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Notes on Stefan-Maxwell Equation versus Graham'’s
Diffusion Law*
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Abstract Certain prerequisite information on the component fluxes is necessary for solution of the Stefan-Maxwell
equation in multicomponent diffusion systems and the Graham’s law of diffusion and effusion is often resorted for
this purpose. This article addresses solution of the Stefan-Maxwell equation in binary gas systems and explores the
necessary conditions for definite solution of concentration profiles and pertinent component fluxes. It is found that
there are multiple solutions for component fluxes in contradiction to what specified by the Graham’s law of diffusion.
The theorem of minimum entropy production in the non-equilibrium thermodynamics is believed instructive in
determining the stable steady state solution out of infinite multiple solutions possible under the specified conditions.
It is suggested that only when the boundary condition of component concentration is symmetrical in an isothermal
binary system, the counter-diffusion becomes equimolar. The Graham's law of diffusion seems not generally valid
for the case of isothermal ordinary diffusion.
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1 PREREQUISITE FOR SOLUTION OF
STEFAN-MAXWELL EQUATION

It is generally accepted that when gas components
are diffusing countercurrently under isothermal and
equimolar conditions, the Fick’s first law describes
well the molar diffusion flux of component A

Nd = —cDVzy (1)

which is believed to be the mole flux relative to the
molar average velocity. Thus, the net flux relative to
the fixed physical reference frame should include the
part due to bulk convection of gas mixture and for the
case of one-dimensional diffusion in a binary system,
it reads

o
Ny = —CDAB% +za(Na + Ns) (2)

which is actually the simplified form of the Stefan-
Maxwell equation

—-CVIA = —1—($§NA — :BAN,;) (3)
Dy;
i=1 *

for binary systems*!. Egs.(2) and (3) play quite im-
portant roles in the theory and practice of chemical
engineering.

As a set of ordinary differential equations of mole
fraction z; of component i, the Stefan-Maxwell equa-
tion consists of n — 1 independent first-order differen-
tial equations and only boundary values of concentra-
tions at z = Q are required to integrate the equation
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set. However, n fluxes contained in Eq. (3), N;, should
be specified beforehand or determined during the so-
lution process. For the one-dimensional example in
Fig. 1, if the chemical reaction

VAA ——) .VBB

proceeds in steady state at the wall surface (z = 0),
then the ratio of Ny to Ny is decided by the stoichio-
metric constants of the reaction
Na VA
o T om (4)
B VB
If no reaction occurs, the Graham's law of dif-
fusion and effusion is often cited to provide such
information(2~3!, namely

Mp

=\, (5)

Na
Ng

or in a more generalized form

N
> N/ =0 ©

How to obtain enough knowledge on the unknown
fluxes when there is no chemical reaction is to be ad-
dressed in this paper. In the analysis to follow, the
necessary conditions to get a definite solution of fluxes
and concentration profiles of binary gaseous systems
are explored and the validity and applicability of Gra-
ham’s diffusion law is discussed.
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Figure 1 Sketch of concentration profiles in a
ternary gas system with C being stagnant component

2 APPLICABILITY OF GRAHAM'’S DIF-
FUSION LOW

There was a continuous discussion on the applicabil-
ity of Graham's laws in the literature of chemistry
and chemical engineering. In 1833, Graham proposed
his diffusion law based on his experimental investiga-
tion and claimed that when two gases diffused coun-
tercurrently under the isothermal and isobaric con-
ditions, the ratio of their diffusion fluxes was in re-
verse proportion to the square root of the ratio of
their molecular weights, namely Eq. (5)(. In another
paper published in 1846, he proposed his effusion law
that the flux of effusion of gas through micropores was
inversely proportional to the square root of its molec-
ular weight!”). Two laws bear the same form despite
of different underlying mechanisms and the range of
application. In view of many errors in presenting and
interpreting Graham'’s laws existing in introductory
textbooks, Journal of Chemical Education published a
series of discussion papers/®~1%, For the effusion law,
the opinion is rather convergent: the Graham’s effu-
sion law is valid for the case that gas molecules under
isothermal and isobaric conditions obey the Maxwell
distribution of linear velocity and diffuse through very
fine pores where flux due to viscous convection is neg-
ligible. In this case, the free path of gas molecule
is much larger than the pore diameter and the flux
is not influenced by the collision between molecules.
Thus, the rate of effusion is decided by the molecular
velocity and is consistent with the Knudsen diffusion
mechanism. However, the misunderstanding and mis-
use of Graham'’s diffusion law, which was supposed to
be applied in the range of ordinary diffusion, is not
well clarified to datel!].

