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NEW CRITERIA FOR TESTS OF DIMENSIONALITY
UNDER ELLIPTICAL POPULATIONS
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We consider tests of dimensionality in the multivariate analysis of variance
(MANOVA). Three types of test criteria (Likelihood-Ratio-type, Lawley-Hotelling-
type and Bartlett-Nanda-Pillai-type) are popular. As is well known, their null distri-
butions depend on nuisance parameters. When a sample size is large, these criteria
are distributed approximately according to chi-squared distributions. However, when
the sample size is small, the effect of the nuisance parameters cannot be ignored. Un-
der normal populations, other criteria that do not depend on nuisance parameters
were proposed. These criteria are also upper limits for the null distributions of LR-
type and LH-type. Under elliptical populations, modified test criteria with a better
chi-squared approximation were proposed in the case of a large sample. In this paper,
we generalize Schott’s results under elliptical populations and obtain new test criteria
that do not depend on nuisance parameters.
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1. Introduction

It is of interest to infer dimensionality in the one-way MANOVA model.
Dimensionality means the number of discriminant functions necessary to describe
group differences. This is determined as the dimension of a hyperplane formed
by mean vectors.

The following is a formulation for tests of dimensionality (a fuller account
can be found in Backhouse and McKay (1982)).

Let y;; i=1,...,k;5=1,...,n5 Ele n; = n) be a p-variate random vector
that expresses an observation of the j-th object in the i-th population, where k
is the number of populations, n; (i = 1,...,k) is the sample size from the i-
th population, and n is the total sample size. Here, suppose that E[y;;] = u;,
V[yi;] = X, and these parameters are unknown. We define the following variation
matrices

E ons ok
(11) E= Z Z(yij -y)yy; —9:), H= Zni(’!—/i -9 (@ — ),
i=1j=1 i=1
k
A= Z ni(p; — 1) (s — i)'
i=1

= 1 n; = _ 1 k = = _ 1 k
where g; = e Zjél Y, ¥Y=45 dim1 MY, b= n D i1 bk
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Let 6; > --- > 6p(> 0) be eigenvalues of AX"! then null hypotheses,
‘dimensionality = s’ can be expressed as

(1.2) Hs3512"'265>6s+1:"':6p:0-

The essential part in (1.2) is 6541 = -+ = 6, = 0, while 61, ...,0s are nuisance
parameters. Now let I; > --- > I, > 0 be eigenvalues of H E~!. Then test
criteria for H, are obtained as functions of the p — s smallest eigenvalues as

follows:

p
LR-type: T) = fi(lst1,---»,0p) =log [ (1 +1),
i=s+1

14
(1.3) LH-type: Ty = fo(lst1,---, ) = > b
i=s+1

P
BNP-type: T3 = f3(ls41,---»lp) = 3, L/(1+1L).

i=s+1
As is well known, however, the null distributions of these criteria depend on the
nuisance parameters, 61,...,6s. When the sample size n is small, the effect of

the nuisance parameters is large. To avoid this, Schott (1984) suggested upper
limits for the null distributions of T} and T5. These upper limits do not depend
on nuisance parameters. We are interested in elliptical population cases. In the
canonical correlation model, Muirhead and Waternaux (1980) showed that the
asymptotic distributions as n — oo of usual criteria are chi-squared distributions
under elliptical populations. Furthermore, Seo et al. (1995) proposed modified
test criteria with a better chi-squared approximation in the canonical correlation
and MANOVA model.

In this paper, our purpose is to extend Schott’s results to elliptical cases and
obtain new criteria that do not depend on nuisance parameters. Consequently,
we can test the hypothesis H, without the effect of the nuisance parameters un-
der elliptical populations. This paper consists of six sections. In section 2, a brief
definition of elliptical distributions is given, and their properties are described.
In section 3, with generalized Schott’s results, the upper bounds for a null dis-
tribution of T} (i = 1,2,3) are obtained under elliptical populations. In section
4, it is shown that the upper bounds for T; (i = 1,2) are also upper limits under
contaminated normal populations. In section 5, some numerical examples are
given. Conclusions are given in section 6.

