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ON BAYESIAN ANALYSIS OF BINOMIAL
RELIABILITY GROWTH

Guo-Ying Li*, Qi-Guang Wu* and Yong-Hui Zhao**

This paper introduces a new class of prior distributions for reliability growth tests
with binomial data under the monotone model. The proposed prior has a conditional
form, which accords well with various actual situations in reliability growth tests.
The expressions of the corresponding means and variances for all stages with and
without conditioning are obtained, and the relationship between the shape of the
prior distributions and their parameters are discussed. These results are helpful in
order to incorporate expert opinions. The posterior density and the Bayesian lower
bound of the relibility at the end of the test, and a computation method for them
are given. The new family of prior distributions includes the uniform prior used
by Smith (1977) and the ordered Dirichlet priors presented by Mazzuchi and Soyer
(1992, 1993) as special cases. Comparisons are made by two examples, which show
the limitations of the later two.

Key words and phrases: Attribute reliability growth, monotone model, prior distri-
butions, posterior density, Bayesian lower bound.

1. Introduction

During the development of every new product there is always a process of
testing-modification cycles. Testing is performed in stages. At the end of each
stage (except the final one), failures are examined such that modification can be
made to the product. This results in improved reliability of the product. This is
usually called the reliability growth test (RGT for short).

There has been much work done in the area of statistical analysis for RGT,
and many reliability growth models have been proposed. (cf. Department of
Defence (1981), Taneja and Safie (1992) and references there). For an RGT with
attribute outcomes, the most attractive model is the monotone model, which says
that in an RGT of m independent stages, due to modifications, the reliabilities
of the product at all stages satisfy

(1.1) 0 ≤ R1 ≤ R2 · · · ≤ Rm ≤ 1,

where Ri is the reliability of the product at stage i. One wishes to make inference
for the current reliability, Rm, of the product. This model was first introduced
and discussed by Barlow and Scheuer (1966), and Read (1971) made additional
remarks on the estimation of the model.
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Very often, the technician may have certain knowledge of the effectiveness of
the modification. This additional information can be very helpful to the inference,
especially in cases where the number of testing items is small. In these circum-
stances, the Bayesian method is useful. Smith (1977) discussed the Bayesian
inference of the monotone model for binomial trials. He assumed a uniform prior
on the parameter space. Fard and Dietrich (1987) made a comment on Smith’s
derivation of the proportionality constant of the joint posterior density. This
prior is totally determined by the number, m, of the stages in RGT, and has no
parameter that needs to be adjusted to an actual situation. Hence, it usually
does neither describe the reliability engineers’ knowledge nor provide guidances
to the analysis of RGT.

Mazzuchi and Soyer (1992, 1993) considered a family of prior distributions,
the ordered Dirichlet distributions, for binomial trials and derived prior and
posterior expressions for joint and marginal distributions. The relevant decision
aspects were discussed in van Dorp et al. (1997), and the associated computations
were presented in Erkanli et al. (1998). The ordered Ditichlet family has (m+1)
independent parameters, namely β, α1, . . . , αm, and includes the uniform prior
as a special case. By choosing {αi}, the ordered Dirichlet prior describes well
the engineer’s knowledge on the reliability mean for each stage.

Still, many situations can not be well incorporated since it has only one pa-
rameter, β, to adjust the prior variances for all stages. For example, in most
cases in reality, the prior density for each stage is unimodal. To meet this re-
quirement, β has to be large, which result in small variances for all stages. This
gives strong priors, and, hence, may largely dominate the inference, especially
when the number of items in the test is small. Furthermore, the ordered Dirich-
let prior requires that its (m + 1) parameters are determined before the RGT.
However, according to our experience in working with reliability engineers, their
prior knowledge is usually based on the actual failures and the corresponding
modification performed to correct the cause of the failures, since the corrective
actions are directed against the failures. Also, for a specific failure there may be
several corrective actions, and different actions will result in different increments
of reliability. In another words, only after the first (k − 1) stages of the test
including the corresponding modifications are finished, can they elicit measures
for specifying the prior parameters of the kth stage. It is generally difficult to
determine all the prior parameters without any trials.

In this paper a new family of prior distributions is presented. The proposed
prior is of conditional form and has two parameters for each stage. The prior
parameters for the kth stage are determined according to the engineer’s knowl-
edge about the failures in (k − 1)-th stage and the associated corrective actions
for them, and can approximately describe various real situations. Also, our prior
family includes the uniform and ordered Dirichlet prior distributions as special
cases.

