

)
for some non-negative function g, where cp is positive constant. The characteristic
function is of the form

φ(θ) = exp[iθ′µ]ψ(θ′Λθ)

for some function ψ, where i =
√
−1. Note that the expectation and the covari-

ance matrix of X are E(X) = µ and Cov(X) = Σ = −2ψ′(0)Λ, respectively.
Elliptical distributions include the several special cases, for instance, the mul-

tivariate normal distribution which is described as Np(µ,Λ) with the probability
density function

f(x) = (2π)−p/2|Λ|−1/2 exp
[
−1

2
(x − µ)′Λ−1(x − µ)

]
,

the multivariate t distribution with ν degrees of freedom and the probability
density function

f(x) =
Γ

(
ν + p

2

)

Γ
(ν

2

)
(νπ)p/2

|Λ|−1/2

(
1 +

1
ν

(x − µ)′Λ−1(x − µ)
)−(ν+p)/2

,

the contaminated normal distribution with the probability density function

f(x) =
1 − ω

(2π)p/2
|Λ|−1/2 exp

[
−1

2
(x − µ)′Λ−1(x − µ)

]

+
ω

(2πτ2)p/2
|Λ|−1/2 exp

[
− 1

2τ2
(x − µ)′Λ−1(x − µ)

]
, 0 ≤ ω ≤ 1,
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and so on, which are referred to e.g., Cambanis et al. (1981), Muirhead (1982).
Now we will calculate the moments of elliptically distributed random variates.

Suppose that A is a nonsingular matrix satisfying A′A = Λ. Then we can express
A−1(X −µ) = RU , where the vector U has the uniform distribution on the unit
sphere U ′U = 1 such that U is independent of the scalar R which is non-
negative. The central moments of X can be found from the moments of R and
U . In normal case, R2 has the chi-square distribution with p degrees of freedom.
So the m-th order moments of R2 are given as

E
(
R2m

)
= 2m

(p

2

)
m

,

where (p

2

)
m

≡
(p

2

) (p

2
+ 1

)
· · ·

(p

2
+ m − 1

)
.

Then, for example, we have the second, fourth and sixth order moments of U
given by

E(UU ′) =
1
p
Ip,

E(UiUjUkUl) =
1

p(p + 2)

∑
(3)

δijδkl,

E(UiUjUkUlUsUt) =
1

p(p + 2)(p + 4)

∑
(15)

δijδklδst,

where δij is the Kronecker’s delta, and the sum occurs over all ways of grouping
the subscripts,∑

(3)

δijδkl = δijδkl + δikδjl + δilδjk,

∑
(15)

δijδklδst = δijδklδst + δijδksδlt + δijδktδls + δikδjlδst + δikδjsδlt

+ δikδjtδls + δilδjkδst + δilδjsδkt + δilδjtδks + δisδjkδlt

+ δisδjlδkt + δisδjtδkl + δitδjkδls + δitδjlδks + δitδjsδkl.

In general, we have the following result.

Lemma 1. The odd order moments of U are 0, the 2m-th order moments
are of the form

E(UiUjUkUl · · ·UuUv) =
1

2m
(p

2

)
m

∑
(dm)

δijδkl · · · δuv,

where

dm = 2m

(
1
2

)
m

.
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On the other hand, the 2m-th order moments of R in the elliptical distribu-
tions are given by

E(R2m) = (−4)m
(p

2

)
m

ψ(m)(0),

which is due to Hayakawa and Puri (1985). From them, we have the following
result.

Lemma 2. For elliptical population, the odd order moments of X − µ are
0, the 2m-th order moments are of the form

E
[
(Xi − µi)(Xj − µj) · · · (Xu − µu)(Xv − µv)

]
=

(
K(m) + 1

) ∑
(dm)

σijσkl · · ·σuv,

where Σ = (σij), and

K(m) ≡
ψ(m)(0)
{ψ′(0)}m

− 1 , dm = 2m

(
1
2

)
m

.

