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UNBIASED ESTIMATION OF FUNCTIONALS UNDER
RANDOM CENSORSHIP

Akio Suzukawa*

This paper is intended as an investigation of estimating functionals of a lifetime
distribution F under right censorship. Functionals given by

∫
ϕdF , where ϕ’s are

known F -integrable functions, are considered. The nonparametric maximum likeli-
hood estimator of F is given by the Kaplan-Meier (KM) estimator Fn, where n is
sample size. A natural estimator of

∫
ϕdF is a KM integral,

∫
ϕdFn. However, it is

known that KM integrals have serious biases for unbounded ϕ’s. A representation of
the KM integral in terms of the KM estimator of a censoring distribution is obtained.
The representation may be useful not only to calculate the KM integral but also to
characterize the KM integral from a point view of the censoring distribution and the
biasedness. A class of unbiased estimators under the condition that the censoring
distribution is known is considered, and the estimators are compared.

Key words and phrases: Censored data, Kaplan-Meier estimator, mean lifetime,
product-limit estimator, survival data.

1. Introduction

Problems concerning right censored data are discussed in this paper. The
Kaplan-Meier estimator (KM estimator) developed by Kaplan and Meier (1958)
is the most fundamental tool to analyze such data, and it gives the nonparametric
maximum likelihood estimator of lifetime distribution as shown by Kaplan and
Meier (1958) and Johansen (1978).

Let X1, . . . , Xn be i.i.d. positive random variables with a distribution func-
tion F (survival function F̄ = 1−F ). These random variables represent lifetimes
and F is a lifetime distribution. Let Y1, . . . , Yn be i.i.d. positive random variables
with a distribution function G (survival function Ḡ = 1 − G) and independent
of Xi’s. They represent censoring time and G is a censoring distribution. In the
randomly right censored data, the pairs (Xi, Yi), i = 1, . . . , n are not observed.
One observes the pairs (Zi, δi), i = 1, . . . , n, where

Zi = min(Xi, Yi) and δi = I(Xi ≤ Yi),

with I denoting the indicator function.
KM estimator of F is given by

1 − Fn(x) = F̄n(x) =
∏

i:Zi:n≤x

(
1 −

δ[i:n]

n − i + 1

)
.
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Here, Z1:n ≤ · · · ≤ Zn:n are the ordered Z-values, where ties within lifetimes
or within censoring times are ordered arbitrarily and ties among lifetimes and
censoring times are treated as if the former preceed the latter, and δ[i:n] is the
concomitant of the i-th order statistic, that is, δ[i:n] = δj if Zi:n = Zj .

There have been several studies on the properties of the KM estimator (e.g.,
Efron (1967), Breslow and Crowley (1974), Gill (1980, 1983), Reid (1981), Wang
(1987)). Results of studies are given in textbooks by Fleming and Harrington
(1991), Andersen et al. (1993) and Maller and Zhou (1996). Generally, the KM
estimator has asymptotically desirable properties such as uniform consistency
and asymptotic normality. Although the KM estimator has negative bias, the
bias converges to zero at an exponential rate as n → ∞. Therefore, the bias is
not so serious problem.

Incidentally, it is important to estimate not only F itself but also some
functionals of F . For example, moments of lifetime, particularly mean lifetime,
may be important in characterization of the lifetime distribution. In such cases,
we need to estimate a functional

∫
xkdF (x), where k is a positive integer. To

determine how far F is from a known specific distribution with density f0, the
functional

∫
log f0(x)dF (x) must be estimated.

In this paper, estimation of functionals of the form
∫

ϕdF , where ϕ’s are
known F -integrable functions, is considered. For a given ϕ, a natural estimator
of

∫
ϕdF is obtained by plugging Fn into F , that is,

∫
ϕdFn, which is called a

Kaplan-Meier integral (KM integral). Since the KM estimator Fn is a discrete
(sub-)distribution, the KM integral can be expressed as

∫
ϕdFn =

n∑
i=1

{Fn(Zi:n) − Fn(Zi:n−)}ϕ(Zi:n) =
n∑

i=1

Wi:nϕ(Zi:n),(1.1)

where for 1 ≤ i ≤ n,

Wi:n =
δ[i:n]

n − i + 1

i−1∏
j=1

(
n − j

n − j + 1

)δ[j:n]

is the mass attached to the i-th order statistic Zi:n under Fn.
It should be noted that under no censorship does the KM estimator reduce

to the empirical distribution of Xi’s and the KM integral is nothing but an
arithmetic average of ϕ(Xi)’s, i.e., n−1

∑n
i=1 ϕ(Xi). It is strongly consistent

and asymptotically normal by the strong law of large numbers and the central
limit theorem. Moreover, it is unbiased. The point to emphasize here is the
unbiasedness.

Let H be the distribution function of Zi = min(Xi, Yi), and set

τF = inf{x ; F (x) = 1}, τG = inf{y ; G(y) = 1} and τ = inf{z ; H(z) = 1}.

Since H = 1 − (1 − F )(1 − G), it holds that τ = min(τF , τG). The observable
time Zi = min(Xi, Yi) never exceeds τ . Thus, if τF > τ (i.e., τF > τG), then we
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can not obtain information about F (x) for τ < x ≤ τF . In other words, we can
know only about F (x) for x ≤ τ .

Throughout this paper,
∫ b
a means integration on a half interval (a, b ], i.e.,∫ b

a =
∫
(a,b ]. For reasons mentioned above, we can not estimate

∫ ∞
0 ϕ(x)dF (x).

The estimable functional is
∫ τ
0 ϕ(x)dF (x). If τF ≤ τ , they are the same. On

the other hand, if τF > τ , they are different. However, in many practical cases,
τF = τG = τ = ∞, and then these two functionals are the same.