2. Elliptical distributions
In this section, a definition of elliptical distributions is given, and their prop-
erties are described (a fuller account can be found in Muirhead (1982) and Fang

and Zhang (1988)).
Let  be a p-variate random vector. The distribution of x is called an

elliptical distribution, and we write € ~ ECp(p,,%) when a characteristic
function (CF) is expressed as

(2.1) B(t) = exp(it my(£'QL),
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where t is a p-variate vector, p is a p-variate location parameter, £ is a posi-
tive semidefinite scale parameter matrix of order p, and 1 is some differentiable
function. Then the mean vector and the covariance matrix are Efx] = p and
V[z] = —2¢/(0)S2, respectively, where ¢’ is a derivative of . If its probability
density function (PDF') exists, it is expressed as

f(@) = Gl Pg{(z — ) Nz~ p)},

where C,, is a normalized constant and g is some function. In (2.1), if ¢(z) =
exp(—z/2), it is the same as CF' of a normal distribution so that elliptical dis-
tributions are generalizations of normal distributions.

It is easy to show that  ~ ECp(ps, 2,9) implies Fx ~ ECy(Fp, FQF', 1),
where F is a ¢ x p matrix. This means that the distribution family remains
invariant under a linear transformation.

Two examples of elliptical distributions are given below.

(a) Contaminated normal distribution:

(@) = (1= )n) A D exp { =z — wy @z — )

+e(2mo?) O M exp [ - (@ - pY@ Nz - )| (0<e<).

(b) Multivariate ¢ distribution:

2 - - -
N AT - @ - P (> 0)
D, —
s F<2

flx) =

3. Upper bounds under elliptical populations

In this section, we show upper bounds for null distributions of T;(i = 1,2, 3)
under elliptical populations. _
Let ¥ = (Y}1,---»Ykn,) be an np-variate random vector. Suppose y ~

ni ng
N

ECnp(p, In @ §2,%), where p = (;l,ll, . ..,u{,...,%...,u',:)’ is an unknown lo-
cation parameter vector and €2 is an unknown positive definite scale parameter
matrix. Then we can transform y to a canonical form as § ~ ECypp(h, I,®, ).
Here § = (§},...,%,) and m = (y/np',my,...,m;,0,...,0") satisfy that
A=Yk yrgnl, H=Y%,949}, E= Y499 Then upper bounds for
null distributions of T;(i = 1,2, 3) in (1.3) for hypothesis H; are obtained by the
following theorem.

THEOREM 1. Let z = (zgl)’,...,zgcl_)ll_s,z?)l,...,sz_),k)’ be an (n — 1 —
s)(p — s)-variate random vector distributed according to EC(_1_g(p-s)(0,

I, 1 s®I, 5,%). Let wy > -+ > wps be eigenvalues of WHW;, where
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Wi = Sb1-0 200 W = 512k 2P and et
p—s

Tl = f1(w1, .. .,wp_s) = log H(l + wi),
i=1

(3.1) TQ* :f2(w1,-~~awp—s) = Zwia

p—s
T; = f3(’U)1, cee ,wp_s) = sz/(l + wi)~
i=1
Then '
(3.2) Pr{T; > c} <Pr{I} >c¢} (i=1,2,3)
holds for any 6y, ..., 0.

PRrROOF. Let

7, > Pier1 Vi my
Y=|Yy|,Yo=]:|,Yz=| ! |,M= M, yMa=|
Y3 7\ A On—k)xp my,

Let I'; be an orthogonal matrix of order k — 1 such that I'yM, = [ OQ: ], where

Q, is a (k — 1 — s) X p matrix and Osxp is a s X p zero matrix. Similarly, using

1 o . ~
an orthogonal matrix I' = ry , Y is transformed as U = T'Y | where
o I, 4
U = fur, Uy, Us, Ul U = [l Us = [, o), U =
[u§2), ceeh uflk]'. Then the variation matrices are expressed as H = Hy + H

and E = UyU,, where H) = UyUs and Hy = U3U3. Here, let ri(U) and
ro(Uo,Uy4) be PDFs of U and (Us, Uy), respectively, and we define the following
sets:

B, = {U | log ﬁ (1+ch;(HE™)) > c} ,

i=s+1

P
By = {(U2,Us) | log [] (14 chi(H1E™)) > c},
i=s+1

where ¢ is a constant and ch;(A) denotes the i-th largest eigenvalue of a matrix
A. Then