The result of Lemma 2 coincides with which Berkane and Bentler (1987)
derived by successive differentiations of φ(θ), and also when i = j = · · · =
u = v, we have the moments which are the same as that given by Berkane and
Bentler (1986). Here we define K(m) as the 2m-th order moment parameter.
Especially, K(2) is simply denoted by κ and called a kurtosis parameter. The
elliptical distributions are characterized by a kurtosis parameter which is included
in the general moment parameter.

From the relation between the moments and the cumulants (e.g., see Kendall
et al. (1987)), for example, the fourth, sixth and eighth cumulants are given by

κijkl = κ
∑
(3)

σijσkl,

κijklst = (K(3) − 3κ)
∑
(15)

σijσklσst,

κijklstuv = (K(4) − 4K(3) − 3κ2 + 6κ)
∑
(105)

σijσklσstσuv.

3. Asymptotic properties

In this section, we give careful consideration to the consistent estimators
of the general moment parameter in the elliptical distributions by the moment
method. We also give the asymptotic expectation and the asymptotic variance
of those estimators.

Suppose that X1, . . . ,Xn are independent and identically distributed ran-
dom vectors according to Ep(µ,Λ). A multivariate coefficient of kurtosis in the
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sense of Mardia (1970) is β2,p ≡ E
[
{(X − µ)′Σ−1(X − µ)}2

]
, and the affine

invariant sample analogue of β2,p is obtained by

β̂2,p ≡ 1
n

n∑
i=1

{
(Xi − X)′S−1(Xi − X)

}2
,

where X is the sample mean vector. S is the sample covariance matrix,

S ≡ 1
n

n∑
i=1

(Xi − X)(Xi − X)′.

Now β2,p can be calculated as p(p + 2)(κ + 1) with Lemma 2. For the consistent
estimator of κ, we can propose

κ̂ =
1

p(p + 2)
β̂2,p − 1.

Further, as generality of this result,

βm,p ≡ E
[
{(X − µ)′Σ−1(X − µ)}m

]
= 2m

(p

2

)
m

(
K(m) + 1

)
.

Therefore, we have a consistent estimator of the 2m-th order moment parameter
given by

K̂(m) =
1

2m
(p

2

)
m

β̂m,p − 1,(3.1)

where

β̂m,p =
1
n

n∑
i=1

{
(Xi − X)′S−1(Xi − X)

}m
.

This representation is an extension of the estimator of kurtosis parameter dis-
cussed by Anderson (1993). We first consider the asymptotic properties of the
consistent estimator, which is described by K̂∗

(m) (or β̂∗
m,p) when Σ is known. In

this case, it is assumed without loss of generality that Σ = Ip. Then replacing S
with Σ, we can write

β̂∗
m,p =

1
n

n∑
i=1

T 2m
i ,

where T 2
i = (Xi − X)′(Xi − X). In order to avoid the dependence of Xi and

X, we define

X(i) =
1

n − 1

n∑
k �=i

Xk.
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Then, we can write

T 2
i =

(
1 − 1

n

)2 (
Xi − X(i)

)′ (
Xi − X(i)

)
.

Note that Xi is independent of X(i). To obtain the expectation of K̂(m) by the
perturbation method, we put

X(i) =
1√

n − 1
Y ,

then, T 2m
i can be expanded as

T 2m
i =

(
X ′

iXi

)m +
1√
n

γ1 +
1
n

γ2 + Op

(
n−3/2

)
,

where

γ1 = −2m
(
X ′

iXi

)m−1
Y ′Xi,

γ2 = m
(
X ′

iXi

)m−1 (
Y ′Y − 2X ′

iXi

)
+ 2m(m − 1)

(
X ′

iXi

)m−2 (
Y ′Xi

)2
.

Therefore, calculating the expectation with respect to Xi and Y , we get the
asymptotic mean of T =

√
n(K̂∗

(m) −K(m)) up to the order n−1 as

E(T ) =
1√
n

{
−m

(
2K(m) −K(m−1) + 1

)}
+ O

(
n−3/2

)
.(3.2)

If the underlying distribution is normal then K(m) = 0, the asymptotic expecta-
tion of T can be reduced as

E(T ) = − m√
n

+ O
(
n−3/2

)
.

