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ON MINIMAXITY OF SOME ORTHOGONALLY
INVARIANT ESTIMATORS OF
BIVARIATE NORMAL DISPERSION MATRIX

Yo Sheena* |

We consider an orthogonally invariant estimation of ¥ of Wishart distribution
using Stein’s loss (entropy loss) or a quadratic loss. In these problems the best lower
triangular matrix invariant estimators are minimax estimators. Some orthogonally
invariant estimators were derived from those minimax estimators. It is conjectured
that they are also minimax estimators, but some estimators have not yet been proved
to be minimax. In this paper we prove the minimaxity of some estimators when the
dimension is two. We also present the necessary conditions for a class of estimators
to be minimax when the dimension is two.

Key words and phrases: Wishart distribution, Covariance Matrix, Minimax, Stein’s
loss, Quadratic loss.

1. Introduction

We consider the estimation of X in a multivariate normal distribution Np(x,
3) when p is known. This is equivalent to the estimation problem of X in a
Wishart distribution W, (k, X) in view of sufficient statistics. Let W be dis-
tributed according to W, (k,£). We consider Stein’s loss (entropy loss) and a
quadratic loss, i.e.

Li(3, %) = tr(EE ) — log |EX 7Y - p,
Ly, %) = tr(ZX L - 1)2.
With respect to the transformation by a lower triangular matrix A,
3o ASA, W o AWA, (W) - S(AWA) = AS(W)A/,

the estimation problem is invariant with respect to either of the loss functions.

Let
W =TT',

where T is the lower triangular matrix with positive diagonal elements. Then
every estimator that is invariant under this transformation has the form

(1.1) = TAT’
with a constant diagonal matrix

A= diag(él, .. .,5p).

Received October 5, 2001. Revised March 12, 2002. Accepted May 21, 2002.
*Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH
43403, U.S.A. On leave from Department of Economics, Shinshu University, Japan.




194 J. JAPAN STATIST. SOC.  Vol.32 No.2 2002

James and Stein (1961) derived the best estimator (say 31) w.r.t. L;i(3, %)
among those which are invariant under this transformation. It is given by

1

=—0— i=1,... k> p.
k—2itp+t1 0P F=P

(1.2) i
The derivation of the best lower triangular matrix invariant estimator (say 212)
for the loss Lz(fl, 3} is more complex especially when the dimension p is large.
Olkin and Selliah (1977) gave the linear simultaneous equations whose solution
gives the &’s of 3. It is

(1.3) Axd = A,

where

(Ak)iiz(k+p—2i+1)(k+p—2i+3),
(Ar)ij=(k+p-2j+1) if j>i,
(Ak)ij=(k+p—2i+1) if j<i,
M=(k+p—1,k+p-3,....k-p+1),
6=(61,...,5).

The explicit form of §’s in the case p = 2 is given by

(k+1)2—(k—1) 6 = (k+1)(k+2) k> 9
G+12(k+3)—(k—1) 2 G+12(+3)—(k—1) "=~

Note that there is a typographical error in the expression of §; in Olkin and Selliah
(1977). The correct description can be found in Sharma and Krishnamoorthy
(1983). In the case p = 3(k > 3), the §’s are given by

_ k*+2Kk3 +5k%+ 4

T kS 4+ 8kt 4 17Kk3 + 14k2 + 4k + 16’
5 = Kt 4K’ + 3K + 4k + 12

27 %5 + 8k4 + 17K3 + 14k2 + 4k + 16’
_ k* + 6k + 11k2 4 6k

T kS 4+ 8k 4 1TKk3 + 14k2 + 4k + 16

These best lower triangular matrix invariant estimators have constant risk
and are minimax from Kiefer’s well-known theorem. Several estimators have
been proposed which are thought to dominate these best invariant estimators.
Some of these are theoretically proven to be minimax but others are not. For
review and classification of those estimators, see Pal (1993). In this paper we
focus on orthogonally invariant estimators, especially those of the type derived by
Stein (1982), Dey and Srinivasan (1985, 1986). For another type of orthogonally
invariant (minimax) estimators, see Sharma and Krishnamoorthy (1983) and
Takemura (1984).

Every orthogonally invariant estimator of X has the form

(1.6) 2 =HYH', ¥ =diag((l),..., (1),

(14) 6 =

01

03
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where W = HLH' is the spectral decomposition with H € O(p) (the group of
p X p orthogonal matrices) and L = diag(ly,...,lp). L = (h,...,1,) is the vector
of eigenvalues of W with the order 0 < I, < --- < [;. Stein (1982) proposed an
orthogonally invariant estimator 35,1 defined by

vi(l) =6l;, i=1,...,p with §sasin (1.2)

for L1(3, X). Dey and Srinivasan (1985) proved that this estimator is minimax
for arbitrary p and k(> p). (Furthermore they obtained estimators superior to
$2,1. For more details, see Dey and Srinivasan (1985, 1986).) The fact that S
is a minimax estimator naturally provokes the following conjecture.

e The orthogonally invariant estimator (say ¥,2) of ¥ defined by

i) =6;l;, i=1,...,p, with §’s as the solution of (1.3)

is minimax with respect to the loss Ly(3, ).

