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THE CUSUM TEST FOR PARAMETER CHANGE IN
REGRESSION MODELS WITH ARCH ERRORS

Sangyeol Lee*, Yasuyoshi Tokutsu** and Koichi Maekawa***

In this paper we consider the problem of testing for a parameter change in
regression models with ARCH errors based on the residual cusum test. It is shown
that the limiting distribution of the residual cusum test statistic is the sup of a
Brownian bridge. Through a simulation study, it is demonstrated that the proposed
test circumvents the drawbacks of Kim et al.’s (2000) cusum test. For illustration,
we apply the residual cusum test to the return of yen/dollar exchange rate data.

Key words and phrases: Brownian bridge, regression models with ARCH errors,
residual cusum test, test for parameter change, weak convergence.

1. Introduction

Since Page (1955), the problem of testing for a parameter change has been
an important issue in statistics. It first started in the quality control context and
quickly moved to other fields such as economics, engineering and medicine. So
far, a large number of articles have been published in various journals. See, for
instance, Brown et al. (1975), Wichern et al. (1976), Zacks (1983), Krishnaiah
and Miao (1988) and Csörgő and Horváth (1997). The change point problem has
drawn much attention from many researchers in time series analysis since time
series often suffer from structural changes owing to changes of policy and critical
social events. It is well known that detecting a change point is a crucial task and
ignoring it can lead to a false conclusion. A standard example can be found in
Hamilton ((1994), p. 450). For relevant references, we refer to Wichern et al.
(1976), Picard (1985), Inclán and Tiao (1994), Mikosch and Stărică (1999), Lee
and Park (2001), Lee et al. (2003a, b) and the papers cited in those articles.

In this paper, we concentrate ourselves on Inclán and Tiao’s (1994) cusum
test in regression models with ARCH errors. The ARCH and GARCH models
have long been popular in financial time series analysis. For a general review, see
Gouriéroux (1997). Inclán and Tiao’s (1994) cusum test was originally designed
for testing for variance changes and allocating their locations in iid samples.
Later, it was demonstrated that the same idea can be extended to a large class
of time series models (cf., Lee et al. (2003a)). Also, the variance change test has
been studied in unstable AR models (cf., Lee et al. (2003b)).

In fact, Kim et al. (2000) considered to apply the cusum test to GARCH(1, 1)
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models taking account of the fact that the variance is a functional of GARCH
parameters, and their change can be detected by examining the existence of the
variance change. Although this reasoning was correct, it turned out that the
cusum test suffers from severe size distortions and low powers. Hence, there
was a demand to improve their cusum test. Here, in order to circumvent such
drawbacks, we propose to use the cusum test based on the residuals, given as the
squares of observations divided by estimated conditional variances. We intend to
use residuals since the residual based test conventionally discard correlation ef-
fects and enhance the performance of the test. In fact, a significant improvement
was observed in our simulation study.

Despite the previous work of Lee et al. (2003b) also considers a residual
cusum test in time series models, the model of main concern was the autore-
gressive model with several unit roots. In fact, the mathematical analysis of the
cusum test heavily relies on the probabilistic structure of the underlying time
series model, and the arguments used for establishing the weak convergence re-
sult for unstable models are somewhat different from those for ARCH models.
Therefore it is worth to investigate the asymptotic behavior of the residual cusum
test in ARCH models. Although the present paper was originally motivated to
improve Kim et al.’s (2000) test in the GARCH(1, 1) model, we consider the
cusum test in a more general class of models including regression models with
infinite order ARCH errors.

The organization of this paper is as follows. In Section 2, we introduce the
residual cusum test in regression models with infinite order ARCH models that
include the GARCH model, and show that its limiting distribution is the sup of
a Brownian bridge. In Section 3, we perform a simulation study to compare our
test with Kim et al.’s (2000) test in GARCH(1, 1) models. The result indicates
that our method outperforms their cusum test. Then, for illustration, we apply
our test to a real data set. Finally, in Section 4, we provide concluding remarks.