Similarly, calculating the expectation for the expansion of T 4m
i , we may come by

the variance. Therefore, we have the following result.

Theorem 1. Suppose that K̂∗
(m) is the consistent estimator of the 2m-th

order moment parameter K(m) with known Σ, which is given by (3.1). Then the
asymptotic variance of T =

√
n(K̂∗

(m) −K(m)) is

σ2
T =

(p

2
+ m

)
m(p

2

)
m

(
K(2m) + 1

)
−

(
K(m) + 1

)2
.(3.3)

Here, we correct the bias of the estimator K̂∗
(m) as follows. The modified

estimator can be obtained by

K̃∗
(m) = K̂∗

(m) +
m

n

(
2K̂∗

(m) − K̂∗
(m−1) + 1

)
.(3.4)
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Note that the bias in K̃∗
(m) is order n−2 with the same variance up to the order

n−1 as that of K̂∗
(m).

Next, we consider the case when Σ is unknown, that is the main purpose of
this paper. In order to avoid the dependence of Xi, X and S, we put

T 2
i =

(
Xi − X

)′
S−1

(
Xi − X

)
,

X(i) =
1

n − 1

n∑
k �=i

Xk,

S(i) =
1

n − 1

n∑
k �=i

(
Xk − X(i)

) (
Xk − X(i)

)′
.

Then, we can write

S =
n − 1

n

{
S(i) +

1
n

(
Xi − X(i)

) (
Xi − X(i)

)′}
,

and also

S−1 =
n

n − 1
S−1

(i) −
1

n − 1
S−1

(i)

(
Xi − X(i)

) (
Xi − X(i)

)′
S−1

(i)

1 +
1
n

(
Xi − X(i)

)′
S−1

(i)

(
Xi − X(i)

) .

Therefore, we note that

T 2
i =

(
1 − 1

n

)2 T̃ 2
i

1 +
n − 1
n2

T̃ 2
i

,

where

T̃ 2
i =

n

n − 1
(
Xi − X(i)

)′
S−1

(i)

(
Xi − X(i)

)
.

Further, let

X(i) =
1√

n − 1
Y ,

S(i) = Ip +
1√

n − 1
M,

then, we can expand T̃ 2
i as

T̃ 2
i = X ′

iXi +
1√
n

a1 +
1
n

a2 + Op

(
n−3/2

)
,
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where

a1 = −2X ′
iY − X ′

iMXi,

a2 = 2X ′
iXi + 2X ′

iMY + X ′
iM

2Xi + Y ′Y .

Therefore, T 2m
i is expanded as

T 2m
i =

(
X ′

iXi

)m +
1√
n

b1 +
1
n

b2 + Op

(
n−3/2

)
,

where

b1 = −m
(
X ′

iXi

)m−1
a1,

b2 =
m

2
(
X ′

iXi

)m−2
{

(m − 1)a2
1 + 2X ′

iXia2 − 4
(
X ′

iXi

)2 − 2
(
X ′

iXi

)3
}

.

By using the asymptotic expanded joint probability density function of Y and
M (e.g., see Wakaki (1997)), we can calculate the expectation for the expansion
of T 2m

i . Then we obtain the asymptotic mean of T =
√

n(K̂(m) − K(m)) up to
the order n−1 as

E(T ) =
1√
n

c + O
(
n−3/2

)
,(3.5)

where

c = m
(
K(m−1) + 1

)
− m(p + 2m)

(
K(m+1) + 1

)
+ (3 + mp + 2m)(κ + 1)

(
K(m) + 1

)
− (m + 1)

(
K(m) + 1

)
.

Similarly, we may come by the variance. In order to avoid the dependence of
Xi, Xj , X and S, we define

X(i,j) =
1

n − 2

n∑
k �=i,j

Xk,

S(i,j) =
1

n − 2

n∑
k �=i,j

(
Xk − X(i,j)

) (
Xk − X(i,j)

)′
.