Section 2 presents a general account of Bayesian analysis for binomial RGT.
The uniform prior, and the ordered Dirichlet prior, and their limitations are
briefly discussed in section 3. Section 4 is devoted to the proposed family of
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prior distributions. It is shown that the uniform prior and the ordered Dirichlet
prior are both members of our family. For the new family, the prior means and
variances with and without conditioning for each stage of the RGT are derived,
and the shapes of stage-wise prior distributions with different parameters are
discussed. These will help reliability engineers incorporate their opinions into
testing cycles. The posterior density of the current reliability, Rm, of the product
and its Bayesian lower boud (BLB) are given for the both cases of non-sequential
and sequential RGT. The number theory method for the posterior computation
is presented. In addition, comparisons of the proposed prior family with the
ordered Dirichlet priors and the uniform prior are made by two examples.

2. General

Assumptions (Smith (1977)):
(i) Trials are statistically independent, and during stage i the probability

of a success is Ri, i = 1, . . . ,m.
(ii) During stage i, there are ni trials (ni ≥ 1) resulting in si successes

(0 ≤ si ≤ ni).
(iii) Due to modification, R1 ≤ R2 ≤ · · · ≤ Rm.
Then, for the above RGT, the likelihood function is

(2.1)
m∏
i=1

(
ni

si

)
Rsi

i (1 −Ri)fi , with fi = ni − si, i = 1, . . . ,m.

An alternative for assumption (ii) (Mazzuchi and Soyer (1992)) is
(ii)′ During stage i identical replications of the product are tested until a

failure is observed.
We will call it a sequential RGT (SRGT for short). For distinction, the

former (under assumption (ii)) is called a non-sequential RGT (NRGT).
Let Ni be the number of items tested at stage i(i = 1, 2, . . .) in a SRGT,

then the likelihood function after k stages of testing for Ni = ni, i = 1, 2, . . . , k
is

(2.2)
k∏

i=1

(1 −Ri)Rni−1
i ,

and the probability distribution of Ni for fixed Ri is

(2.3) Pr(Ni = ni | Ri) = (1 −Ri)Rni−1
i ni = 1, 2, . . .

Denote R̃ = (R1, . . . , Rm), s̃ = (s1, . . . , sm), r̃ = (r1, r2, . . . , rm), Ωk(a) =
{(x1, . . . , xk): 0 ≤ x1 ≤ · · · ≤ xk ≤ a}, 0 < a ≤ 1, k = 1, 2, . . . ,m, and
Ω = Ωm(1). Let g(r̃) be a prior density of R̃. For the likelihood function (2.1)
of a NRGT, the joint posterior density function is

(2.4) h(r̃ | s̃) = g(r̃)
m∏
i=1

rsii (1 − ri)fi/f(s̃),
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where

(2.5) f(s̃) =
∫
Ω
g(r̃)

m∏
i=1

rsii (1 − ri)fidr̃.

The marginal posterior density function of Rm, the parameter of interest, is

(2.6) hm(r | s̃) = I[0,1](r)
∫
Ωm−1(r)

h(r̃ | s̃)dr1 · · · drm−1.

Then, each of the following two

(2.7) R̂m =
∫ 1

0
rhm(r | s̃)dr, R̂m = med{hm(r | s̃)}

is a Bayesian estimator of Rm with respect to the prior distribution, where
med{hm(r | s̃)}, denoted by M(Rm), is the posterior meadian of Rm which
satisfies

(2.8)
∫ M(Rm)

0
hm(r | s̃)dr = 0.5.

For 0 < γ < 1, the (1− γ)-th quantile, R̂m,L, of the posterior distribution which
satisfies

(2.9)
∫ R̂m,L

0
hm(r | s̃)dr = 1 − γ

is Bayesian lower bound (BLB) for Rm with coverage probability γ.
For a SRGT with Ni = ni, i = 1, 2, . . . ,m, the joint posterior density of

R1, . . . , Rm can be obtained by letting si = 1, fi = ni − 1 in (2.4) and (2.5).
Also, the predictive distributions for RI and NI after stage I − 1 can be easily
derived, which are, respectively

ζI(rI | n1, . . . , nI−1) = [η(n1, . . . , nI−1)]−1
∫
ΩI−1(rI)

gI(r1, . . . , rI)(2.10)

·
I−1∏
i=1

ri(1 − ri)ni−1dr1 · · · drI−1

(2.11) Pr(NI = nI | n1, . . . , nI−1) =
∫ 1

0
rI(1 − rI)nI−1ζI(rI | n1, . . . , nI−1)drI ,

where

η(n1, . . . , nI−1) =
∫
Ω
g(r̃)

I−1∏
i=1

ri(1 − ri)ni−1dr̃,(2.12)

and
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gI(r1, . . . , rI) =
∫ 1

rI

drI+1 · · ·
∫ 1

rm−1

g(r̃)drm(2.13)

= (1 − rI)m−I
∫
Ωm−I(1)

g(r1, . . . , rI , (1 − rI)t1

+ rI , . . . , (1 − rI)tm−I + rI)
· dt1 · · · dtm−I ,

which is the marginal prior density of R1, . . . , RI .