Stute and Wang (1993) showed that under conditions in which F and G do
not have jumps in common and F does not have a jump at τ ,

lim
n→∞

∫
ϕdFn =

∫ τ

0
ϕdF with probability 1.

That is,
∫

ϕdFn is a strongly consistent estimator of
∫ τ
0 ϕdF . The distributional

convergence of the KM integral was investigated by Gill (1983), Schick et al.
(1988), Yang (1994) and Stute (1995). Gill (1983) showed the distributional
convergence for ϕ’s that are nonnegative, continuous and increasing. For such
a class of ϕ’s, Schick et al. (1988) obtained a weak representation of the KM
integral in terms of a sum of i.i.d. random variables plus a remainder. Yang
(1994) extended the distributional convergence, under regularity conditions on
F , to those ϕ’s satisfying

∫
ϕ2/ḠdF < ∞. Stute (1995) obtained a representation

of the KM integral as a sum of i.i.d. random variables plus a remainder that is
valid under no regularity conditions on F and G.

Distributional convergence under continuous F and G is presented here.
When F and G are continuous, under

∫
ϕ2/ḠdF < ∞,

n1/2

(∫
ϕdFn −

∫ τ

0
ϕdF

)
d−→ N(0, σ2) as n → ∞,

where

σ2 =
∫ τ

0
ϕ2/ḠdF −

(∫ τ

0
ϕdF

)2

−
∫ (∫ τ

x
ϕdF

)2 F̄ (x)
{H̄(x)}2

dG(x).(1.2)

We are concerned with a bias of
∫

ϕdFn in estimating
∫ τ
0 ϕdF . Mauro (1985)

showed that for nonnegative ϕ’s,

Bias
(∫

ϕdFn

)
= E

[∫
ϕdFn

]
−

∫ τ

0
ϕdF ≤ 0.

Zhou (1988) obtained a lower bound of the bias for nonnegative and continuous
ϕ’s:

−
∫

ϕ(x){H(x)}ndF (x) ≤ Bias
(∫

ϕdFn

)
≤ 0.

Stute (1994) derived an expansion of the bias and showed that the bias decreases
to zero exponentially fast as n → ∞ if ϕ is bounded and vanishes right of some
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T < τ . Since the KM estimator itself is a KM integral for ϕ = indicator, this
result is a generalization of the result that the bias of the KM estimator itself
converges to zero at an exponential rate, which is mentioned above. Moreover
Stute (1994) pointed out that the bias may decrease to zero at a rate slower than
n−1/2 when 0 ≤ ϕ(x) ↑ ∞ as x → ∞ and censoring is heavy. In estimating
mean lifetimes, ϕ(x) = x has this property. Thus, it is important to reduce the
bias. Stute and Wang (1994) proposed a jackknife modification of

∫
ϕdFn. They

showed, by a simulation study, that the jackknifing may lead to a reduction of
the bias. However, they also reported that the jackknifing leads to an increase
in variance.

In this paper, ‘unbiased’ estimation of
∫ τ
0 ϕdF in the case where the censoring

distribution G is known is considered. A situation in which G is known is not so
unreal. Two examples are considered.

One example is a clinical trial (see Figure 1). The beginning time of the
study is set to zero, and entry of patients into the study is received until time
a > 0. Let Ei be the entry time of the i-th patient. It seems reasonable to
suppose that Ei is uniformly distributed on [0, a]. After additional follow-up of
b − a (> 0) time units, the data are analyzed. Then, the censoring time for the
i-th patient is b − Ei, which is uniformly distributed on [b − a, b]. Thus, in this
case, the censoring distribution is completely known.

Another example is the two-competing risks problem. A system consists
of two sub-systems, A and B. Failure of either sub-system A or B damages the
whole system. The observable time is the failure time of the whole system, which
is a minimum of failure times of A and B. We are interested in failure time of
sub-system A. Then, the failure time of B is censoring time. Supposing the
failure time distribution of B is known experientially, the censoring distribution
is known.

The question is whether the information that G is known is useful in es-
timating

∫ τ
0 ϕdF . We should notice that the likelihood based on the censored

data can be decomposed into two parts. One part depends only on F , and the
KM estimator is derived by maximizing it. Another depends only on G. Thus,
the maximum likelihood estimator of F is given by the KM estimator even if
G is known. This fact suggests that the known G is not useful asymptotically.

End of Entry End of Study

Entry Time

Censoring Time

Time

Beginning of Study

0 a b

iE

Figure 1. Entry time and censoring time in a clinical trial.
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However, there is no conclusive proof that it is not useful in the case of finite
samples. As we shall see later in the next section, when G is known,

∫ τ
0 ϕdF

can be estimated without bias. The purpose of this study is to obtain reasonable
unbiased estimators of

∫ τ
0 ϕdF by using the information that G is known.

2. Representations of Kaplan-Meier integrals

In this section, a representation of
∫

ϕdFn in terms of a KM estimator of
G is given. The representation will suggest us an unbiased estimator of

∫ τ
0 ϕdF

when G is known.
The KM estimator of G is given by

1 − Gn(y) = Ḡn(y) =
n∏

j=1

(
1 −

1 − δ[j:n]

n − j + 1

)I(Zj:n≤y)

.(2.1)

Proposition 1. For any F -integrable function ϕ : [0,∞) → R,

∫
ϕdFn = n−1

n∑
i=1

δiϕ(Zi)
Ḡn(Zi−)

and
∫

ϕdGn = n−1
n∑

i=1

(1 − δi)ϕ(Zi)
F̄n(Zi)

.