2. Residual cusum test

Let us consider the model

yt = β′zt + εt,(2.1)
εt = htξt,

h2
t = a(θ) +

∞∑
j=1

bj(θ)ε2t−j ,

where ξt are iid r.v.’s with zero mean and unit variance, {zt} is a p-dimensional
strictly stationary process, and θ → a(θ) and θ → b(θ) are nonnegative continu-
ous real functions defined on a subset N in Rd with a(θ) > 0 and

∑∞
j=1 bj(θ) < ∞

for all θ ∈ N . We assume that ys,zs, s < t are independent of ξu, u ≥ t, and
{(εt, ht,zt)} is strong mixing. The Model (2.1) covers a broad class of important
models in the financial time series context including GARCH models. In par-
ticular, it becomes a GARCH(1, 1) model if we put zt = 0,θ = (ω, α1, α2), ω >
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0, α1, α2 ≥ 0, α1 + α2 < 1, a(θ) = ω/(1 − α1 − α2) and bj(θ) = α1α
j−1
2 . In this

case, {(εt, ht,zt)} is geometrically strong mixing (cf., Carrasco and Chen (2002)).
Recently, Lee and Taniguchi (2004) studied the LAN property and the residual
empirical process for Model (2.1).

The objective here is to test the hypotheses

H0 : η = (β′,θ′)′ remains the same for the whole series vs.
H1 : Not H0.

For a test, one may construct a cusum test based on {ε̂t := yt − β̂
′
zt} as

in Inclán and Tiao (1994) and Kim et al. (2000). However, as observed in the
simulation study in Section 3, the test in GARCH(1, 1) models is unstable and
produces low powers. Thus one has to develop a better test which is not much
affected by the GARCH parameters. As a candidate, one can naturally consider
the cusum test based on

{
ξ2
t

}
, say,

Tn :=
1√
nτ

max
1≤k≤n

∣∣∣∣∣
k∑

t=1

ξ2
t −

(
k

n

) n∑
t=1

ξ2
t

∣∣∣∣∣ ,

where τ2 = Var(ξ2
1), since Tn is free from the GARCH parameters. In this case,

however, one may speculate whether Tn can detect any changes since Tn itself has
no information about the GARCH parameters. But since ξt are not observable,
one should replace ξ2

t ’s by the residuals ξ̂2
t , which are obtained via estimating

the unknown parameters. Those estimators play an important role to detect
changes in the parameters in the presence of changes, while the iid property of
the true errors still remains when there are no changes. From this reasoning, one
can anticipate that the residual cusum test should be more stable and produce
better powers.

Now, we construct the residual cusum test. To this end, we assume that
(A1) E ‖ z1 ‖4+δ1< ∞, E|ε1|4+δ1 < ∞ and E|ξ1|4+δ1 < ∞ for some δ1 > 0.
(A2) There exists δ2 > 0 such that

sup
‖θ−θ′‖≤δ2,θ′∈N

‖ ȧ(θ) ‖< ∞ and
∞∑

j=1

sup
‖θ−θ′‖≤δ2,θ′∈N

‖ ḃj(θ) ‖< ∞,

where ȧ(θ) and ḃj(θ) denote the gradient vectors of a and bj at θ.
(A3) There exists a sequence of positive integers with q → ∞, q/

√
n → 0 and√

n
∑∞

j=q+1 bj(θ) → 0 as n → ∞.

(A4) {(εt, ht,zt)} is strong mixing with order γ(h) satisfying
∑∞

h=1 γ(h)
δ1

4+δ1 <
∞.

Observe that the last condition in (A3) is satisfied if bj(θ) are geometrically
bounded (as in GARCH models), and q = [(log n)]ζ , ζ > 1. Also, if zt are
identically zero and {yt} is a GARCH process, {(yt, ht)} is geometrically strong
mixing (cf., Carrasco and Chen (2002)), so that (A4) is satisfied.
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Now, we construct the residual cusum test. In analogy of h2
t , we define

h2
t = a(θ̂) +

q∑
j=1

bj(θ̂)ε̂2t−j ,

ε̂t = yt − θ̂
′
zt and ξ̂t = ε̂t/ĥt,

where η̂ = (β̂
′
, θ̂

′
)′ is an estimator of η with

√
n(η̂−η) = OP (1). Then, we have

the following result.