Then, T̃ 2
i can be written as

T̃ 2
i =

{
n

n − 1
Qi +

n(n − 2)
(n − 1)3

(
QiQj − Q2

i,j

)
− 2n

(n − 1)2
Qi,j +

n

(n − 1)3
Qj

}

×
(

1 +
n − 2

(n − 1)2
Qj

)−1

,

where

Qi =
(

1 +
1

n − 2

) (
Xi − X(i,j)

)′
S−1

(i,j)

(
Xi − X(i,j)

)
,

Qj =
(

1 +
1

n − 2

) (
Xj − X(i,j)

)′
S−1

(i,j)

(
Xj − X(i,j)

)
,

Qi,j =
(

1 +
1

n − 2

) (
Xi − X(i,j)

)′
S−1

(i,j)

(
Xj − X(i,j)

)
,
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and

E
(
β̂2

m,p

)
=

1
n

E
(
T 4m

i

)
+

(
1 − 1

n

)
E

(
T 2m

i T 2m
j

)
.

Further, let

X(i,j) =
1√

n − 2
Ỹ ,

S(i,j) = Ip +
1√

n − 2
M̃,

then, T̃ 2m
i can be expanded as

T̃ 2m
i =

(
X ′

iXi

)m − 1√
n

m
(
X ′

iXi

)m−1
f1 +

1
n

m
(
X ′

iXi

)m−2
e1 + Op

(
n−3/2

)
,

where

e1 =
m − 1

2
f2
1 + X ′

iXif2 +
(
X ′

iXi

)2 − 2X ′
iXiX

′
iXj − X ′

iXi

(
X ′

iXj

)2
,

and

f1 = 2X ′
iỸ + X ′

iM̃Xi,

f2 = 2X ′
iXi + 2X ′

iM̃ Ỹ + X ′
iM̃

2Xi + Ỹ
′
Ỹ .

Substituting T̃ 2m
i in T 2m

i , we can get the expansion of T 4m
i up to the order

n−1. Further calculating the expectation for the expansion of T 4m
i with respect

to Xi, Y and M , and then doing for the expansion of T 2m
i T 2m

j with respect to
Xi, Xj , Ỹ and M̃ , we may come by the variance up to the order n−1. Therefore,
we have the following result.

Theorem 2. Suppose that K̂(m) is a consistent estimator of the 2m-th order
moment parameter K(m) with unknown Σ, which is given by (3.1). Then the
asymptotic variance of T =

√
n(K̂(m) −K(m)) is

σ2
T =

(p

2
+ m

)
m(p

2

)
m

(
K(2m) + 1

)
+ 3(m2 − m − 2)(κ + 1)

(
K(m) + 1

)2

(3.6)

+
2−m+2m2

p
(p

2
+ 2

)
m−2

(
K(m) + 1

)
(κ + 1) {(p + 2)(κ + 1) − p}

+ (−m2 + 3m + 1)
(
K(m) + 1

)2 − 2m(p + 2m)
p

(
K(m) + 1

) (
K(m+1) + 1

)
.
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This result is essentially the extension of that discussed by Seo and Toyama
(1996). In the case when Σ is unknown, another estimator with the bias correc-
tion can be obtained as

K̃(m) = K̂(m) −
ĉ

n
,(3.7)

where,

ĉ = m
(
K̂(m−1) + 1

)
− m(p + 2m)

(
K̂(m+1) + 1

)
+ (3 + mp + 2m)(κ̂ + 1)

(
K̂(m) + 1

)
− (m + 1)

(
K̂(m) + 1

)
.

Further, if the underlying distribution is normal then K(m) = 0, we have the
variance of K̂(m) which is the same as that given by Mardia (1970).

4. Numerical calculation

This section investigates the bias and the MSE for the estimators of the gen-
eral moment parameter by Monte Carlo simulation for some selected values of
parameters. Computations are made for each case where the population covari-
ance matrix Σ is unknown. For elliptical populations, we consider the following
six types of distributions.