More general conjecture including this conjecture is stated in Krishnamoorthy
and Gupta (1989). See also Perron (1997) for this conjecture. In Section 2 of
this paper, we prove that this conjecture holds true in the case p = 2. We are

also interested in the following question.
e What is the necessary condition on constant é’s for the estimator defined

by

(1.7) Yil) =6l i=1,...,p

to be minimax 7

We prove that the é’s in (1.2) and (1.4) are the only values that make the esti-
mator (1.7) minimax for L; (X, X) and Ly(X, =), respectively. In Section 2, we
prove it for LQ(E Y)) in the wake of the proof for the minimaxity of $502. The

proof for L;(3, ) is presented in Section 3.
Note that the estimation problems considered here are invariant with respect
to the orthogonal matrix transformation, and we can assume without loss of

generality that
¥ = diag(0},03), o7 > 05 >0.

2. Case of L,

In this section, we consider the estimation of X using the loss function
Ly(%, 3.

THEOREM 1. Suppose p = 2 and k > 2. Then 3.0 dominates 3o and
hence is a minimaz estimator.

PRrROOF. The density of I and H with respect to the product measure of the
Lebesgue measure and the invariant probability measure y on O(p) is given by

p
(2.1) K P2 T - 1) exp (—%tr(E‘lHLH'))

i=1 i<y

p
:Kngk_pﬁl)/QH(l,'—l exp( Zaﬂ )

i=1 i<j
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where )
P’ /2

i, (2] ()

and A = (a;;) = H'S™1H (See for example Th.3.2.18 Muirhead (1982)). In the
case when p = 2, the density function is given by

K =

32,k 1 '
(2.2) Klgk 3)/2lék 3)/2(11 — lg) exp <—§(a11l1 + a22l2)>
with |
2
(2.3) K = T
2k [k/2T, <§) Ty(1)
k/2
- TS (s=[27Y)
21 (5)r (%5 )
2
~ Sk/2
T4k -2)V

since T'(k/2)T((k — 1)/2) = T'(k — 1)y/m2~*=2) We will use the notation G(l)
hereafter which is defined by

G(l) = /(;(2) exp (—%(aull + 02212)) du(H).

We consider general estimators of the form (1 7) without specifying the 6’s. Let
Ry(2, %) = E[L2(Z, X)] denote the risk of 32 given by (1.7). Straightforward

calculation shows that
Ry(2, %) = E[6313a3, + 6212a}, + 26182l112a%,] — 2E[61l1a11 + S2l2a22] + 2.
From (2.2), we have
E[§{}a},)
= K62 /L (I — L) {E+ D72 =302 /O o a2, exp (——%(anll + a22l2)> du(H)dl,

where £ = {l | l; > Iz > 0}. Using integration by parts, we have

E[5211‘111

= 4K6’f’/(ll _ lz)lgk“)/gl(’“ 3)/28862‘2(06”

= —4K§? (k41072 (k- 3)/2, 0G (1)

= —acit [ / a (- %) o il

aG(1)

al, dlidly

=—2K6%/0 l {(k+3)l§k+1)/2lgk—3)/2__(k+1)l(k 1/2k-1)/2, 9G(L)
2
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— 2K&? / / (k + 3){FH D232 gy 1y (kD21 6=D/2y g, g,
2

0

li=ly

= K62 /ﬁ {(k + 1) (k + 3)ED/25=3/2 _ (p _ 1y + 11¢ D200y qyar
+4K 62 / I*Llexp (—éb}) dl, '
0

where §1 = a11 + a2 = trx 1,
Similarly, we have

E[6513a3,]
= K62 / {(k = D)k + D)IED2E=372 _ 41y + 332D g1yt
o0 I
4K 62 / 1 exp (——51) dl.