3. On the uniform prior and the ordered Dirichlet prior

Smith (1977) used the uniform prior distribution over Ω, g(r̃) = m!IΩ. Then
the marginal prior density of (R1, . . . , Rk) is

m!
∫ 1

rk

drk+1 · · ·
∫ 1

rm−1

drmIΩk(1)(3.1)

= m(m− 1) · · · (m− k + 1)(1 − rk)m−kIΩk(1), k = 1, . . . ,m− 1,

and, the marginal prior density of Rk is

(3.2) [B(k,m− k + 1)]−1rk−1(1 − r)m−k,

where B(a, b) = [Γ(a)Γ(b)]/Γ(a + b) is the Beta function. From (3.1) it follows
that the conditional density of Rk given R1, . . . , Rk−1 is

(3.3) (m− k + 1)(1 −Rk−1)k−m−1(1 − rk)m−kI(Rk−1,1)(rk),

for k = 2, . . . ,m. This prior is entirely determined by m, the number of stages
in the test. It is usually difficult to convey the engineer’s prior knowledge. For
example, in real situations it is common that when a product is put into a RGT,
the true value of its reliability is in between of 0.50 and 0.80, i.e., ER1 ∈ (0.5, 0.8).
After the RGT, its reliability is usually increased up to somewhere between 0.85
and 0.98, and sometimes up to 0.999 for highly reliable products. However, with
the uniform prior,

ER1 =
1

m + 1
=

{
0.25 m = 3
0.125 m = 7

ERm =
m

m + 1
=

{
0.75 m = 3
0.875 m = 7

it is obviously impossible to have ER1 ∈ (0.5, 0.8) and ERm ∈ (0.85, 0.98) simul-
taneously for any m at all.

The ordered Dirichlet prior of R̃ is

(3.4)
Γ(β)∏m+1

j=1 Γ(βαj)

m+1∏
j=1

(rj − rj−1)βαj−1IΩ,

where β > 0, αi > 0,
∑m+1

i=1 αi = 1, rm+1 = 1 and r0 = 0. It is obvious that if
β = m+1 and αi = 1/(m+1), then the ordered Dirichlet prior becomes uniform
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prior. From the identity∫ 1

α
xk(x− α)a−1(1 − x)b−1dx(3.5)

= (1 − α)a+b−1
∫ 1

0
[α + (1 − α)y]kya−1(1 − y)b−1dy

=
k∑

i=0

(
k

i

)
αk−i(1 − α)a+b+i−1Γ(a + i)Γ(b)/Γ(a + b + i)

we obtain that the marginal prior density of R1, . . . , Rk is

Γ(β)
Γ(β

∑m+1
i=k+1 αi)

∏k
i=1 Γ(βαi)

rβα1−1
1 (r2 − r1)βαi−1 · · · (rk − rk−1)βαk−1(3.6)

·(1 − rk)
β
∑m+1

k+1
αi−1

IΩk(1),

k = 1, 2, . . . ,m− 1; and the marginal prior density of Rk is
B


β

k∑
i=1

αi, β
m+1∑
j=k+1

αj






−1

rβ
∑k

i=1
αi−1(1 − r)β

∑m+1

j=k+1
αj−1

I(0,1)(r),(3.7)

k = 1, 2, . . . ,m,

which is a Beta distribution with parameters β
∑k

i=1 αi and β
∑m+1

j=k+1 αj , de-
noted by Beta(β

∑k
1 αi, β

∑m+1
k+1 αj), then, the conditional prior of Rk given

R1, . . . , Rk−1 is Beta(βαk, β
∑m+1

k+1 αj) with density


B


βαk, β

m+1∑
i=k+1

αi






−1

(1 −Rk−1)1−β
∑m+1

i=k
αi(rk −Rk−1)βαk−1(3.8)

·(1 − rk)
β
∑m+1

i=k+1
αi−1

I(Rk−1,1)(rk),

k = 2, . . . ,m.
From (3.5) and (3.8), it follows that under the ordered Dirichlet prior the

conditional mean and variance of Rk given R1, . . . , Rk−1 are, respectively,

µ∗
k = αk

/
m+1∑
i=k

αi + Rk−1

m+1∑
i=k+1

αi

/
m+1∑
i=k

αi,(3.9)

v∗k = (1 −Rk−1)2αk

m+1∑
i=k+1

αi

/ 
(

m+1∑
i=k

αi

)2 (
1 + β

m+1∑
i=k

αi

)
 .