(33) Pr{Ty>c} = /B U < /B 2 { / / rl(U)dUldUg}dUgdU4

~ / ro(Us, Uy)dUdUy.
B2

On the other hand, let F; be a (p — s) X p matrix of rank p — s that satisfies

FIQ/Q = O(p—s)x(k—l—s), FlﬂFll = Ip_s and le =FU, = [2(11),-~-,Z§cl_)1_3]7
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2 2
z,=FU,=[29,..., 22 ]

/ /
Since vec ([gj] ) ~ ECHph_1_gp (vec ([O(f:)xp] ) s In—1-5 ® Q,zﬁ) and

vec ([Z]l) = (Ip-1-5 @ F1)vec ([g:]/), we find that

!
YA \
vec ([ZJ ) ~ EC(n_1-5)(p—s)(0, In—1-5s ® Ip_s, ).
Here, let Ty = log[I'2;[1 + chi{(Z1Z1)(Z4Z2)7'}] and Bs = {(U2,Uy4) |
Ty > c}. Since Z1Z) = F1H F| and Z3,Z, = F,EF, we can see that
chi{(Z12,)(Z24Z2)'} > chspi{H1E~'} (i=1,...,p—s) from Olkin and Tom-
sky (1981). Then B; C B3 holds. Hence,

(34) / Tg(UQ,U4)dU2dU4 S/ T2(U2,U4)dU2dU4 = PI‘{Tl* > C}.
By BS

From (3.3) and (3.4),
Pr{T\ > ¢} < Pr{Iy > c}.

We can prove the theorem for Ty and 73 by a similar procedure. O

Using test criteria T;(¢ = 1,2,3) defined in Theorem 1, we can test H,
without the effects of the nuisance parameters. Furthermore, if we have a critical
point ¢}, with the level of significance a based on T}, then Pr{T; > ¢} < a holds
for any &1,...,8s. This means that Pr{7; > c}} remains less than the level of
significance even in the least favorable case.

4. Upper limits under contaminated normal populations

If the difference between Pr{T; > c} and Pr{T} > c} is large, T} is not
suitable as test criteria. Schott (1984) showed that under normal populations
Pr{T} > ¢} — Pr{T; > ¢} if 61,...,65 — oo for i = 1 and ¢ = 2 (LR-type and
LH-type). In this section, we show that 77 and T3 defined in Theorem 1 are
upper limits under contaminated normal distributions.
First, the following theorem shows an equivalent condition of (3.2).

THEOREM 2. Suppose that population distributions are contaminated nor-
mal distributions, that is, an np-variate random vector g and an (n—1—s)(p—s)-
variate random vector z have the PDF's

My) = (1 —e)hi(§) +eha(@), h(z) = (1 —e)hi(z) + eha(z), respectively.

Here, by (%), ha(§), hi(z) and ho(z) are PDF's of Nyy(1h, I, ® ), Npp(m, I, ®
029), N(n—l—s)(p—s)(07 In1-s®1I,.5), and N(n—l—s)(p—-s)(oa I, 1 s® UQIp—s),
respectively, and €, 02 are known. Then

(4.1) lim Pr{T;>c}=Pr{T} >¢}, (i=12),
o0

1yeey8s—
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where T; and T are defined in (1.3) and (3.1), holds.

In order to prove Theorem 2, the following lemma shall be obtained.

LEMMA 1. Let GDG' be a spectral decomposition of 12AS 12 where

S =kQ, k=1-¢c+e0?, D= diag(é,...,8,0,...,0) and G is an orthogonal
matriz of order p. Let b = (e},...,€,,0,...,0') and V = diag((x61)71, .. .,
(k6s)~1,1,...,1), where e; = (0, ...,0,1,0,...,0) € RP. :

Suppose that = (mgl) . 2}1)1’ m(12) ey :1:53_),6)’ is an (n— 1)p-variate random

)

vector that has the followzng PDF:
g(z) = (1 - e)g1(x) + eg2(2),

where g1(x) and g2(x) are PDF's of N(n 1)p(0; In-1® V) and N, l)p(b I,1®
2V) respectwely Further, let p1 > - > pp be eigenvalues of W1W2 , where
Z (1) M and Wy =377 1 :1: a:( ' Then the following statements

Z

hold

Q) (H,E) & (FaW1F), FyWyF}), where Fy = QY2GV Y2 and £ de-
notes equivalence in distribution.

(i) If 61,...,65s — oo, then (psy1,.--,Pp) A (wr, ..., wp—s), where L de-
notes convergence in distribution.