E1 : Contaminated normal (ω = 0.1, τ = 3).
E2 : Contaminated normal (ω = 0.4, τ = 3).
E3 : Contaminated normal (ω = 0.7, τ = 3).
E4 : Multivariate normal.
E5 : Multivariate t (ν = 13).
E6 : Compound normal U(1, 2),

where the random vector X from E6 is the product of a normal vector Z which
has Np(0, Ip) and the inverse of a random variable according to the uniform
distribution on the interval [1, 2]. We note that the theoretical values of K(m) are
computed easily using the appropriate formula, i.e., for the contaminated normal
distribution,

K(m) =
1 + ω(τ2m − 1)

{1 + ω(τ2 − 1)}m − 1,

for the multivariate t distribution with ν degrees of freedom is given by

K(m) =
(ν − 2)m

2m
(ν

2
− m

)
m

− 1, ν > 2m,

and for the compound normal distribution, K(m) = 2m(2−2m+1−1)/(−2m+1)−1.
The moment parameters of each distribution are obtained as follows Table 1,
because we need them up to the sixth order for computing.
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Table 1. Theoretical values of K(m).

κ K(3) K(4) K(6)

E1 1.78 11.65 61.58 1561.52

E2 0.87 2.94 7.43 37.72

E3 0.31 0.77 1.42 3.50

E4 0 0 0 0

E5 0.22 0.92 3.22 169.42

E6 0.16 0.55 1.26 4.81

We first focus our concentration on the mean of T . Table 2 shows the ap-
proximate values with (3.5) for some parameters p and n when m = 3 and Σ is
unknown. On the other hand, when we may assume that Σ = Ip without any loss
of generality, the sample mean for T based on 10,000 simulations is also obtained.
It may be found from Table 2 that the simulation results nearly coincide with
the approximate values for E4 and E6. But in the case of E5, the convergence
is slow and the approximate expression (3.5) is not always precise. In the other
cases, both values agree for a sufficiently large n.

Table 2. Simulation results for the mean of T when Σ is unknown.

E1 E2 E3 E4 E5 E6

n\p 2 4 2 4 2 4 2 4 2 4 2 4

100 AE −92.50 −95.96 −9.37 −9.01 −3.17 −3.23 −1.30 −1.30 −7.59 −8.72 −3.46 −3.74

SV −58.32 −66.10 −6.95 −7.54 −1.98 −2.05 −1.20 −1.21 −4.66 −5.05 −2.39 −2.54

200 AE −74.60 −86.24 −8.04 −8.49 −2.24 −2.28 −0.91 −0.91 −5.37 −6.16 −2.45 −2.64

SV −49.27 −57.98 −5.02 −5.55 −1.43 −1.50 −0.83 −0.83 −3.88 −4.41 −1.82 −1.93

500 AE −47.18 −54.54 −5.08 −5.37 −1.41 −1.44 −0.58 −0.58 −3.39 −3.90 −1.54 −1.67

SV −36.46 −42.12 −3.48 −3.79 −0.97 −1.02 −0.50 −0.59 −3.44 −3.62 −1.06 −1.24

2000 AE −23.59 −27.27 −2.54 −2.68 −0.71 −0.72 −0.29 −0.29 −1.69 −1.95 −0.77 −0.83

SV −21.13 −22.68 −1.89 −1.78 −0.48 −0.51 −0.27 −0.26 −2.02 −1.91 −0.50 −0.66

AE : Approximated values for the expectation of T .

SV : Simulated values for the mean of T .

Next, Table 3 gives the bias for K̂(3) and another estimator K̃(3) by (3.7)
based on 10,000 simulations when Σ is unknown. The MSE is done by Table 4.
If Σ is known, we make use of (3.4). It may be seen from simulation results in
Tables 3 and 4 that the expectation of the estimators converges to the moment
parameter when the sample size is large. Especially in normal case E4, it is noted
that the modified estimator K̃(3) rapidly approaches K(3). The values obtained
for the estimators were acceptable for a large n and improved as ω increased for
the contaminated normal E1, E2 and E3, and when n increased for the compound
normal E6. Also from Tables 3 and 4, we note that K̂(3) is underestimated for
elliptical populations. The bias of K̃(3) is actually smaller in magnitude than
that of K̂(3). It may be noted that the size of p does not have much effect on
the bias of K̂(m). These results are true for small sample sizes, not more than
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n = 50, when Σ is known. As for the MSE, when Σ is unknown with large p,
the MSE of K̃(m) is about the same as that of K̂(m). It can be seen that the
bias as well as the MSE for K̃(m) is reduced when the sample size is large and
the covariance matrix is unknown. As far as we can judge these results, K̃(m) is
better than K̂(m).