Mazzuchi and Soyer (1992, 1993) already calculated the expectation and variance
of Rk without conditioning, which are

(3.10) µk =
k∑

i=1

αi, vk =

(
k∑

i=1

αi

) 
 m+1∑

j=k+1

αj


 /

(β + 1).
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Now we can see that by choosing {αi} properly the ordered Dirichlet prior
can input the engineer’s perception about the reliability mean of each stage.
However, it has only one parameter, β, to adjust the variance for all stages.
Hence, some limitations remain to be settled. First, in reality the prior densities
for product reliability are unimodal (or, at least, are bounded), which requires
β

∑k
1 αi > 1, β

∑m+1
k+1 αj > 1 and, βαk > 1(or, β

∑k
1 αi ≥ 1, β

∑m+1
k+1 αj ≥ 1 and

βαk ≥ 1) for k = 1, 2, . . . ,m. Since, as just mentioned, usually ER1 ∈ (0.5, 0.8),
and ERm ∈ (0.85, 0.98), β has to be large, which gives, by (3.9) and (3.10), small
variances, and indicates strong priors for all stages.

For example, consider a RGT of 3 stages. Suppose that the engineer knows
approximately the values of the 3 stages’ reliability are mostly likely 0.7, 0.90
and 0.975 respectively. Then the choice for {αi} would be

α1 = 0.70 α2 = 0.20 α3 = 0.075 α4 = 0.025.

If he/she wants the prior densities for all stages are unimodal (or bounded), then
according to (3.7), he /she must choose β > 40 (or β ≥ 40). With β = 44, say,
it follows from (3.10) that the prior variances of the 3 stages are, respectively

v1 = 0.0047 v2 = 0.0020 v3 = 0.0005.

This is a very strong prior. Secondly, all the parameters of an ordered Dirich-
let prior are determined simultaneously before the RGT is started (cf. Mazzuchi
and Soyer (1992)). According to our experience, this is not realistic. Actually,
the engineers’ prior knowledge is based on the failures that have appeared during
the trials and the associated modifications to correct the cause of the failures.
The corrective actions are directed against the failures. Also, for a specific fail-
ure there may be several corrective actions, and different actions will result in
different increments of reliability. Therefore, only after the first (k− 1) stages of
the test, including the corresponding modifications, are finished can they elicit a
measure for specifying the prior parameters of the kth stage. However, in these
situations the ordered Dirichlet priors are not quite capable. Consider the ex-
ample above again, the engineer can set the prior mean and standard deviation
for the first stage to be approximately 0.70 and 0.14. Then, by (3.10) α1 = 0.7,
β = 10. In this case the ordered Dirichlet prior can be adjusted only to the
second and third prior means, but not the two variances. In the example with
ER2 = 0.9, ER3 = 0.975, the ordered Dirichlet priors for the 2nd and 3rd stages
are entirely fixed, that is

R2 ∼ Beta(9, 1), R3 ∼ Beta(9.75, 0.25)
v2 = 0.0082, v3 = 0.0022.

Therefore, it is impossible to change anything to meet the engineer’s knowledge
about these two variances at all. Also, the prior density of R3 is unbounded,
which is not reasonable in practice.
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4. New family of prior distributions

Motivated by the above analysis of previous work and our experiences of
working with reliability engineers, a new family of prior distributions is proposed.
In subsection 4.1 we introduce this family of priors and discuss its properties.
Subsection 4.2 presents the associated inference and a method for the posterior
computation. Finally, comparisons with ordered Dirichlet priors are made in
subsection 4.3.

4.1. Definition and properties
This family of prior distributions is of conditional form, and the linearly

transformed beta distributions are adopted. Specifically, let

g1(r) = g1(r | a1, b1) = [B(a1, b1)]−1ra1−1(1 − r)b1−1I(0,1)(r),(4.1)
a1 > 0, b1 > 0,

gk(r | Rk−1) = gk(r | Rk−1; ak, bk) = [B(ak, bk)]−1(1 −Rk−1)1−ak−bk(4.2)
· (r −Rk−1)ak−1(1 − r)bk−1I(Rk−1,1)(r),

ak > 0, bk > 0, k = 2, . . . ,m.