PROOF OF LEMMA 1. (i) Let ®(©1,©02) and ¥(©4,03) be CFs of (H, E)
and (FoW F), FoWoF%), respectively, that is, ®(01,02) = (1 — €)®1(Oy,
@2) -+ 6@2(@1,@2) ‘11(91,62) = (1 - 6)‘1’1(@1,@2) + 5\112(@1,@2), where

= (1 + 8ap)6%3), 61} = 05, 91(©1,0,) = [ hu(P)etr(i©:1H + i©2E)dy,
\Ill(Ol,Gg) = [gi(z)etr (i@ FoW  F4 + i@ FoWoFb)dx(l = 1,2), bap is Kro-
necker’s delta symbol, and etrA denotes exp(traceA) for a matrix A.
Then we can easily calculate that

3,(01,0,) = |I, — i©,Q|"* D21, — j@,0|-"k/2
x etr (-%Aﬂ*l) etr (%AQ_I(II, - i@lﬂ)_l) ,

and
U1(01,02) = I, - i@lFQVF’2|—(k—1)/2le _ i@2F2VFé|——(n—k)/2

(s )
X etr |—2 (Z Fge]-e;F'Q) (FoVFy)~!

=1

j=1

1
X etr (Z Feje] F2> (FoVFY) (I, —i©FVFy)™!

Since FoVFy = Q and Y5, (Foeje[F5) = A, we find that ¥1(01,0;) =
@1(@1,@2) Slmllarly, \1’2(61,92) @2(@1, (‘)2) SO tha’c \IJ((’)l,@Q) (@1,
©;). Therefore,

(H,E) % (FyW,F)y, FyWyF}).
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(ii) Divide mgl), :cg?) as follows:

(2)

1 . -
where a:gi) and x;; are s-variate vectors. Let

J
{ (11)} (7‘_1? 73)
m_ ) Lzs 2O _ [ } (=1 .n—k)
1% O y l* T ? ? ?
[ (1):| (i=s+1,...,k—-1) %
To;
where j; = (0, ...,0,{,0,...,0)' € R’ If é1,...,6, — oo, (i.e., variances of
:BS) and :c( ) are close to 0), then ;c( ) wgi), zcl(z) - mg) Define W, =
Zk 1 x(l).’n(l) and Wy, = _1 (2) ( ) . We consider the following determi-
nantal equation:
(4.2) Wi — pWa,| =0.
Because rank(Ws,) = s with probability one, the s largest roots of (4.2) are
infinite, that is, p1,...,ps — 00. Then (4.2) can be expressed as
1 ’
I, Zyzwéf
(4.3) =1

(1 1y _ 2),(2)f

— 1) (1) 2) (2)
Z mgz)mgz) - P Z mgz m2z) -
i=s+1

Roots of (4.3) are the p - s smallest roots of (4.2), that is, psy1,...,pp. It

is easily seen that (3%} ot l :1:21 g:), g)mg)) 4 (W, Wg). Hence, if
b1,...,6s — oo, then
d
(ps+1, Ty pp) - (wlv v 7wp—s)
holds. O

From Lemma 1, we can prove Theorem 2.

PROOF OF THEOREM 2. By Lemma 1-(i), we can see

d
(4.4) (1,5 lp) = (p1y -+, Pp)-
where py, ..., pp are obtained in Lemma 1. By Lemma 1-(ii) and (4.4), we con-
clude that

(st - bp) S (w1, ., wp_s).
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Since f1, f2 are Borel measurable functions, T} LA T7 and Ty LA T5. Therefore,

lim Pr{T;>c}=Pr{I} >c}, (i=1,2),

61,...,63—>00
holds. O

From Theorem 1 and Theorem 2, we obtain the following theorem.

THEOREM 3. Let y be a random vector distributed according} to a contam-
inated normal distribution defined in Theorem 2. Then

supPr{T; > ¢} = Pr{T} > ¢}, (i=1,2),

holds.

If the difference between Pr{T; > ¢} and Pr{T}* > c} is large, we cannot use
T} as test criteria in practice. However, under contaminated normal populations,
Theorem 3 guarantees that Pr{T; > ¢} = Pr{T} > ¢}, (i = 1,2), for some
81,...,6s. Therefore, we can use T;*(i = 1,2) as test criteria in practice.