Proof. Only the first equation is shown. The second equation can be
shown similarly. Since the KM integral

∫
ϕdFn is given by (1.1), it suffices to

show that

δ[i:n]/Ḡn(Zi:n−) = Wi:n, i = 1, . . . , n.(2.2)

If δ[i:n] = 0, both sides are surely zero. Thus, we should consider only the case
of δ[i:n] = 1.

From (2.1), we have

Ḡn(Zi:n−) =
n∏

j=1

(
1 −

1 − δ[j:n]

n − j + 1

)I(Zj:n<Zi:n)

=
n∏

j=1

(
n − j

n − j + 1

)(1−δ[j:n])I(Zj:n<Zi:n)

=




n∏
j=1

(
n − j

n − j + 1

)I(Zj:n<Zi:n)

 ×




n∏
j=1

(
n − j

n − j + 1

)δ[j:n]I(Zj:n<Zi:n)

 .

From this, when δ[i:n] = 1,

1
Ḡn(Zi:n−)

=




n∏
j=1

(
n − j + 1

n − j

)I(Zj:n<Zi:n)

(2.3)

×




n∏
j=1

(
n − j + 1

n − j

)δ[j:n]I(Zj:n<Zi:n)

 .
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Suppose that there are k + l + 1 (k, l ≥ 0) ties at Zi:n as

Zi−k−1:n < Zi−k:n = · · · = Zi−1:n︸ ︷︷ ︸
k

= Zi:n = Zi+1:n = · · · = Zi+l:n︸ ︷︷ ︸
l

< Zi+l+1:n.

Then the first term of (2.3) is

i−k−1∏
j=1

(
n − j + 1

n − j

)
=

n

n − i + k + 1
.

Since ties among lifetimes and censoring times are treated as if the former pre-
cedes the latter, δ[i−k:n] = · · · = δ[i−1:n] = 1. Thus,

i−1∏
j=1

(
n − j

n − j + 1

)δ[j:n]

=




i−k−1∏
j=1

(
n − j

n − j + 1

)δ[j:n]


 ×




i−1∏
j=i−k

(
n − j

n − j + 1

)


=




i−k−1∏
j=1

(
n − j

n − j + 1

)δ[j:n]


 × n − i + 1

n − i + k + 1
.

Therefore, the second term of (2.3) is

i−k−1∏
j=1

(
n − j + 1

n − j

)δ[j:n]

=
n − i + k + 1

n − i + 1

i−1∏
j=1

(
n − j

n − j + 1

)δ[j:n]

.

As a consequence, if δ[i:n] = 1

1
Ḡn(Zi:n−)

=
1

n − i + 1

i−1∏
j=1

(
n − j

n − j + 1

)δ[j:n]

= Wi:n.

The representations given by Proposition 1 may be useful from the viewpoint
of calculation of KM integrals. The KM integral

∫
ϕdFn (

∫
ϕdGn) can be cal-

culated by using the opposite side KM-survival function Ḡn (F̄n). KM-survival
functions can be easily obtained by almost any statistical software.

Since Xi and Yi are independent and H̄ is the survival function of Zi =
min(Xi, Yi), it holds that H̄(z) = F̄ (z)Ḡ(z). Denote the empirical survival func-
tion of Zi’s by H̄n, i.e., H̄n(z) = n−1

∑n
i=1 I(z < Zi). This is an estimator of H̄.

Using the representations of Proposition 1, we can easily show the well-known
identity F̄nḠn = H̄n as is shown in Theorem 9.1 of Maller and Zhou (1996).

For any fixed z ≥ 0, let ϕ(x) = Ḡn(x−)I(x > z) and ϕ(x) = F̄n(x)I(x > z)
in the first and the second equations of Proposition 1, respectively. Then, we
have ∫ ∞

z
Ḡn(x−)dFn(x) =

1
n

n∑
i=1

δiI(Zi > z) and

∫ ∞

z
F̄n(x)dGn(x) =

1
n

n∑
i=1

(1 − δi)I(Zi > z).
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The sum of the right-hand sides is H̄n(z). On the other hand, the sum of the left-
hand sides is −F̄n(∞)Ḡn(∞)+F̄n(z)Ḡn(z) by the integration by parts formula as
can be seen in Theorem A.1.2 of Fleming and Harrington (1991). The first term
is zero since one of F̄n(∞) and Ḡn(∞) is surely zero. (If the largest observation
is censored, then F̄n(∞) > 0 but Ḡn(∞) = 0.)

Define a functional of G as

S0n(G) = n−1
n∑

i=1

δiϕ(Zi)/Ḡ(Zi−).(2.4)

Then, by Proposition 1, the KM integral
∫

ϕdFn is given by S0n(Gn) (i.e., plug-
ging of Gn into S0n(G)), which is a strongly consistent estimator of

∫ τ
0 ϕdF as

shown by Stute and Wang (1993). It, however, has a bias as mentioned above. If
G is known, there is no need to plug Gn into S0n(G). In fact, S0n(G) is unbiased
since

E[S0n(G)] = E[δiϕ(Zi)/Ḡ(Zi−)] =
∫ τ

0
Ḡ(x−)ϕ(x)/Ḡ(x−)dF (x) =

∫ τ

0
ϕdF.

We call S0n(G) a ‘simple’ unbiased estimator. We can say that the bias of the
KM integral is due to the plugging of Gn into S0n(G).

Variance of the simple unbiased estimator is given by

n × Var[S0n(G)] =
∫ τ

0

{ϕ(x)}2

Ḡ(x−)
dF (x) −

{∫ τ

0
ϕdF

}2

.

Although no explicit expressions of exact variance of the KM integral have been
obtained yet, its asymptotic variance is given by σ2 of (1.2). We can easily see
that S0n(G) has asymptotically larger variance than KM integral. (This will
be reconfirmed in the next section.) This means that plug-in of Gn asymptoti-
cally decreases variance. Intuitively, it seems strange. An interpretation of the
unnaturalness will be also given in the next section.