Note that if we set R0 = 0, then g1 can be rewritten as

g1(r) = [B(a1, b1)]−1(1 −R0)1−a1−b1(r −R0)a1−1(1 − r)b1−1I(R0,1)(r)=̂g1(r | R0)

which is of the same form as gk in (4.2). We will refer to it hereafter. Then, the
joint prior of (R1, . . . , Rm) is

(4.3) g(r̃) =
m∏
i=1

gi(ri | ri−1)IΩ.

From (3.5) it follows that for given R0, R1, . . . , Rk−1, the conditional mean and
variance of Rk are, respectively,

µ∗
k = E∗Rk = ak/(ak + bk) + bkRk−1/(ak + bk),(4.4)

v∗k = Var∗Rk = (1 −Rk−1)2akbk/{(ak + bk)2(ak + bk + 1)},(4.5)

where E∗ and Var∗ stand for the conditional expectation and variance. If ak > 1,
bk > 1, then the conditional mode of Rk is

(4.6) m∗
k = [(ak − 1) + (bk − 1)Rk−1]/(ak + bk − 2).

The expectation and variance without conditioning can be given recursively. It
is clear that

µ1 = ER1 = a1/(a1 + b1)(4.7)

µk = ak/(ak + bk) + bkµk−1/(ak + bk) = 1 −
k∏

i=1

bi
ai + bi

, k = 2, . . . ,m.(4.8)
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Because Var(X) = E[Var(X | Y )] + Var[E(X | Y )], by simple calculation, we
have

v1 = VarR1 = a1b1/[(a1 + b1)2(a1 + b1 + 1)],(4.9)

vk = {akbk/[(ak + bk)2(ak + bk + 1)]}
k−1∏
i=1

[b2i /(ai + bi)2](4.10)

+ vk−1bk(bk + 1)/[(ak + bk)(ak + bk + 1)].

The expressions (4.4)–(4.10) and the following facts will help for the incor-
poration of the expert opinions.

(i) If ak = bk = 1, then gk is the uniform distribution over (Rk−1, 1), and is
called the non-informative prior for stage k.

(ii) If ak > 1, bk > 1, then gk(Rk−1 | Rk−1) = gk(1 | Rk−1) = 0, gk(· | Rk−1)
is unimodal with mode given in (4.6). In detail, there are three cases:

(ii.1) ak = bk > 1 implies that gk(· | Rk−1) is symmetric about 1
2(1 + Rk−1)

with µ∗
k = m∗

k = 1
2(1 + Rk−1), v∗k = (1 −Rk−1)2/[4(1 + 2ak)].

(ii.2) ak > bk > 1 implies that 1
2(1 + Rk−1) < µ∗

k < m∗
k < 1.

(ii.3) bk > ak > 1 implies that Rk−1 < m∗
k < µ∗

k < 1
2(1 + Rk−1).

(iii) If ak = 1 < bk, then gk(· | Rk−1) is strictly decreasing, gk(Rk−1 | Rk−1) =
bk/(1 −Rk−1) and gk(1 | Rk−1) = 0.

(iv) If bk = 1 < ak, then gk(· | Rk−1) is strictly increasing, gk(Rk−1 | Rk−1) =
0 and gk(1 | Rk−1) = ak/(1 −Rk−1).

(v) If ak = 1 > bk, then gk(· | Rk−1) is strictly increasing, gk(Rk−1 | Rk−1) =
bk/(1 −Rk−1) and gk(1 | Rk−1) = ∞.

(vi) If bk = 1 > ak, then gk(· | Rk−1) is strictly decreasing, gk(Rk−1 | Rk−1) =
∞ and gk(1 | Rk−1) = ak/(1 −Rk−1).

(vii) If ak > 1, bk < 1, then gk(· | Rk−1) is increasing, gk(Rk−1 | Rk−1) = 0
and gk(1 | Rk−1) = ∞.

(viii) If ak < 1, bk > 1, then gk(· | Rk−1) is decreasing, gk(Rk−1 | Rk−1) = ∞
and gk(1 | Rk−1) = 0.