Mason et al®? claimed that Graham’s diffusion
law was valid at all pressures, ranging from free
molecules region at low pressures to normal diffu-
sion region where collision between molecules domi-
nated the rate process, and up to the hydrodynamic
(viscous flow) region. They gave a theoretical ex-
planation using an approach similar to the reason-
ing by Hoogschagen!'?l, and repeated the diffusion-

tube experiments to confirm the validity of Graham’s
diffusion law. On the other hand, Kirk noted that
Graham's law was not applicable in many cases and
pointed out that when two gases interdiffused under
uniform pressure in a binary system, their fluxes were
equal but in contrary directions(!%. A well-known ex-
periment was conducted to demonstrate the Graham'’s
diffusion law: pure gaseous ammonia and hydrogen
chloride diffuse into a glass tube filled with air sepa-
rately from both ends, and a smoke ring was formed
in the middle location in the tube. The ratio of rel-
ative diffusion distance for two gases was alleged to
be reversely proportional to the square root of the ra-
tio of their molecular weights. Hawkes claimed that
the experimentally obtained ratio of relative rates of
diffusion of HCl and NH3 was Dy, —air/ DHCI—air, in-
stead of \/Mpuc1/Mnmu, as suggested by the Graham’s
law!ll. He even advised to exclude Graham’s laws
from the introductory chemistry textbooks and dis-
cuss them in the course of physical chemistry later in
the curriculum.

It is considered necessary to further clarify mis-
understanding and misuse of Graham’s diffusion law
existing in the literature of chemical engineering. In
this paper, the validity of Graham’s diffusion law is
addressed while effort is made to solve the Stefan-
Maxwell equation in binary systems of ideal gas mix-
ture under isothermal and isobaric conditions to get
concentration profiles and transport flux of compo-
nents. The theorem of minimum entropy production
in non-equilibrium thermodynamics is resorted in the
due course to single out the stable steady state of dif-
fusion from infinite number of possible solutions.

3 STEFAN-MAXWELL EQUATION FOR
BINARY SYSTEMS

Many research work starts from the well-known
Stefan-Maxwell equation, which is generally accepted
as the fundamental equation for dealing with multiple
component diffusion in porous medial'®'4. For ex-
ample, Krishna propose a unified approach to model
the bulk, Knudsen and surface diffusion in solid
adsorbent'®); Frank et al. applied the Stefan-Maxwell
equation to the simultaneous mass and heat transfer
with chemical reaction in a liquid phase’®l; Do and
Do analyzed multicomponent transient diffusion in a
capillary and adsorption of hydrocarbons in activated
carbon particles*”). Analysis of binary gas systems is
the focus in this paper.

In a binary system, the Stefan-Maxwell equation is
simplified to Eq. (2) for the condition of z5 + zp = 1.
Eq.(2) is a differential equation with unknown fluxes
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Na and Ng. For normal diffusion in such a binary sys-
tem with nonzero net flux (V4 + Ng # 0), integration
of Eq. (2) utilizing the boundary conditions x4 = zao
and zp = zgp at z = 0 results in

Na —za(Na + Ns) _ N.h+NBz

NA -_ .'rA{)(NA + NB) CDAB (?)
Np — zp(Na + Ng) _ Na + Np

Ng — zo(Na + Ng) cDaB

Even for interdiffusion of two pure gases in the do-
main (zap = 0 and zpr = 0), unique solution of z4
and zp is not available for judging if the Graham’s
law of diffusion is consistent with the Stefan-Maxwell
equation.