5. Numerical examples

In the previous section, we mentioned that under contaminated normal pop-
ulations our new criteria T} and T} are upper limits for null distributions and
suitable as test criteria. In this section, we illustrate the fact by some numerical
examples.

Ezample 1. We consider Pr{T; > c}o5} (i = 1,2) under some contam-
inated normal populations when s = 1. The procedure is as follows: (i) Set

Table 1. Pr{T; > o5} (8=1).

51 =20 &6 =40 6 =80 61 =120 6 =160 & =200
LR-type 0.0207 0.0305 0.0405 0.0445 0.0459 0.0481
LH-type 0.0186 0.0297 0.0401 0.0430 0.0452 0.0483

0.06 v \s v

LR-type =
LH-type --e-
0.05 p— =
e 2
P e .-
004 I ”’.‘A‘-.: ____ ﬁ
z -
§ 003} ,,"'&
g
E‘ 2
002 %
0.01
0 — ‘ A |
0 20 40 80 120 160 o

the 1st nuisance parameter

Figure 1. Pr{T; > c} 5} (s =1).
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Table 2. Pr{T; > ¢} o5} (s =2).

62=20 62=40 6 =80 & =120 6,=160 &2 =200

LR-type | 6 =20  0.0129

61 =40 00182  0.0260

6,=80 00218 0.0337  0.0389

61 =120 00238 00346  0.0411 0.0429

51 =160 0.0248 00357  0.0418 0.0433 0.0438

81 =200 00251 0.0364  0.0429 0.0453 0.0456 0.0460
62=20 62=40 63 =80 &, =120 63=160 &= 200

LH-type | 61 =20  0.0123

61=40 00178  0.0257

§1=80 00216 0.0335  0.0383

61 =120 0.0236  0.0343  0.0413 0.0433

51 =160  0.0243 00356  0.0414 0.0435 0.0436

61 =200 00247 0.0360  0.0431 0.0454 0.0454 0.0459

probability

0.06

0.05

0.04
0.03

0.02 s
0.01 oo

probability

0 2067 0 0% o
605560 ) 5528 )
the 1st nuisanca parameter the 2nd nuisance parameter the 1st nuisance parameter the 2nd nuisance parameler
Figure 2. Pr{Ti > e o.0s} (5=12). Figure 3. Pr{T: > c§70'05} (s=12)
p=4, k=5 mn =--=n5=5¢ =05 02 =100, and 2 = I. (ii) For

8, = 20, 40, 80, 120, 160, 200, we generate 10000 sets of random vectors y, z. (iii)
Calculate T; and T;*. (iv) Set the level of significance, a = 0.05 and calculate
a critical point for T, that is, ¢jo 5. Further, calculate Pr{T; > cjg¢s5}. (V)
Repeat steps (i)-(iv) 10 times, and then calculate an average of Pr{T; > ¢} o5},
that is, Pr{T; > ¢} ¢5}. Table 1 and Figure 1 report the results.

Ezample 2. We consider Pr{T; > cjg05} (i = 1,2) under some contami-
nated normal populations when s = 2 with a similar procedure of Example 1.
Table 2, Figure 2 and Figure 3 report the results.

These examples show that when all nuisance parameters are large Pr{T; >
cioos) close to 0.05, that is, Pr{T}" > ¢} g5} This result gives agreement with
Theorem 3, and illustrate that our new criteria are suitable.

6. Concluding remarks

Because the null distributions of the usual criteria T;(i = 1,2, 3) for testing
dimensionality depend on nuisance parameters, these parameters should be re-
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placed by their estimators. When testing is based on T;, it is probable that the
probability of rejecting H; is greater than the level of significance, a. However,
our new criteria T; (i = 1,2,3) do not depend on these parameters, and it is
therefore possible to test without the effects of nuisance parameters.

Furthermore, Pr{T; > c&} < Pr{T} > c},} = a, where c, is a critical point
based on T#, holds. This means that Pr{T; >"c;} remains less than the level
of significance even in the least favorable case. Moreover, under, contaminated
normal populations, T} is the upper limit for the null distribution of T3, for i = 1
and i = 2 (LR-type and LH-type). Therefore, testing based on T}" is useful when
the sample size n is small.

Future study is needed to obtain the upper limits for a null distribution of
the BNP-type criterion under normal populations and to obtain the upper limits
under other elliptical populations.
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