Table 3. Simulation results for the bias of the estimators when Σ is unknown.

p n E1 E2 E3 E4 E5 E6

K̂(3) K̃(3) K̂(3) K̃(3) K̂(3) K̃(3) K̂(3) K̃(3) K̂(3) K̃(3) K̂(3) K̃(3)

2 100 −5.83 −2.73 −0.69 −0.13 −0.19 −0.04 −0.08 −0.01 −0.46 −0.15 −0.23 −0.01

200 −3.48 −0.75 −0.35 −0.10 −0.10 −0.03 −0.04 −0.01 −0.27 −0.04 −0.12 −0.00

500 −1.63 −0.07 −0.15 −0.05 −0.04 −0.01 −0.01 −0.00 −0.15 −0.04 −0.04 −0.01

2000 −0.47 −0.02 −0.04 −0.01 −0.01 −0.00 −0.00 −0.00 −0.05 −0.00 −0.01 −0.00

4 100 −6.61 −3.35 −0.75 −0.11 −0.20 −0.03 −0.08 −0.01 −0.50 −0.18 −0.25 −0.01

200 −4.10 −1.11 −0.39 −0.08 −0.10 −0.03 −0.04 −0.01 −0.31 −0.07 −0.13 −0.01

500 −1.88 −0.08 −0.16 −0.04 −0.04 −0.01 −0.01 −0.00 −0.16 −0.04 −0.05 −0.01

2000 −0.50 −0.05 −0.03 −0.01 −0.01 −0.00 −0.00 −0.00 −0.07 −0.03 −0.01 −0.00

Table 4. Simulation results for the MSE of the estimators when Σ is unknown.

p n E1 E2 E3 E4 E5 E6

K̂(3) K̃(3) K̂(3) K̃(3) K̂(3) K̃(3) K̂(3) K̃(3) K̂(3) K̃(3) K̂(3) K̃(3)

2 100 56.706 56.950 2.432 3.047 0.330 0.522 0.075 0.080 1.285 2.503 0.387 0.477

200 42.093 42.164 1.604 1.785 0.201 0.205 0.042 0.050 1.144 1.438 0.239 0.278

500 25.993 26.176 0.768 1.021 0.089 0.009 0.018 0.021 1.160 1.223 0.125 0.130

2000 8.311 8.819 0.212 0.230 0.023 0.025 0.005 0.005 0.327 0.356 0.033 0.035

4 100 50.075 43.941 1.287 1.365 0.151 0.186 0.028 0.031 0.517 0.963 0.165 0.286

200 26.174 26.222 0.704 1.025 0.080 0.096 0.014 0.021 0.433 0.872 0.099 0.103

500 11.871 11.643 0.312 0.328 0.033 0.042 0.006 0.007 0.414 0.538 0.047 0.062

2000 3.401 3.143 0.084 0.083 0.008 0.009 0.001 0.001 0.168 0.198 0.012 0.013

Furthermore, the asymptotic normality of T also enables us to easily con-
struct the confidence intervals for K(m). A confidence interval for K(m) with
confidence coefficient 1 − α is approximately[

K̂(m) −
√

σ̂2
T

n
zα/2, K̂(m) +

√
σ̂2

T

n
zα/2

]
,(4.1)

where σ̂2
T is given by substituting K̂(m) for K(m) in σ2

T gained as (3.3) in Theorem
1 or (3.6) in Theorem 2, because K(m) is generally unknown. zα/2 is the two-
tailed 100α% point of the standard normal distribution. In the same way, we
have another interval for K(m) by means of K̃(m), that is to say[