In fact, the above solution of integral concentration
profile presents infinite multiple solutions. Substitut-
ing the boundary conditions s = x4z and zg = zpL
at z = L into the above equations leads to

Na —2ar(Na+N) _ Np—apr(Na+Np) _
Na —zao(Na + Ng)  Np —zpo(Na + Ng)

cD AB

Since x5 + xp = 1, the first equal sign holds identi-
cally. Non-dimensionalize Ny and Ng to Js and Jg
using cDap/L, we obtain

Ja —zar(Ja + JB)
Ja = za0(Ja + JB)

= exp(JA + JB) (9)

with J; = N;L/cDag and £ = z/L being the dimen-
sionless diffusion distance. The values of Jy and Jg
corresponding different total flux Jj + Jp are listed in
Table 1, each set of which satisfy the Stefan-Maxwell
equation but correspond to different concentration
profiles (Fig.2). The concentration profiles are ex-
pressed by

_ Ja—[Ja —za0(Ja + JB)|exp[(Ja + JB)¢]

x
A Ja +J
2p = Js — [Jp — zBo(Ja + Jo)) expl(Ja + JB)¢]
Ja+Js
(10)
Table 1 Multiple solution of mole fluxes in a
typical binary system
Case 1 Case 2
Ja+JB Ja Js Ja JB
-1.0 ~1.5603 0.5603 —1.4180 0.4180
0 —1.0000 1.0000 —0.8900 0.8900
0.5 —0.7503 1.2503 —0.6810 1.1810
1.0 -0.5603 1.5603 —0.5080 1.5080

Case 1: zpp = zpr = 0.01, xgg = zaoL = 0.99;
Case 2: zpp = 0.01, zgg = 0.99, zoy = 0.9, zp; = 0.1
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with 4 + 2 = 1 being satisfied everywhere in the dif-
fusion domain. Therefore, the Stefan-Maxwell equa-
tion is indefinitely determined and other physicochem-
ical conditions are required to get a unique solution.
Deduction of equimolar diffusion from the isobaric
condition to justify the Fick’s first law of diffusion is
too intuitive, since the Graham diffusion experiments
demonstrated that under the same isobaric conditions
Ny # —Ngl®l.
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Figure 2 Multiple concentration profiles in a binary
system (Case 1)
—Ja+Jp=1.0;----- Ja +Jg =0
—--Ja+Jg=-10
4 ENTROPY PRODUCTION IN A BINARY

SYSTEM

Many reports accepted the notion of equimolar inter-
diffusion in a binary system of gas, but the reasoning is
not theoretically strict (for example Ref.[10]). Table
1 and Fig. 2 indicate that multiple solutions exist for
such a case. In the following, the theorem of minimum
entropy production introduced by Prigogine[’®! is used
to analyze the isothermal interdiffusion in a binary
system. This approach was tentatively used in exam-
ining the Danckwerts exit boundary condition for the
axial dispersion model for a closed reactor!¥) and the
thermodynamic necessity of some velocity profiles in
hydrodynamics?®). Here, the interdiffusion is consid-
ered as a linear irreversible process not far from the
equilibrium and the rate of entropy production in the
binary system is expressed by!!®]

a:ZJ{{-V%§], i=AB (11)

where J] is the diffusion flux relative to the average
linear velocity of the system!3, J! = J; — z;(Ja + Jg).
If the gas system is ideal,

B = ,u° + RTInz;

Integration of Eq.(11) over the system volume leads
to the total entropy production
1d
L —“’B]dg

! 1 dza
P=[o0dV=-R | |Jj——2+J5—
f fu[m d¢ " Brg de
(12)
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According to the theorem of minimum entropy
production’®l, the steady state constrained by the
specified boundary conditions and with the minimum
rate of entropy production is the most stable state.
Fig.3 presents the variation of relative value of P un-
der the condition of za; = zpg with the net total
flux Js + Jg, and it is evident that the minimum
of P corresponds to the condition of Jy + Jg = 0,
namely equimolar countercurrent diffusion indepen-
dent of molecular weights. This result is obviously in
contradiction to the Graham’s diffusion law. In this
occasion, Eq. (2) is simplified to
dz A ch

Ny = —cDap—— = —Dpap——

dz dz (13)

in agreement with the Fick’s first law, presenting lin-
ear concentration profiles with mirror symmetry as
shown in Fig. 2.