Theorem 1. Assume that (A1)–(A4) hold. Set

T̂n :=
1√
nτ̂

max
q+1≤k≤n

∣∣∣∣∣∣
k∑

t=q+1

ξ̂2
t −

(
k

n

) n∑
t=q+1

ξ̂2
t

∣∣∣∣∣∣
where τ̂2 = 1

n−q

∑n
t=q+1 ξ̂4

t − ( 1
n−q

∑n
t=q+1 ξ̂2

t )2. Then, under H0,

T̂n
d−→ sup

0≤u≤1
|Bo(u)|, n → ∞,

where Bo is a Brownian bridge.

Remark 1. A choice of q may be an issue in actual practice since it may affect
the test, despite the affection would not be so serious for fairly large samples.
However, if h2

t has a more specific form as in GARCH(1, 1) models, the test
statistic can be free of the choice of q. See Theorem 2 below. In general, the above
Brownian bridge result does not hold for all regression models (cf., Jandhyala
and MacNeill (1991)). Therefore, the result of Theorem 1 should not be applied
directly to all situations.

Proof. Split ξ̂2
t into ξ2

t +
∑6

i=1 Ji,t, where

J1,t =
(h2

t − ĥ2
t )ξ

2
t

h2
t

, J2,t =
(h2

t − ĥ2
t )

2ξ2
t

h2
t ĥ

2
t

,

J3,t =
−2(β̂ − β)′ztεt

h2
t

, J4,t =
−2(β̂ − β)′ztεt(h2

t − ĥ2
t )

h4
t

,

J5,t =
−2(β̂ − β)′ztεt(h2

t − ĥ2
t )

2

h4
t ĥ

2
t

, J6,t =
((β̂ − β)′zt)2

ĥ2
t

.

We claim that

∆i,n :=
1√
n

max
q+1≤k≤n

∣∣∣∣∣∣
k∑

t=q+1

Ji,t −
(

k

n

) n∑
t=q+1

Ji,t

∣∣∣∣∣∣ = oP (1), i = 1, . . . , 6.(2.2)
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First, we handle J1,t. Note that

h2
t − ĥ2

t =a(θ) − a(θ̂) +
∞∑

j=q+1

bj(θ)ε2t−j

+
q∑

j=1

(
bj(θ) − bj(θ̂)

)
ε2t−j +

q∑
j=1

bj(θ̂)
(
ε2t−j − ε̂2t−j

)
:=

4∑
i=1

Ii,t.(2.3)

Owing to (A4) and the invariance principle for strong mixing processes (cf.,
Theorem 1.7 of Peligrad (1986)), we have

1√
n

max
q+1≤k≤n

∣∣∣∣∣∣
k∑

t=q+1

(
ξ2
t

h2
t

− E
ξ2
t

h2
t

)
−

(
k

n

) n∑
t=q+1

(
ξ2
t

h2
t

− E
ξ2
t

h2
t

)∣∣∣∣∣∣ = OP (1),

which implies

1√
n

max
q+1≤k≤n

∣∣∣∣∣∣
k∑

t=q+1

I1,tξ
2
t

h2
t

−
(

k

n

) n∑
t=q+1

I1,tξ
2
t

h2
t

∣∣∣∣∣∣ = oP (1).(2.4)

Meanwhile,

1√
n

max
q+1≤k≤n

∣∣∣∣∣∣
k∑

t=q+1

I2,tξ
2
t

h2
t

−
(

k

n

) n∑
t=q+1

I2,tξ
2
t

h2
t

∣∣∣∣∣∣ = oP (1)(2.5)

since by (A3),

1√
n

n∑
t=q+1

∞∑
j=q+1

bj(θ)
ε2t−jξ

2
t

h2
t

= OP

√
n

∞∑
j=q+1

bj(θ)

 = oP (1).