3. A class of unbiased estimators

In this section, unbiased estimation of θ =
∫ τ
0 ϕdF in the case where G is

known will be discussed. We consider a class of estimators

θ̂n(ϕ1, ϕ0) = n−1
n∑

i=1

{δiϕ1(Zi) + (1 − δi)ϕ0(Zi)} ,(3.1)

where
∫
|ϕ1|dG < ∞ and

∫
|ϕ0|dG < ∞, and ϕ1 and ϕ0 are independent of the

unknown F .
If we choose the two functions as

ϕ1(z) = ϕ(z)/Ḡn(z−) and ϕ0(z) ≡ 0,

then, by Proposition 1, θ̂n(ϕ1, ϕ0) is the KM integral. However it is biased.
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Proposition 2. For any lifetime distribution F , θ̂n(ϕ1, ϕ0) defined by (3.1)
is unbiased estimators of θ =

∫ τ
0 ϕdF if ϕ1 and ϕ0 satisfy the two conditions

Ḡ(z−)ϕ1(z) +
∫ z−

0
ϕ0(y)dG(y) = ϕ(z) for any 0 < z ≤ τ(3.2)

and ∫ τG

0
ϕ0(y)dG(y) = 0 if τG = τ.(3.3)

Proof. The bias of θ̂n(ϕ1, ϕ0) can be expressed as

E[θ̂n(ϕ1, ϕ0)] − θ

= E[δiϕ1(Zi) + (1 − δi)ϕ0(Zi)] − θ

=
∫ τ

0
Ḡ(z−)ϕ1(z)dF (z) +

∫ τ

0
F̄ (y)ϕ0(y)dG(y) −

∫ τ

0
ϕ(z)dF (z)

=
∫ τ

0
Ḡ(z−)ϕ1(z)dF (z) +

∫ τ

0

{∫ τ

y
dF (z) + F̄ (τ)

}
ϕ0(y)dG(y) −

∫ τ

0
ϕ(z)dF (z)

=
∫ τ

0

{
Ḡ(z−)ϕ1(z) +

∫ z−

0
ϕ0(y)dG(y) − ϕ(z)

}
dF (z)

+ F̄ (τ)I(τG = τ)
∫ τG

0
ϕ0(y)dG(y).

In order for θ̂n(ϕ1, ϕ0) to be unbiased, without being dependent on F , the inte-
grand in the first term must be zero and the integral in the second term must be
zero when τG = τ .

A trivial solution of the unbiasedness conditions in Proposition 2 is obtained
by letting ϕ0 ≡ 0, which always satisfies (3.3). Then, by (3.2), ϕ1 is given by
ϕ1(z) = ϕ(z)/Ḡ(z−), which gives the simple unbiased estimator S0n(G) defined
by (2.4).

More general solutions for the unbiasedness conditions are given by the fol-
lowing proposition.

Proposition 3. Assume that γ is a function on [0, τ ], which satisfies∫ z−

0

|γ(y)|
Ḡ(y)

dG(y) < ∞ for any 0 < z ≤ τ(3.4)

and

γ(τG){G(τG) − G(τG−)} = 0 if τG = τ.(3.5)

Define

ϕ1(z) =
ϕ(z)

Ḡ(z−)
−

∫ z−

0

γ(y)
Ḡ(y)

dG(y) and ϕ0(z) = γ(z) −
∫ z−

0

γ(y)
Ḡ(y)

dG(y).



UNBIASED ESTIMATION UNDER CENSORSHIP 161

Then, these functions fulfill the unbiasedness conditions (3.2) and (3.3).

Proof. For any 0 < z ≤ τ ,

Ḡ(z−)ϕ1(z) = ϕ(z) − Ḡ(z−)
∫ z−

0

γ(y)
Ḡ(y)

dG(y),∫ z−

0
ϕ0(y)dG(y) =

∫ z−

0
γ(y)dG(y) −

∫ z−

0

{∫ y−

0

γ(x)
Ḡ(x)

dG(x)
}

dG(y)

=
∫ z−

0
γ(y)dG(y) −

∫ z−

0

γ(x)
Ḡ(x)

{∫ z−

x
dG(y)

}
dG(x)

=
∫ z−

0
γ(y)dG(y) −

∫ z−

0

γ(x)
Ḡ(x)

{Ḡ(x) − Ḡ(z−)}dG(x)

= Ḡ(z−)
∫ z−

0

γ(x)
Ḡ(x)

dG(x).

By adding both sides, we can see that (3.2) is satisfied. By the same calculation,
we get ∫ τG

0
ϕ0(y)dG(y) = γ(τG){G(τG) − G(τG−)}.

From assumption (3.5), this becomes zero if τG = τ .

For any γ with (3.4), assumption (3.5) is always fulfilled if G does not have
a jump at τG. Thus, when G is continuous, assumption (3.5) is unnecessary.

Substituting ϕ1 and ϕ0 of Proposition 3 into (3.1), we obtain a class of
unbiased estimators

Un(γ;G) = n−1
n∑

i=1

{
δi

ϕ(Zi)
Ḡ(Zi−)

+ (1 − δi)γ(Zi) −
∫ Zi−

0

γ(y)
Ḡ(y)

dG(y)
}

.(3.6)

The first term is nothing but the simple unbiased estimator S0n(G), and its
expectation is θ. Expectation of the remainder is zero since expectations of the
second and the third terms are the same. Thus, the estimator Un(γ;G) can be
interpreted as

simple unbiased estimator + mean-zero variate.