In the last four cases, (v) ∼ (viii), the prior densities are unbounded, and,
therefore , are seldom adopted in practice. The case of ak < 1 and bk < 1, which
implies gk(· | Rk−1) is convex with gk(Rk−1 | Rk−1) = ∞ and gk(1 | Rk−1) = ∞,
is clearly not practical and, hence, is not included in above.

4.2. Inference and computation
Under the prior of (4.1) and (4.2), the posterior density function of Rm for

a NRGT is

hm(r | s̃) = [f(s̃)]−1
∫
Ωm−1(r)

m∏
i=1

rsii (ri − ri−1)ai−1(1 − ri)bi+fi−ai+1−bi+1(4.11)

·dr1dr2 · · · drm−1,
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where r0 = 0, am+1 = 0, bm+1 = 1, and

(4.12) f(s̃) =
∫
Ω

m∏
i=1

rsii (ri − ri−1)ai−1(1 − ri)bi+fi−ai+1−bi+1dr̃.

For a SRGT, the posterior density of Rm is of the same form as in (4.11) but
with si = ni−1, fi = 1. After stage I−1 with Ni = ni, i = 1, . . . , I−1, (I < m),
the predictive distributions of RI and NI are, respectively, given by (2.10) and
(2.11) with g(r̃) being expressed in (4.3).

With the posterior density of Rm, hm(· | s̃), being known, the point esti-
mation of Rm can be given by (2.7), and the BLB of Rm will be obtained by
(2.9).

Erkanli et al. (1998) presented the MCMC method for the computation of
the Bayesian analysis under ordered Dirichlet priors. However, the sampling by
MCMC method is relatively complicated. Here, we adopt a simple method, the
number theory method to calculate the integrals in (4.11), (4.12) and (2.7)–(2.13)
of the Bayesian inference. Note that the calculations of (2.8) and (2.9) are the
same. If we can calculate the integrals in the left hands of (2.8) and (2.9), which
are monotonously increasing in M(Rm) and R̂m,L respectively, then the solutions
of the two equations will be easily obtained by iteration. Also, it is obvious that∫

Ωk(a)
f(r1, . . . , rk)dr1 · · · drk =

∫
Ωk(1)

akf(at1, at2, . . . , atk)dt1 . . . , dtk.

Therefore the integrals in (4.11), (4.12), (2.7)–(2.9), (2.12) and (2.13) are all of
the form

(4.13)
∫
Ωk(1)

f(r1, r2, . . . , rk)dr1dr2 · · · drk.

Now look at the two integrals in (2.10) and (2.11). Denote f1(r̃) = g(r̃)
∏I−1

i=1

ri(1 − ri)ni−1 and f2(r̃) = g(r̃)
∏I

i=1 ri(1 − ri)ni−1. It is obvious that these two
integrals can be rewritten as

ζI(rI | n1, . . . , nI−1)

= η−1rI−1
I (1 − rI)m−I

∫
ΩI−1(1)

dr1 · · · drI−1

∫
Ωm−I(1)

·f1(rIr1, rIr2, . . . , rIrI−1, rI , rI + (1 − rI)t1, . . . , rI + (1 − rI)tm−I)
·dt1 · · · dtm−I ,

Pr(NI = nI | n1, . . . , nI−1)

= η−1
∫
ΩI(1)

dr1 · · · drI
∫
Ωm−I(1)

(1 − rI)m−I

·f2(r1, r2, . . . , rI , rI + (1 − rI)t1, . . . , rI + (1 − rI)tm−I)dt1 · · · dtm−I .

Thus, these two integrals are of form

(4.14)
∫
ΩI(1)

dr1 · · · drI
∫
Ωk(1)

f(r1, r2, . . . , rI , t1, t2, . . . , tk)dt1 · · · dtk.
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We suggest to use the Number Theory method (NTM for short) in Hua
and Wang (1981) or Fang and Wang (1994)(see also Niederreiter (1992)) to
calculate the integrals in (4.13) and (4.14). To do so, we need only to con-
struct good represent points (called NT-net) over the integral regions Ωk(1)
and ΩI(1) × Ωk(1), denoted by PN = {x̃i = (xi1, . . . , xik), i = 1, . . . , N} and
QM = {(ỹi, z̃i) = (yi1, yi2, . . . , yiI , zi1, . . . , zik), i = 1, . . . ,M} respectively, where
N and M are both prime numbers. Then the integrals (4.13) and (4.14) can be
calculated approximately as

1
Nk!

N∑
i=1

f(x̃i), and
1

MI!k!