Now, we verify that

1√
n

max
q+1≤k≤n

∣∣∣∣∣∣
k∑

t=q+1

I3,tξ
2
t

h2
t

−
(

k

n

) n∑
t=q+1

I3,tξ
2
t

h2
t

∣∣∣∣∣∣ = oP (1).(2.6)

For this task, it suffices to show that for λ > 0,

ln := P

 q∑
j=1

|bj(θ) − bj(θ̂)|Λnj > λ

 = o(1), n → ∞,(2.7)

where

Λnj =
1√
n

max
q+1≤k≤n

∣∣∣∣∣∣
k∑

t=q+1

(
ε2t−jξ

2
t

h2
t

− E
ε2t−jξ

2
t

h2
t

)∣∣∣∣∣∣
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which is OP (1) due to the invariance principle and (A4). Observe that for any
M > 0,

ln :≤ P

 M∑
j=1

|bj(θ) − bj(θ̂)|Λnj >
λ

2

 + P

 ∞∑
j=M+1

|bj(θ) − bj(θ̂)|Λnj >
λ

2


:= l1,n + l2,n,

l1,n = o(1), and

l2,n ≤ P

(
‖ θ̂ − θ ‖

×
∞∑

j=M+1

sup
‖θ−θ′‖≤δ2

‖ḃ(θ′)‖ · 1√
n

(
n∑

t=1

ε2t−jξ
2
t

h2
t

+
n∑

t=1

E
ε2t−jξ

2
t

h2
t

)
>

λ

2

)

for all large n. Then, using Markov’s inequality and (A2), we can show that l2,n

becomes arbitrarily small by taking a sufficiently large M . Hence, l2,n = o(1)
and thus ln = o(1), which yields (2.6).

Now, we verify that

1√
n

max
q+1≤k≤n

∣∣∣∣∣∣
n∑

t=q+1

I4,tξ
2
t

h2
t

−
(

k

n

) n∑
t=q+1

I4,tξ
2
t

h2
t

∣∣∣∣∣∣ = oP (1).(2.8)

Note that

ε2t−j − ε̂2t−j = 2εt−j(β̂ − β)′zt−j − ((β̂ − β)′zt−j)2.

Since

1√
n

max
q+1≤k≤n

∥∥∥∥∥∥
n∑

t=q+1

(
zt−jεt−jξ

2
t

h2
t

− E
zt−jεt−jξ

2
t

h2
t

)∥∥∥∥∥∥ = OP (1)

by (A4), and
∞∑

j=1

bj(θ̂) ≤
∞∑

j=1

‖θ̂ − θ‖ sup
‖θ−θ′‖≤‖θ̂−θ‖

∥∥∥ḃj(θ′)
∥∥∥ +

∞∑
j=1

bj(θ)

= OP (1),(2.9)

following essentially the same arguments between (2.6) and (2.8), we can see that

1√
n

max
q+1≤k≤n

∥∥∥∥∥∥
k∑

t=q+1

q∑
j=1

bj(θ̂)(β̂ − β)′
zt−jεt−jξ

2
t

h2
t

−
(

k

n

) n∑
t=q+1

q∑
j=1

bj(θ̂)(β̂ − β)′
zt−jεt−jξ

2
t

h2
t

∥∥∥∥∥∥ = oP (1).(2.10)
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Combining this and the fact that

1√
n

n∑
t=q+1

q∑
j=1

bj(θ̂)‖β̂ − β‖2‖zt−j‖2ξ2
t /h2

t = oP (1), (by (2.9))

we obtain (2.8). From (2.4), (2.5), (2.6) and (2.8), we establish ∆1,n = oP (1).
Now, we deal with ∆2,n. Since h2

t ≥ a(θ) > 0 and ĥ2
t ≥ a(θ̂), to show

1√
n

∑n
t=q+1 J2,t = oP (1), it suffices to prove

1√
n

n∑
t=q+1

(h2
t − ĥ2

t )
2ξ2

t = oP (1).(2.11)

It is obvious that 1√
n

∑n
t=q+1 I2

1,tξ
2
t = oP (1). Also, we have

1√
n

n∑
t=q+1

I2
2,tξ

2
t =

1√
n

n∑
t=q+1

 ∞∑
j=q+1

bj(θ)ε2t−j

2

ξ2
t

= OP

√
n

 ∞∑
j=q+1

bj(θ)