If we set γ ≡ 0, which always fulfills (3.4) and (3.5), then Un(0;G) = S0n(G).
In the previous section, we have seen that the KM integral is obtained by

plugging Gn into S0n(G), i.e., S0n(Gn) =
∫

ϕdFn. This can be also expressed as
Un(0;Gn) =

∫
ϕdFn. It is generalized as follows.

Proposition 4. For any γ, Un(γ;Gn) =
∫

ϕdFn.
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Proof. Since n−1
∑n

i=1 δiϕ(Zi)/Ḡn(Zi−) =
∫

ϕdFn, we have

Un(γ;Gn) =
∫

ϕdFn + n−1
n∑

i=1

(1 − δi)γ(Zi)(3.7)

− n−1
n∑

i=1

∫ Zi−

0

γ(y)
Ḡn(y)

dGn(y).

By Proposition 1, the second term of (3.7) is

n−1
n∑

i=1

(1 − δi)γ(Zi) = n−1
n∑

i=1

(1 − δi)F̄n(Zi)γ(Zi)
F̄n(Zi)

=
∫

F̄nγdGn.

The third term of (3.7) is

n−1
n∑

i=1

∫ Zi−

0

γ(y)
Ḡn(y)

dGn(y) =
∫ ∞

0

{
n−1

n∑
i=1

I(y < Zi)

}
γ(y)

Ḡn(y)
dGn(y)

=
∫ ∞

0
H̄n(y)

γ(y)
Ḡn(y)

dGn(y) =
∫

F̄nγdGn.

The last equality follows from H̄n = F̄nḠn.

We are interested in an optimal choice of γ in Un(γ;G) in the sense that its
variance is minimized. Variance of Un(γ;G) and the optimal choice are given by
the next two propositions. In order to make the result brief, we assume that F
and G are continuous.

Proposition 5. Assume that F and G are continuous. Then, under (3.4),∫ τ

0

{ϕ(x)}2

Ḡ(x)
dF (x) < ∞(3.8)

and ∫ τ

0
F̄ (x){γ(x)}2dG(x) < ∞,(3.9)

the variance of Un(γ;G) is given by

n × Var[Un(γ;G)] =
∫ τ

0

{ϕ(x)}2

Ḡ(x)
dF (x) −

{∫ τ

0
ϕ(x)dF (x)

}2

+
∫ τ

0
F̄ (x){γ(x)}2dG(x) − 2

∫ τ

0

γ(x)
Ḡ(x)

{∫ τ

x
ϕ(t)dF (t)

}
dG(x).(3.10)
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Proof. Let

Vi(γ;G) = δi
ϕ(Zi)
Ḡ(Zi)

+ (1 − δi)γ(Zi) −
∫ Zi

0

γ(y)
Ḡ(y)

dG(y), i = 1, . . . , n.

Then, from (3.6), Un(γ;G) = n−1
∑n

i=1 Vi(γ;G), and

n × Var[Un(γ;G)] = Var[Vi(γ;G)] = E[{Vi(γ;G)}2] − {E[Vi(γ;G)]}2

= E[{Vi(γ;G)}2] −
{∫ τ

0
ϕ(x)dF (x)

}2

.(3.11)

The second moment of Vi(γ;G) is

E[{Vi(γ;G)}2]

= E

[
δi

{
ϕ(Zi)
Ḡ(Zi)

}2
]

+ E
[
(1 − δi) {γ(Zi)}2

]
+ E

[{∫ Zi

0

γ(x)
Ḡ(x)

dG(x)
}2

]

− 2E

[
δiϕ(Zi)
Ḡ(Zi)

∫ Zi

0

γ(x)
Ḡ(x)

dG(x)
]
− 2E

[
(1 − δi)γ(Zi)

∫ Zi

0

γ(x)
Ḡ(x)

dG(x)
]

.

(3.12)

The third term of (3.12) is calculated as

E

[{∫ Zi

0

γ(x)
Ḡ(x)

dG(x)
}2

]
= E

[{∫ Zi

0

γ(x)
Ḡ(x)

dG(x)
} {∫ Zi

0

γ(y)
Ḡ(y)

dG(y)
}]

=
∫ τ

0

{∫ z

0

∫ z

0

γ(x)γ(y)
Ḡ(x)Ḡ(y)

dG(x)dG(y)
}

dH(z)

=
∫ τ

0

∫ τ

0
H̄(x ∨ y)

γ(x)γ(y)
Ḡ(x)Ḡ(y)

dG(x)dG(y)

= 2
∫ τ

0

∫ τ

0
I(x < y)H̄(y)

γ(x)γ(y)
Ḡ(x)Ḡ(y)

dG(x)dG(y)

= 2
∫ τ

0
F̄ (y)γ(y)

{∫ y

0

γ(x)
Ḡ(x)

dG(x)
}

dG(y)

= 2E

[
(1 − δi)γ(Zi)

∫ Zi

0

γ(x)
Ḡ(x)

dG(x)
]

.

Thus, the third term and the fifth term of (3.12) are canceled. The first term is∫ τ
0

{ϕ(x)}2

Ḡ(x)
dF (x), the second term is

∫ τ
0 F̄ (x){γ(x)}2dG(x), and the fourth term

is −2
∫ τ
0

γ(x)
Ḡ(x)

{∫ τ
x ϕ(t)dF (t)

}
dG(x). The result follows from (3.11).

Proposition 6. Assume F and G are continuous. Define a function γopt

on [0, τ ] by

γopt(x) = {H̄(x)}−1

∫ τ

x
ϕ(t)dF (t).(3.13)
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Then, for any γ with (3.4), (3.8) and (3.9), it holds that

Var[Un(γ;G)] ≥ Var[Un(γopt;G)].