M∑
i=1

f((ỹi, z̃i))

respectively.
Before the construction of PN and QM , we first explain how to construct the

NT-net of N points over (0, 1)m. According to Hua and Wang (1981), given the
number of dimension, m, and the prime number N , there exists a suitable gen-
erating vector w̃ = {w1, w2, . . . , wm} such that the NT-net over (0, 1)m, denoted
by {c̃i = (ci1, . . . , cim), i = 1, . . . , N}, can be obtained as follows: Define

(4.15) qij =



iwj , if iwj < N
(iwj)mod(N), if iwj > N and (iwj)mod(N) �= 0
N, others

where mod stands for the congruent operator (e.g. (7)mod(5) = 2).
Then cij = (2qij − 1)/2N , i = 1, 2, . . . , N , j = 1, 2, . . . ,m. For m = 2, 3, . . . , 18
and many different N of each m, the corresponding generating vectors w̃ were
listed in Hua and Wang (1981).

Now we can construct the above two NT-nets PN and QM . First, con-
struct two NT-nets over (0, 1)k and (0, 1)I+k, denoted by {c̃i = (ci1, . . . , cik), i =
1, . . . , N} and {d̃j = (dj1, . . . , djI+k), j = 1, 2, . . . ,M} respectively. Then PN

and QM are, respectively:

(4.16)




xi1 = ci1c
1/2
i2 · · · c1/kik ,

xi2 = c
1/2
i2 · · · c1/kik ,

· · ·
xik = c

1/k
ik ,

i = 1, 2, . . . , N

and




yj1 = dj1d
1/2
j2 · · · d1/I

jI

yj2 = d
1/2
j2 · · · d1/I

jI

· · ·
yjI = d

1/I
jI

zj1 = djI+1d
1/2
jI+2 · · · d

1/k
jI+k

zj2 = d
1/2
jI+2 · · · d

1/k
jI+k

· · ·
zjk = d

1/k
jI+k

j = 1, . . . ,M.

The prime number N(M) is determined according to the required computa-
tion accuracy. Fang and Wang (1994) showed that under mild conditions, for a
given integral dimension, the computation error of the NTM is of order O(N−1+ε)
for any ε > 0. It is well known that the computation error of random sampling
method (including MCMC)is of the order Op(N−1/2) in probability.
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Table 1.

Testing stages j 1 8 11

µj-exact 0.360 0.951 0.988

µj-NTM 0.360 0.952 0.989

The following example shows the NTM’s accuracy numerically. Van Dorp et
al. (1997) assumed the reliability growth model of (1.1) for developing optimal
stoping rules during a system-development phase, and adopt the ordered Dirichlet
prior with α1 = 0.36, α2 = 0.34, α3 = 0.102, α4 = 0.0985, α5 = 0.0128, α6 =
0.0127, α7 = 0.0126, α8 = 0.0125, α9 = 0.0124, α10 = 0.0123, α11 = 0.0122,
α12 = 0.0120 and β = 50. By (3.10), the prior mean, µi, of each stage without
conditioning can be exactly calculated and denoted by µj-exact. We use NTM to
calculate µi and compare them with the exact results. Here the above mentioned
prime number is 698047. Part of the results by these two methods is given in
Table 1. It is seen that the results using NTM are almost the same as the exact
results.

4.3. Comparisons
Compare (3.8) with (3.3) and (4.2) we see that the ordered Dirichlet priors

are members of the proposed family with ak = βαk and bk = β
∑m+1

k+1 αj and the
uniform prior is the one with ak = 1, bk = m− k + 1, k = 1, 2, . . . ,m.

The main advantage of the proposed family of priors over the Dirichlet priors
is that it has 2m free parameters, 2 for each stage of the RGT. Given the prior
mean of each stage, there is still one freedom of parameters to adjust for its
variance, where as the Dirichlet prior has only one free parameter to adjust the
variances for all m stages.

As pointed out before, the uniform prior depends only on the number of
stages, m. In this subsection we present two examples and show the differences
of the three priors in incorporating the experts’ knowledge and the resulted in-
ference.

Example 1. Consider the example in section 3 again. Keep the prior means
of the three stages to be 0.7, 0.9 and 0.975 respectively, for a weaker prior, we
can choose a1 = 2.8, b1 = 1.2, a2 = 2.2, b2 = 1.2, a3 = 3.3 and b3 = 1.1. This
prior is certainly not an ordered Dirichlet prior. Let us call it NF for simplicity.
By (4.10), it follows easily that the prior (marginal) variances of the three stages
are, respectively, 0.0420, 0.0115 and 0.0015, as given in Table 2. These values are
much larger than the corresponding values given by the ordered Dirichlet prior
discussed in section 3, which has the same three prior marginal means and the
same a3 and b3 (Let’s call it OD). This ordered Dirichlet prior is quite strong and
will largely dominate the inference if the sample sizes of the stages are small.