2 = oP (1)(2.12)

by (A3). Meanwhile, by the Cauchy-Schwarz inequality,

1√
n

n∑
t=q+1

I2
3,tξ

2
t ≤ 1√

n

n∑
t=q+1

q∑
j=1

‖θ̂ − θ‖2 sup
‖θ−θ′‖≤‖θ̂−θ‖

∥∥∥ḃj(θ′)
∥∥∥2

ε4t−jξ
4
t

= OP (q/
√

n) = oP (1). (by (A3))(2.13)

Moreover,

1√
n

n∑
t=q+1

I2
4,tξ

2
t ≤ 2√

n

n∑
t=q+1

 q∑
j=1

bj(θ){|εt−j(β̂ − β)′zt−j | + ((β̂ − β)′zt−j)2}

2

ξ2
t

= oP (1).(2.14)

This together with (2.11)–(2.13) yields ∆2,n = oP (1).
Now, it remains to show that ∆n,i = oP (1), i = 3, 4, 5, 6. It is trivial to show

that ∆n,3 = oP (1) and ∆n,6 = oP (1). Also, one can verify the negligibility of
∆n,4 and ∆n,5 in a similar fashion to prove that of ∆n,1 and ∆n,2, respectively.
Hence, (2.2) is established, which directly implies

1√
n

max
q+1≤k≤n

∣∣∣∣∣∣
k∑

t=q+1

ξ̂2
t −

(
k

n

) n∑
t=q+1

ξ̂2
t

∣∣∣∣∣∣
=

1√
n

max
q+1≤k≤n

∣∣∣∣∣∣
k∑

t=q+1

ξ2
t −

(
k

n

) n∑
t=q+1

ξ2
t

∣∣∣∣∣∣ + oP (1).(2.15)
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Finally, we show that τ̂2 P−→ τ2 = Var(ξ2
1). Note that

ξ̂2
t − ξ2

t =
(h2

t − ĥ2
t )ξ

2
t

ĥ2
t

+ ρt,(2.16)

where ρt := (ε̂2
t − ε2

t )/ĥ2
t satisfies

1
n

n∑
t=q+1

ρt = oP (1) and
1
n

n∑
t=q+1

ρ2
t = oP (1).(2.17)

Thus, in view of (2.11) and (2.17),∣∣∣∣∣∣ 1n
n∑

t=q+1

(ξ̂2
t − ξ2

t )

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1n

n∑
t=q+1

(h2
t − ĥ2

t )ξ
2
t

h2
t

∣∣∣∣∣∣ +
1
n

n∑
t=q+1

(ĥ2
t − h2

t )
2ξ2

t

h2
t ĥ

2
t

+ oP (1)

≤ a(θ)

 1
n

n∑
t=q+1

(h2
t − ĥ2

t )
2

1/2  1
n

n∑
t=q+1

ξ4
t

1/2

+ oP (1),

which is oP (1) since (2.11) with ξ2
t replaced by 1 is also oP (1), of which proof is

essentially the same as that of (2.11) and is omitted for brevity. Hence,

1
n − q

n∑
t=q+1

ξ̂2
t

P−→ Eξ2
1 .(2.18)

Now, by (2.17),

1
n

n∑
t=q+1

(ξ̂2
t − ξ2

t )2 ≤ 1
n

n∑
t=q+1

(h2
t − ĥ2

t )
2ξ4

t /a(θ̂)2 + oP (1)

≤
(

1√
n

max
q+1≤t≤n

ξ2
t

)  1√
n

n∑
t=q+1

(h2
t − ĥ2

t )
2ξ2

t

 /
a(θ̂)2 + oP (1)

= oP (1),

and furthermore,

1
n

n∑
t=q+1

(ξ̂2
t + ξ2

t )2 ≤ 2
n

n∑
t=q+1

(ξ̂2
t − ξ2

t )2 +
8
n

n∑
t=q+1

ξ4
t = OP (1).