Proof. From (3.10),

n Var[Un(γ;G)] =
∫ τ

0

{ϕ(x)}2

Ḡ(x)
dF (x) −

{∫ τ

0
ϕ(x)dF (x)

}2

+
∫ τ

0
F̄ (x){γ(x)}2dG(x) − 2

∫ τ

0
F̄ (x)γ(x)γopt(x)dG(x)

=
∫ τ

0

{ϕ(x)}2

Ḡ(x)
dF (x) −

{∫ τ

0
ϕ(x)dF (x)

}2

−
∫ τ

0
F̄ (x){γopt(x)}2dG(x) +

∫ τ

0
F̄ (x){γ(x) − γopt(x)}2dG(x)

= nVar[Un(γopt;G)] +
∫ τ

0
F̄ (x){γ(x) − γopt(x)}2dG(x).

The last term is nonnegative.

The function γopt defined by (3.13) is an optimal choice of γ in the class of
unbiased estimators Un(γ;G). From Theorem 1.1 of Stute (1995), we can see
that

Un(γopt;G) =
∫

ϕdFn + op(n−1/2).

Thus, the optimal unbiased estimator Un(γopt;G) is asymptotically equivalent
to the KM integral. This is natural because the KM integral is a maximum
likelihood estimator and it is asymptotically efficient as has been shown by Schick
et al. (1988).

At the last of the previous section, it has been stated that the simple un-
biased estimator S0n(G) = Un(0;G) has asymptotically larger variance than
the KM integral. This is reconfirmed by Proposition 6 since Var[Un(0;G)] >
Var[Un(γopt;G)] and the KM integral is asymptotically equivalent to the optimal
unbiased estimator Un(γopt;G).

From Proposition 4, it can be seen that Un(γopt;Gn) =
∫

ϕdFn. Thus, it
should be considered that the KM integral is a plug-in of Gn not into S0n(G) =
Un(0;G) but into Un(γopt;G). If we regard the KM integral as a plug-in of Gn

into S0n(G) = Un(0;G), then the plug-in results in a decrease in variance. This
is unnatural. It is intuitively natural that the KM integral is a plug-in of Gn

into Un(γopt;G) and the plug-in asymptotically does not have any influence on
variance, since Gn is consistent to G. It, however, causes a bias in the case of
finite samples.

When G is known, it seems reasonable to suppose that Un(γopt;G) is better
than the KM integral because Un(γopt;G) is unbiased and both estimators are
asymptotically equivalent. However, the optimal function γopt defined by (3.13)
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depends on the unknown F , and hence γopt is unknown. This is an important
problem practically.

One approach to solving this problem may be to estimate γopt. However,
this is putting the cart before the horse. Since

γopt(0) = {H̄(0)}−1

∫ τ

0
ϕ(t)dF (t) =

∫ τ

0
ϕ(t)dF (t) = θ,

if γopt(x) can be appropriately estimated by a function γ̂opt(x), we can imme-
diately obtain an estimate of θ by γ̂opt(0). Moreover, if the estimated optimal
function γ̂opt depends on the data, then Un(γ̂opt;G) is not necessarily unbiased.

Thus, it is important to choose a suitable γ so that the variance of Un(γ;G)
does not increase greatly compared with γopt, and the choice must be independent
of the data.

If there is no censorship at all, i.e., δi = 1 and Zi = Xi for all i, then the
KM integral reduces to n−1

∑n
i=1 ϕ(Xi), which is an expectation of ϕ(X) with

respect to the empirical distribution of Xi’s. On the other hand, in this case,
Un(γ;G) reduces to

n−1
n∑

i=1

{
ϕ(Xi)

Ḡ(Xi−)
−

∫ Xi−

0

γ(y)
Ḡ(y)

dG(y)
}

.

It is natural to expect that this is also in agreement with n−1
∑n

i=1 ϕ(Xi) under
no censorship.

Proposition 7. Assume that G is continuous and its density g is positive
on (0, τ) and that ϕ is differentiable on (0, τ). Define, for z ∈ (0, τ),

γ̃(z) =
ϕ(z)
Ḡ(z)

+
G(z)
g(z)

dϕ(z)
dz

.(3.14)

Then, for any 0 < x < τ ,

ϕ(x)
Ḡ(x)

−
∫ x

0

γ̃(y)
Ḡ(y)

dG(y) = ϕ(x).(3.15)

Hence, Un(γ̃;G) reduces to n−1
∑n

i=1 ϕ(Xi) when there is no censorship at all.

Proof. Substituting (3.14) into the integral in (3.15), we have∫ x

0

γ̃(y)
Ḡ(y)

dG(y) =
∫ x

0

ϕ(y)
{Ḡ(y)}2

dG(y) +
∫ x

0

G(y)
Ḡ(y)

dϕ(y)
dy

dy

=
∫ x

0

ϕ(y)
{Ḡ(y)}2

dG(y) +
G(x)
Ḡ(x)

ϕ(x) −
∫ x

0

ϕ(y)
{Ḡ(y)}2

dG(y)

= −ϕ(x) +
ϕ(x)
Ḡ(x)

.
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We shall now carefully examine the difference between γopt and γ̃. Assume
that F is continuous and that its hazard function λF is positive on (0, τ). Let
γ∗

opt = Ḡγopt. Then, for z ∈ (0, τ),

F̄ (z)γ∗
opt(z) =

∫ τ

z
F̄ (x)ϕ(x)λF (x)dx.