K̃(m) −
√

σ̃2
T

n
zα/2, K̃(m) +

√
σ̃2

T

n
zα/2

]
,(4.2)

where σ̃2
T is done by substituting K̃(m) for K(m).
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Figure 1. Confidence interval (E4). � : K̂(m), � : K̃(m)

By way of illustration, we think over the normal case E4 when Σ is unknown.
Figure 1 presents the confidence intervals for K(3) with nominal confidence coef-
ficient α = 0.95. Those are the confidence limit with K̂(3) by (4.1) and with K̃(3)

by (4.2). It can be seen from those simulation results that the large sample size
has the small range of the confidence interval. The confidence interval by means
of K̃(3) has a slightly small range by contrast with that of K̂(3). Moreover, the
actual confidence coefficients of the interval in the circumstances are displayed
in Table 5. It can turn out to be that both of the two values come closer to
the nominal confidence coefficient α = 0.95 when the sample size is large. The
confidence coefficient with the help of K̂(3) is a little bigger than that of K̃(3).
Note that the largeness of p does not affect the intervals. In addition, when p is
large, σ2

T decreases monotonously. In the other cases E1 to E6, the simulation
results are shown in Table 6, and also then, we are able to see the results similar
to E4.

Table 5. Actual confidence coefficients in E4.

n 100 200 500 800 1000 2000 4000

K̂(3) 0.905 0.931 0.938 0.943 0.945 0.948 0.950

K̃(3) 0.885 0.928 0.938 0.942 0.944 0.948 0.950

The facts mentioned above may be applied to the case when Σ is known,
but details are abbreviated in the present paper. Here, we cite only one or two
instances. For the mean of T , it was seen that the simulation results almost agree
with the approximate values (3.2) in each case. Also we found that the MSE of
K̂(m)(or K̃(m)) is not as small as that in the case of an unknown Σ.
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Table 6. Confidence interval for K(3) when Σ is unknown.

p = 2 E1 E2 E3

lower upper α′ lower upper α′ lower upper α′

n = 100 K̂(3) −1.86 20.92 0.44 −0.15 4.85 0.80 −0.42 1.67 0.88

K̃(3) 2.01 20.41 0.40 1.40 4.80 0.62 −0.05 1.80 0.83

n = 200 K̂(3) −1.27 19.89 0.68 0.46 4.87 0.88 −0.12 1.53 0.91

K̃(3) 2.53 19.24 0.61 1.07 5.13 0.86 0.03 1.64 0.90

n = 500 K̂(3) 1.29 19.71 0.86 1.26 4.36 0.92 0.18 1.30 0.93

K̃(3) 2.91 18.78 0.86 1.47 4.56 0.92 0.24 1.36 0.93

n = 2000 K̂(3) 5.90 17.49 0.92 2.07 3.74 0.94 0.47 1.06 0.95

K̃(3) 6.28 17.08 0.92 2.16 3.80 0.95 0.49 1.07 0.95

p = 2 E4 E5 E6

lower upper α′ lower upper α′ lower upper α′

n = 100 K̂(3) −0.60 0.57 0.90 −1.33 2.33 0.14 −0.77 1.47 0.82

K̃(3) −0.46 0.45 0.88 −1.24 2.88 0.28 −0.55 1.72 0.82

n = 200 K̂(3) −0.44 0.48 0.93 −1.62 2.96 0.43 −0.47 1.36 0.87

K̃(3) −0.38 0.33 0.92 −1.86 3.66 0.51 −0.36 1.53 0.89

n = 500 K̂(3) −0.28 0.28 0.93 −1.21 2.76 0.56 −0.17 1.19 0.92

K̃(3) −0.25 0.26 0.93 −1.40 3.19 0.63 −0.12 1.27 0.93

n = 2000 K̂(3) −0.14 0.14 0.95 −0.51 2.28 0.73 0.18 0.89 0.94

K̃(3) −0.13 0.13 0.95 −0.57 2.24 0.76 0.19 0.91 0.94

α′ : Actual confidence coefficients.

As a result, we conclude to suggest K̃(m) as the better estimator of K(m).
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