Hence,∣∣∣∣∣∣ 1n
n∑

t=q+1

ξ̂4
t − 1

n

n∑
t=q+1

ξ4
t

∣∣∣∣∣∣ ≤
 1

n

n∑
t=q+1

(ξ̂2
t − ξ2

t )2

1/2  1
n

n∑
t=q+1

(ξ̂2
t + ξ2

t )2

1/2

= oP (1),
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so that (n − q)−1
∑n

t=q+1 ξ̂4
t

P→ Eξ4
1 . This together with (2.18) yields τ̂2 P−→ τ2.

In view of this and (2.15), we establish the theorem. �

Now, as mentioned in the remark below Theorem 1, we demonstrate that
a modification of the test, free from a choice of q, can be constructed for the
models with h2

t satisfying a specific equation. Here, considering its extreme
popularity in the financial time series context, we concentrate ourselves on the
case of GARCH(1, 1) errors:

yt = β′zt + εt,(2.19)
εt = htξt,

h2
t = ω + α1ε

2
t−1 + α2h

2
t−1

with ω > 0, α1, α2 ≥ 0 and α1 + α2 < 1. In this case, we can write

h2
t = a + α1

∞∑
j=1

αj−1
2 ε2

t−j(2.20)

with a = ω/(1 − α1 − α2), and its estimate is

ĥ2
t = â + α̂1

q∑
j=1

α̂j−1
2 ε̂2

t−j ,(2.21)

where ε̂t = yt − β̂
′
zt, β̂, â, α̂1, α̂2 are the estimators for β, a, α1 and α2 satisfying

√
n(β̂ − β) = OP (1),

√
n(â − a) = OP (1),√

n(α̂1 − α1) = OP (1) and
√

n(α̂2 − α2) = OP (1),

and q is a sequence of positive integers with q → ∞, q/
√

n → 0 and
√

nαq
2 → 0,

which ensures (A3). Note that the estimate of the conditional variance can be
obtained recursively from the equation

h̃2
t = ω̂ + α̂1ε̂

2
t−1 + α̂2h̃

2
t−1,(2.22)

in so far as initial values ε̂2
0 and h̃2

0 are provided. From this, we have that for
t ≥ 2,

h̃2
t = ω̂(α̂t

2 − 1)/(1 − α̂2) + α̂1

t−1∑
j=1

α̂j−1
2 ε̂2

t−j + α̂1α̂
t−1
2 ε̂2

0 + α̂t
2h̃

2
0.(2.23)

Then, in view of (2.21) and (2.23), we have

1√
n

n∑
t=q+1

ε̂2
t |ĥ−2

t − h̃−2
t | = oP (1),(2.24)
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and moreover,

1√
n

q∑
t=1

ε̂2
t |ĥ−2

t − h̃−2
t | = OP (q/

√
n) = oP (1).(2.25)

Therefore, from Theorem 1, (2.24) and (2.25), we have the following.

Theorem 2. Let h̃2
t be the one in (2.22), and set ξ̃2

t = ε̂2
t /h̃2

t . Let

T̃n := max
1≤k≤n

T̃n,k :=
1√
nτ̃

max
1≤k≤n

∣∣∣∣∣
k∑

t=1

ξ̃2
t −

(
k

n

) n∑
t=1

ξ̃2
t

∣∣∣∣∣ ,

where τ̃2 = 1
n

∑n
t=1 ξ̃4

t − ( 1
n

∑n
t=1 ξ̃2

t )2. Then if (A1) holds, under H0,

T̃n
d→ sup

0≤u≤1
|Bo(u)| , n → ∞.