11.0

10.5}

a, 10.0}

9.51

- " 1

.0 L
-1.5-1.0 =-0.5 0 0.5 1.0 1.5
Ja+Js

Figure 3 Variation of entropy production with the
net flux Ja + Jg in a binary system with mirror
symmetry in the boundary conditions

If zar # zRo, the concentration profile chart loses
its symmetry since there is no more symmetry of the
boundary conditions on x4 and zg (Fig.4). In this
case the minimum of P is not located at the point
with Ja + Jg = 0 as shown in Fig. 5.
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Figure 4 Concentration profiles in the binary system
with @, 5 # zpo (Case 2)
— Ja+Jg=1.0;----- Ja+Jp=0;—--Js+Jp=-1.0
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Figure 5 Variation of P with Ja + Jp in a binary
system with x, 1 # zBo

5 DEGREE OF FREEDOM OF A BINARY
DIFFUSION SYSTEM

If analyzing in view of the degree of freedom of a bi-
nary system, to determine J, and Jg requires two
more conditions, and the specified zpy at € = 1 is
one of them. Due to lack of the second condition, the
multiplicity of solution occurs. Non-equilibrium ther-
modynamics may provide the necessary condition for
singling out the unique solution which is most prob-
able in the natural situation as indicated by Fig.3.
If there is external constraint on J;, the system has
no degree of freedom and diffusion fluxes may be de-
termined from solving Eq.(2) or (9). For example,
when the Stefan tube is used for measuring the dif-
fusion coefficient of a vaporizing component through
the inert air, the flux of air Jp is fixed at zero, and
the partial pressure of the diffusing component at the
open end is also set by other experimental conditions.
Thus, the flux of the diffusing component can be de-
termine from Eq. (9), leaving no room for the theorem
of minimum entropy production. Another case of de-
terminacy is the chemical reaction, which decided the
ratio of J5 /Jg by stoichiometry. Only when a system
has some degree of freedom, the system may evolve
according to the direction dictated by the minimum
entropy production into the most stable steady state
of interdiffusion.

In a rigorous sense, there is actually the convec-
tion resulted from Jy + Jp # 0, which creates pres-
sure difference in the system due to viscosity of gas.
However, the viscosity of gas is generally small and
the cross sectional area for diffusion may be large as
compared with the distance for diffusion, making the
pressure difference often negligibly small (for exam-
ple, external boundary layer around a solid particle).
Therefore, the diffusion with Jy + Jg # 0 is accept-
able approximation and it is legal to estimate entropy
production by Eq.(12) without considering the con-
tribution of viscous convection. One point is worthy
of mentioning: the concentration boundary conditions
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are assumed ideally maintained no matter how large
the component fluxes are. When the boundary condi-
tions are incorporated with finite mass transfer coeffi-
cients, solution of Stefan-Maxwell equation and eval-
uation of entropy production must have this factor
accounted for.

Although the theorem of minimum entropy pro-
duction is applicable to binary systems with possible
multiple solutions, the location for the minimum does
not generally correspond to Jy + Jg = 0 or other
special case, and the physical meaning of this mini-
mum is to be clarified. Nevertheless, the component
flux is certainly not an explicit functions of the square
roots of molecular weight of diffusing species, calling
for general discretion in using Graham'’s diffusion law.

6 CONCLUDING REMARKS

In a binary diffusing system, there are multiple solu-
tions for countercurrent diffusion for constituting com-
ponents, which in general correspond not to equimolar
counterdiffusion. The theorem of minimum entropy
production in non-equilibrium thermodynamics may
be resorted to decide the most stable steady state so-
lution. When there is symmetry for the boundary con-
centration conditions, the stable solution is equimolar
countercurrent diffusion; loss of symmetry leads to dif-
fusion with nonzero net total flux. The Graham’s dif-
fusion law seems not generally effective in determining
the component fluxes in the region of normal diffusion.
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NOMENCLATURE
¢ concentration, mol-m™—3
D;; Dbinary diffusion coefficient, m2-s~}
J non-dimensional diffusion flux
J!

length of diffusion-domain, m

molecular weight, g-mol~!

flux, mol-m—2.s™1

number of components

total rate of entropy production, J-K~1.5~1
gas constant, 8.314 J-mol 1. K1

temperature, K

<NHDVT ZE e

volume of system, m3

mole fraction

coordinate, m

chemical potential, J-mol=1.K~!

standard chemical potential, J-mol~1.K~1
stoichiometric coefficient

m‘:"ﬁ:@‘t"l‘l

non-dimensional coordinate (z/L)

December, 2000

non-dimensional diffusion flux relative to average velocity

-3 -1

o local rate of entropy production, J-K~1-m~3 -s
Superscript

d diffusive
Subscripts

AB,i component
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