In the above example, suppose that the data set that resulted from this three
staged RGT is n1 = 3, s1 = 2, n2 = 5, s2 = 4, n3 = s3 = 5. Using the two
priors NF and OD, the resultant BLB for the reliability of the third stage with
coverage probability 0.90 and 0.95 are listed in the last two columns of Table 2.
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Table 2.

Prior v1 v2 v3 R̂3,L(0.90) R̂3,L(0.95)

NF 0.0420 0.0115 0.0015 0.934 0.911

OD 0.0047 0.0020 0.0005 0.945 0.931

Note: (1) NF belongs to the proposed prior family with a1 = 2.8, b1 = 1.2, a2 = 2.2,

b2 = 1.1, a3 = 3.3, b3 = 1.1. OD is an ordered Dirichlet prior with α1 = 0.7, α2 = 0.2,

α3 = 0.075, α4 = 0.025, β = 44, also a member of the proposed family with a1 = 30.8,

b1 = 13.2, a2 = 8.8, b2 = 4.4, a3 = 3.3, b3 = 1.1.

(2) The Bayesian lower bound of the last stage is calculated for a RGT of three stages

with trial data n1 = 3, s1 = 2, n2 = 5, s4 = 4, n3 = s3 = 5.

It is obvious that the two BLB from OD is higher than those from NF. The
reason is that the sample size is small and the OD is much stronger than NF.

Example 2. This example is taken from a real RGT with a small modi-
fication made on the requests of the engineers who conducted the tests. The
RGT was the first group of the tests for this kind of product. The target of the
RGT was to achieve Rm ≥ 0.92 with a confidence level 0.90. Since the prod-
ucts are expensive, the engineers wanted to apply the Bayesian method. Thus
two statisticians were involved. However, they all agreed that the priors should
approximately reflect the engineers’ knowledge, as well as be simple and on the
conservative side.

For the first stage, the engineers had little prior knowledge for the products
reliability, though they thought the reliability was somewhere between 0.50 and
0.65. They agreed to adopt the non-informative prior, that is a1 = b1 = 1,
which gives, by (4.7)–(4.9), the prior mean and standard deviation of R1 to be
ER1 = 0.5, Sd(R1) = 0.289. The outcome was n1 = 9, s1 = 6. Then the lower
bound of R1 with coverage probability 0.8 is R̂1L(0.8) = 0.516. The engineers
knew that the corrective action after the first stage was strongly effective and the
resulted reliability was 0.80 ∼ 0.88. Thus, they decided to take a2 = 4, b2 = 2,
from which we have ER2 = 0.833, Sd(R2) = 0.141, the data of the second stage
was n2 = 10, s2 = 9. The corresponding lower bound was R̂2L(0.8) = 0.840.

After the second stage, some improvement was made and the reliability would
be, according to the engineers, about 0.90. They took a3 = 1, b3 = 2, then
ER3 = 0.889, Sd(R3) = 0.107. The observation was n3 = 12, s3 = 11. The lower
bound at this time was R̂3L(0.8) = 0.890. Then, a modification was made, by
which the engineers were pretty sure that the reliability would meet the target,
and the average reliability was close to 0.95. After a discussion they decided
to take a4 = b4 = 2, and n4 = 10. Then it follows that ER4 = 0.944 and
Sd(R4) = 0.030. If there was no failure in the fourth stage, they would have
R̂4L(0.9) = 0.938. The outcome of this stage was indeed s4 = n4 = 10. Therefore
the RGT was successfully finished.

Remark. (1) If the uniform prior is adopted, then R̂4L(0.9) = 0.906, which
is very conservative. (2) Obviously, the ordered Dirichlet priors can not accord
this RGT. For example, to make a1 = b1 = 1, we need α1 = 0.5,

∑5
i=2 = 0.5,
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β = 2. Then, ak ≤ 1, bk ≤ 1 for k = 2, 3, 4. If we want a1 = 1, a2 = 4, a3 = 1,
a4 = b4 = 2, then α1 = 0.1, α2 = 0.4, α3 = 0.1, α4 = 0.2, α5 = 0.2, β = 10,
which results b1 = 9, b2 = 5, b3 = 4. These are very different from what they
needed.
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