Remark 2. Notice that unlike in T̂n, the first q number of T̃n,k’s are involved
in construction of T̃n. Therefore the test statistic is free from a choice of q in
this sense. As for initial values ε̃2

0 and h̃2
0, one can put any numbers. However,

one may like to choose ε̃2
0 = 1

n

∑n
t=1 ε̂2

t and h̃2
0 = 1

n−q

∑n
t=q+1 ĥ2

t . In the latter,
a choice of q is not a serious concern since initial effects somehow will disappear
very fast. It may be reasoned that the initial values may affect the test, but the
effect will not be severe since the last two terms in (2.23) decay to 0 exponentially
fast. In the case of zt = (yt−1, . . . , yt−p+1)′, one has to adopt the test T̃p,n :=
maxp+1≤k≤n T̃n,k and the initial value ε̃2

p,0 = 1
n−p

∑n
t=p+1 ε̂2

t .

3. Empirical study

3.1. Simulation study
In this section, we evaluate the performance of the test statistic T̃n through

a simulation study. Towards this end, we introduce the model

yt = htξt,

h2
t = ω + α1y

2
t−1 + α2h

2
t−1,

where y0 is assumed to be 0 and {ξt} are iid standard normal random variables.
In order to see the power, we consider the following hypotheses:

H0 : θ = (ω, α1, α2) are constant during the time t = 1, . . . , n. vs.
H1 : θ changes to θ′ = (ω′, α′

1, α
′
2) at n/2.

Here we evaluate T̃n, with ε̃2
0, h̃2

0 and q = [(log n)2], for the sample size n =
500, 800, 1000. In particular, the T̃n is compared with Kim et al.’s (2000) test
statistic BT (Ĉ). In this simulation we perform the test at a nominal level 0.05.
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The empirical sizes and power are calculated as the rejection number of the null
hypothesis out of 1000 iterations, and are summarized in Tables 1–3. The figures
in the parentheses denote the sizes and powers of Kim et al.’s test.

As we see in the tables, our test has no severe size distortions. In particular,
the test is still stable even for the case that α1 + α2 is close to 1 (see Tables
2 and 3). As mentioned earlier, this is because ξ̂2

t behaves asymptotically like
iid ξ2

t , unaffected by the GARCH parameters. Meanwhile, we can see that the
powers are more than 0.9 at the sample size = 1000. In general, the cusum test in
GARCH models requires a much larger sample size to make accurate inferences
compared to iid samples. It seems that the GARCH data with volatility makes it
harder to identify small changes. Compared to ours, Kim et al.’s test has severe
size distortions and much lower powers.

Although we do not report details here, we also evaluated the test T̂n with
q = [(log n)3/2], [(log n)2] and [(log n)3]. As a result, we could see that the per-
formance of the tests with q = [(log n)3/2] and q = [(log n)2] is almost the same
as the T̃n, but T̂n with q = [(log n)3] performs poorly compared to the others.
Actually, there is no way to choose the most optimal q. We recommend to use
[(log n)2] since it consistently gives good results in our simulation study.

Table 1. θ = (0.5, 0.2, 0.2).

θ′ = (ω′, α′, β′) n = 500 n = 800 n = 1000 n = 1500

Size 0.026 (0.020) 0.033 (0.025) 0.049 (0.035) 0.043 (0.039)

(3.0, 0.2, 0.2) 0.306 (0.077) 0.866 (0.031) 0.990 (0.009)

(0.5, 0.6, 0.2) 0.493 (0.144) 0.777 (0.349) 0.901 (0.432)

(0.5, 0.2, 0.6) 0.537 (0.111) 0.806 (0.269) 0.902 (0.381)

Table 2. θ = (0.1, 0.4, 0.4).

θ′ = (ω′, α′, β′) n = 500 n = 800 n = 1000 n = 1500

Size 0.036 (0.009) 0.038 (0.004) 0.049 (0.005) 0.040 (0.002)

(0.4, 0.4, 0.4) 0.854 (0.198) 0.994 (0.387) 0.997 (0.449)

(0.1, 0.1, 0.4) 0.526 (0.157) 0.839 (0.493) 0.928 (0.646)

Table 3. θ = (0.1, 0.2, 0.7).