Differentiating this, we obtain the expression

γopt(z) =
γ∗

opt(z)
Ḡ(z)

=
1

Ḡ(z)

{
ϕ(z) +

1
λF (z)

dγ∗
opt(z)
dz

}
.(3.16)

On the other hand, γ̃ defined by (3.14) can be written as

γ̃(z) =
1

Ḡ(z)

{
ϕ(z) +

G(z)
λG(z)

dϕ(z)
dz

}
,

where λG = g/Ḡ. From (3.16), we can see that γopt(z) is determined by two
unknown functions, dγ∗

opt/dz and λF , except for the known functions ϕ and Ḡ.
In γ̃, these unknown functions are replaced by known functions dϕ/dz and λG/G,
respectively.

First we shall concentrate on the replacement of dγ∗
opt/dz by dϕ/dz. We can

write as
γ∗

opt(z) = E [ϕ(X) | X > z] − F̄ (τ)/F̄ (z).

If τ = τF (i.e., τF ≤ τG) and the lifetime X has a property of lack of memory as

E [ϕ(X) | X > z] = ϕ(z) + constant,

then dγ∗
opt/dz = dϕ/dz. Although the lack of memory does not hold in general,

it seems reasonable to replace dγ∗
opt/dz by dϕ/dz since the lifetime distribution

is completely unknown.
Next we consider replacement of λF . Let

q(z) = Pr{δ = 1 | Z = z} =
λG(z)

λF (z) + λG(z)
,

which has been called a censoring pattern function by Suzukawa and Taneichi
(2000). Then, λF can be expressed as

λF (z) =
1 − q(z)

q(z)
λG(z).

In this expression, λG is known, but the censoring pattern function q is unknown.
Thus, we have to consider with what kind of function q should be replaced.

In γ̃, q is replaced by G/(1+G), which is increasing and not greater than 1/2.
Thus, this replacement may have validity when the censoring pattern is increasing
with observable time and censoring is not so heavy (censoring proportion being
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less than 1/2). However, there is no necessity of replacing q by G/(1+G). It must
be noted that this replacement excludes important cases in which the censoring
pattern is constant (i.e., q(z) is independent of z).

We consider replacement of q by a constant. The censoring pattern function
q is constant if and only if hazards λF (z) and λG(z) are proportional as

λG(z)/λF (z) = α,

where α > 0 is a constant. Substituting this and dγ∗
opt(z)/dz = dϕ(z)/dz into

(3.16), we obtain the function

γ̄α(z) =
1

Ḡ(z)

{
ϕ(z) +

α

λG(z)
dϕ(z)

dz

}
.(3.17)

In the following section, unbiased estimators Un(0;G), Un(γ̃;G) and Un(γ̄α;G)
in the case of estimation of mean lifetimes, i.e., ϕ(x) = x, are compared.

4. Estimation of mean lifetimes

In this section, the case where censoring distribution is known and it is an
exponential distribution with hazard λ > 0, i.e., Ḡ(y) = exp(−λy), is considered.
The purpose here is to estimate the mean lifetime µ ≡

∫
xdF (x).

The simple unbiased estimator of µ is given by

µ̂0n ≡ Un(0;G) = n−1
n∑

i=1

δiZi/Ḡ(Zi) = n−1
n∑

i=1

δiZi eλZi .

Substituting ϕ(z) = z and Ḡ(y) = exp(−λy) into (3.14) and (3.17), we have

γ̃(z) = {z + λ−1(1 − e−λz)}eλz and γ̄α(z) = (z + αλ−1)eλz.

Using these functions as γ, we obtain unbiased estimators

µ̃n ≡ Un(γ̃;G) = n−1
n∑

i=1

{
Zi + (1 − δi)λ−1(eλZi − 1)

}
and

µ̄n(α) ≡ Un(γ̄α;G) = n−1
n∑

i=1

{
λ−1(1 − αδi)eλZi + λ−1(α − 1)

}
.

The main concern is to compare estimators µ̂0n, µ̃n and µ̄n(α). It is noted
that µ̂0n and µ̃n are unique, but µ̄n(α) depends on the choice of the constant
α > 0.

In order to evaluate variances of these unbiased estimators, it is assumed that
the lifetime distribution is exponential with hazard one; F̄ (x) = e−x. Under this
assumption, a true value of µ is one, and expectations of above three estimators
are one.
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From (3.13), the optimal γ is given by γopt(z) = (z + 1)eλz. The optimal
unbiased estimator is given by

µ̂n,opt ≡ Un(γopt;G) = n−1
n∑

i=1

{
λ−1(1 − λδi)eλZi + λ−1(λ − 1)

}
.

We can see that µ̄n(λ) = µ̂n,opt. The optimal choice of the constant α in µ̄n(α)
is λ.

The condition (3.8) for existence of variance is
∫ ∞
0 x2e(λ−1)xdx < ∞, which is

equivalent to λ < 1. For γ̃, γ̄α and γopt defined above, condition (3.9) is satisfied
if λ < 1. Thus, if λ < 1, variances of all estimators can be obtained by (3.10).
Let q = Pr{δi = 0} (proportion of censoring), then q = λ/(1 + λ). Thus, the
condition λ < 1 is equivalent to q < 1/2 (censoring proportion less than 1/2).
We say that censoring is heavy when q is near 1/2 (i.e., λ is near one) and is
light when q is near zero (i.e., λ is near zero).

Under λ < 1, variances of the unbiased estimators are given by

n × Var[µ̂0n] = 2(1 − λ)−3 − 1, n × Var[µ̃n] = (1 − λ)−1 + λ(1 + λ)−1,

(4.1)

n × Var[µ̄n(α)] = (1 − λ)−1
{
1 + (α − λ)2/λ

}
, n × Var[µ̂n,opt] = (1 − λ)−1.

It holds that for any 0 < λ < 1

Var[µ̂n,opt] < Var[µ̃n] < Var[µ̂0n].