θ′ = (ω′, α′, β′) n = 500 n = 800 n = 1000 n = 1500

Size 0.020 (0.002) 0.032 (0.003) 0.032 (0.008) 0.042 (0.010)

(0.4, 0.2, 0.7) 0.219 (0.173) 0.722 (0.228) 0.919 (0.271)

(0.1, 0.2, 0.2) 0.616 (0.070) 0.917 (0.194) 0.983 (0.313)

Next we show an example of the simulated distribution for a estimated break
point obtained by T̃n, viz, the estimator of break point is the k maximizing T̃n,k

in Theorem 2. For this task, we consider the time series that have only one
structural break point in the middle of the series, i.e., θ = (0.1, 0.4, 0.4) in the
first sample period is changed to θ′ = (0.4, 0.4, 0.4) in the second sample period.
Figures 1–3 show the distribution of estimated break points for the sample sizes
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Figure 1. Estimated break point: n = 500.
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Figure 2. Estimated break point: n = 800.
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Figure 3. Estimated break point: n = 1000.
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n = 500, 800, 1000, respectively. The number of iterations is 1000 for all cases.
The figures indicate that the simulated distributions have a bell shape and are
symmetric about the change point. The result demonstrates the validity of the
estimator. Overall, our simulation study strongly supports that the residual
cusum test performs adequately.

3.2. Real data analysis
In this section, we intend to demonstrate the validity of our method in actual

practice. For this task, we analyze the return of yen/dollar exchange rate data
from Jan. 5, 1998 to Jan. 27, 2003. Recall that the Dk plot, defined in Inclán and
Tiao (1994), is a useful tool to detect multiple changes. In our case, the Dk plot
is nothing but the one of T̃n,k’s. For detecting change points, the GARCH(1, 1)
model is fitted to the data. Subsequently, we detected one change point on Sep.
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Figure 4. Plot of Foreign Exchange rate data.
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Figure 5. Plot of Dk.



186 SANGYEOL LEE ET AL.

28, 1999 (see the vertical line in Figures 4–5). It turns out that the data in the
first period, from Jan. 5, 1998 to Sep. 28, 1999, follows the model:

yt = 0.007 + εt,

εt = htξt,

h2
t = 0.140 + 0.175ε2

t−1 + 0.686h2
t−1

with the AIC value 1180.480, and the data in the second period follows the model

yt = 0.015 + εt,

εt = htξt,

h2
t = 0.087 + 0.025ε2

t−1 + 0.729h2
t−1

with the AIC value 1482.389. This result indicates that the parameters expe-
rience significant changes. Unfortunately, however, we could not find any sig-
nificant economic and/or political reasons for this. Meanwhile, we ignored the
change on purpose and fitted the GARCH(1, 1) model to the whole observations.
Consequently, we obtained a model very close to an IGARCH(1, 1) model as
follows:

yt = 0.011 + εt,

εt = htξt,

h2
t = 0.012 + 0.061ε2

t−1 + 0.917h2
t−1

with the AIC value 2686.626. The result vividly shows that ignoring changes
can lead to a false conclusion in statistical inference. This misspecification result
coincides with the one reported by Maekawa et al. (2003).

4. Concluding remarks

In this paper, we proposed a residual based cusum test based and derived that
the test statistic is asymptotically distributed as the sup of a Brownian bridge
under regularity conditions. In the proof, we used the invariance principle result
for beta (strong) mixing processes, which was possible owing to the results of
Carrasco and Chen (2002) and Peligrad (1986). The proof was of an independent
interest since the mixingale approach adopted by Kim et al. (2000) is not easy to
apply, and the proof would be much lengthier without the beta mixing condition.

In fact, the present paper was motivated to circumvent the drawbacks of
the cusum test proposed by Kim et al. in GARCH(1, 1) models. The idea in
developing our test is explained in Section 2. As seen in Subsection 3.1, the
simulation result appeared to be remarkably favorable to our test: the sizes and
powers are greatly improved compared to the original cusum test. This indicates
that the residual cusum test is highly trustful. In Subsection 3.2, the test was
applied to the yen/dollar exchange rate data and detected one change point. It
was also seen that ignoring the change leads to a wrong conclusion. Overall, we
believe that our test constitutes a functional tool for testing a parameter change
in ARCH models. We leave the residual cusum test in other types of GARCH
models as a topic of future study and will be reported elsewhere.
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