Thus, the estimator µ̃n improves the simple estimator µ̂0n. Figure 2 shows vari-
ances of these estimators. The degree of improvement is so remarkable that
censoring becomes heavy. This fact can also be seen from

light-censoring comparison:

lim
q↘0

Var[µ̃n]
Var[µ̂n,opt]

= 1, lim
q↘0

Var[µ̂0n]
Var[µ̂n,opt]

= 1,(4.2)

heavy-censoring comparison:

lim
q↗1/2

Var[µ̃n]
Var[µ̂n,opt]

= 1, lim
q↗1/2

Var[µ̂0n]
Var[µ̂n,opt]

= ∞.(4.3)

On the other hand, µ̄n(α) does not always improve µ̂0n. We are interested
in the choice of α such that µ̄n(α) improves µ̂0n. At least, the optimal choice
α = λ improves it. It can be easily seen that

Var[µ̄n(α)] < Var[µ̂0n] ⇔ 0 < α < λ +

√
2λ

(1 − λ)2
+ λ2 − 2λ.

Figure 3 shows the region of (λ, α) in which µ̄n(α) improves µ̂0n. This region
is under the boundary curve. The optimal choice α = λ is in this region. For
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Figure 2. Variances of unbiased estimators µ̂0n, µ̃n and µ̂n,opt.

example, if λ = 1/2 (i.e., censoring proportion q = 1/3), then Var[µ̄n(α)] <
Var[µ̂0n] for 0 < α < 2.30. From this figure, it can be seen that if censoring is
heavy (λ is near one), µ̄n(α) improves µ̂0n for any choice of α. On the other hand,
when censoring is light, there is no improvement for almost all α. An interesting
choice of α is α = 0, which always improves µ̂0n. The estimator is

µ̄n(0) = n−1
n∑

i=1

{
λ−1(eλZi − 1)

}
,

and its variance is given by n × Var[µ̄n(0)] = (1 + λ)/(1 − λ).
We are also interested in whether µ̄n(α) improves µ̃n. At least, the optimal

choice α = λ improves µ̃n since µ̄n(λ) = µ̂n,opt. We can see that

Var[µ̄n(α)] < Var[µ̃n] ⇔ λ

(
1 −

√
1 − λ

1 + λ

)
< α < λ

(
1 +

√
1 − λ

1 + λ

)
.

Figure 4 shows the region of (λ, α) in which µ̄n(α) improves µ̃n. This region is the
inner part of the boundary curve, and the optimal choice α = λ is in this region.
In the neighborhood of the optimal line α = λ, µ̄n(α) has smaller variance than
µ̃n. For example, if λ = 1/2, then the optimal α is 1/2 and Var[µ̄n(α)] < Var[µ̃n]
for 0.22 < α < 0.78. This figure also shows that Var[µ̄n(0)] > Var[µ̃n] unless
λ = 0 (no censoring). Namely, µ̄n(0) is inferior to µ̃n, though it improves µ̂0n.

Figure 5 shows variances of unbiased estimators µ̄n(1/2), µ̃n and µ̂n,opt. The
estimator µ̄n(1/2) attains an optimal value at q = 1/3, and it improves µ̃n in the
neighborhood of q = 1/3. However, it has undesirable properties

lim
q↘0

Var[µ̄n(1/2)]
Var[µ̂n,opt]

= ∞ and lim
q↗1/2

Var[µ̄n(1/2)]
Var[µ̂n,opt]

= 1 + (1/2)2 > 1.
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Figure 3. Region of (λ, α) in which µ̄n(α) improves µ̂0n.
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Figure 4. Region of (λ, α) in which µ̄n(α) improves µ̃n.

The first property is a serious problem. Therefore, to use µ̄n(α), it is necessary
to choose α carefully. A natural estimator of q is q̂ = 1 −

∑n
i=1 δi/n. It seems

reasonable to use an α that is near q̂/(1 − q̂). However, it must be noted that
µ̄n(q̂/(1 − q̂)) is not unbiased any longer.

Generally, µ̃n does not cause a great increase in variance compared with
µ̂n,opt for all q < 1/2. Moreover, from (4.2) and (4.3), we can say that it is
equivalent to µ̂n,opt under both light-censoring and heavy-censoring conditions.

We shall investigate whether these unbiased estimators are more desirable
than the KM mean µ̂KM

n ≡
∫

xdFn(x). We shall now examine the mean squared
errors (MSEs) of these estimators. For unbiased estimators, their MSEs are given
by their variances (4.1). The exact MSE of the KM mean has not been obtained
yet. It was investigated here by simulations.

Figure 6 shows MSEs of µ̃n, µ̂n,opt and µ̂KM
n . When n = 10 and censoring is

heavy, µ̂KM
n has a smaller MSE than µ̃n and µ̂n,opt. In this case, µ̂KM

n has a smaller
variance, though it has a bias. Generally, µ̂KM

n has a smaller variance in the case
of small sample size. However, it has a negative bias. As the sample size becomes
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Figure 5. Variances of unbiased estimators µ̄n(1/2), µ̃n and µ̂n,opt.
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Figure 6. Mean squared errors (MSEs) of mean lifetime estimators µ̃n, µ̂n,opt and µ̂KM
n .

large, differences in variances become small, but the bias of µ̂KM
n still remains.

The reason for the larger MSE of µ̂KM
n in the case of n = 100 is that its bias still

remains. Although µ̂KM
n is asymptotically unbiased, its convergence is slow. It

also seems natural that µ̂KM
n is not greatly improved, since it is a nonparametric

maximum likelihood estimator. In many practical situations, sample size is not
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so large and the censoring proportion is between 0.1 and 0.4. In such situations,
not only µ̂KM

n but also µ̃n may be taken into consideration.
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