A 2
Therefore, we have
(2.4) E[(S llall + 5 12(122

= {6}k + Dk +3) + 3k = Dk + YK [ G@a

{82k — 1) k+1)+62(k+1)(k+3)}K/l(k /202G 1) q1

k
+4K (63 + 62)I'(k) (;)
1
— (82 + D)k + 1)°K / (11 — 1)1k=3)/2 k= 3)/2G(l)dl

(
+4K (67 + 63)['(k) ( )
= (62 + 62)(k + 1)% + 4K (62 + 62)T(k) (sT)k

+2K (62 — 82)(k + 1)1 (1“—;_3) ,

where
I{a) = / erUg +1M$tHGMdl a > ~5-
c
Besides, we have
E[251621112a%2]

= 2K 6,6, / (I — L)1/ E=1/2
L

1
/ aty exp (——(llan + l2a22)) dp(H)dl.
o2) 2
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Using Theorem 5.1 from Sheena (1995), we have
1
2
ajp e —=( + laa )d H
/0(2) 12 XP( 5 (ha11 + lraze) ) du(H)

1 1
= / ((122 - (111) exp (———(llan + l2a22)> du(H)
Iy — 12 Jog) 2%

Therefore, we have ;
(2.5) E[261650112a%]
= 2K 6,69 /E (k=72 (k=172 /O (2)(a22 - an)
- exp <—%(lla11 + l2a22)) du(H)dl

_ (k=1)/2(k=1)/2 aG() 8G(l))

— 4K6,6 /O > /O 1 5‘?—2(zg’“‘”/"’lg’“‘””)G(l)dlzdll
_4K 6,6, /0 D20/ 2aW)z=hdy
_4K 616 /0 > /:a—‘;’I(zg’“‘”/?zg’“”””)G(z)dlldb
HaKas [ ez,

= 2K6,6, /L (k — DI*D2 =326 an

0 !
_4K 6,6 / *Lexp (——Sl) di

~2K6,6 / (k — DIEI215=D2 ) a1

o0
—4K6162/ 1*1exp (—-—Sl) dl
0 2

= 2K6:85(k — 1) / (l — LYEI2F32G0)dl
L

92 k
_8K 66,1 (k) (S—)
1

k
_ 26,65(k — 1) — 8K8,6,T(k) (53) .
1

Furthermore,
E[éll 141 1]

= —2K6 / 1y — Ly D/ =92 agl(l)dl

— 2K6, / / A (1~ I G dndy
l2 ll
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= K6 /L ((k + 1)~ D/2{k=3/2 _ (g _ 1y (=372 =02y ) gy,
Similarly, we have
E[62l2as2] = K62 /E ((k = IED2E=2 (4 1ED 2D gy,

Therefore, we have ;
(2.6) E[6111a11 + 52l2a22]
= (61(k + 1) + 62k — 1)K /L L e T
—(61(k —1) + ba(k + 1)K / (k=92 kD12 ) gy
L
— (61 + 62)kK /L (1 — )32 =32 Gy

(61 — 62)K/E(l§k_1)/zl§k—3)/2 +l§k—3)/2l§k—1)/2)G(l)dl

= ((51 + 52)k’ + (51 - 52)KI (E—;—%) .

Using results (2.3) to (2.6), we have
(2.7)  Ro(E,X) = (624 63)(k + 1)® + 26162(k — 1) — 2(81 + S2)k + 2
g1/ k
24— o= ()
S

61— 6){(61 + 8)(k+1) =1} gs2. (k—3
— 2){(2(k—22))(! ) }SS/I(T)'

Now consider the integral I(£5%). From the definition of I(a), we have
(2.8) I{a)= / /(l?lgﬂ +151g) exp ("l(allll + 02212)) dldp(H).
o2 Jc 2
Through change of variable (I1,12) — (l2,11), we have
1
I(a) = / / 215+ + 181G exp (——(anl2 + a2211)) dldu(H),
o) Jer 2

where £* = {l | 0 < l; < lz}. Since u is invariant with respect to the exchange
of the columns of H, we have

(29) I(a)
1

= [ sttty exp (<5 (e + o)) didu(H)
o) Jc* 2

- / (15 4+ 19 G(LdL.
E*
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From (2.8) and (2.9), we have

I(a) = / / (1218 + 1) G () dlydl

L Iy
= [%ex (———a )dl / [ot] ex (——a )dl
20(2){/0 1 €Xp 211 1 2 P 222 2
® o+l L ® by
+ /0 5+ exp (—on ) di /O 5 exp ( —2az ) dis | du(H)

= 2222 (o 4+ ) + 2)

{a (a+l) —(a+2) +a (a+2) (a+1)}du(H)

X Q99

o2
= 22"‘+21"(a + 1) (Ot +2)Sl /( )(allagz)_(a+2)d/.l,(H).
O(2

For the case p = 2, H can be simply expressed as

o= cos@ —sind 10 o1 or —1.
sinf cosé 0e

If 6 is uniformly distributed on [027] and P(e = 1) = P(e = —1) = , then
the distribution of H equals the invariant distribution, x. See Tumura (1965) or
Takemura (1991). Hence

5321 ()
= 220‘+2F(a + 1)D(a + 2)S; S22

/ {(o72%cos?8 + 05 sin 20)(0y?sin’0 + o5 2cos?6)} e+ qg

= 22a+2r(a +1)T(a +2)5, 55+
—(at+2)

on -2 -2\ 2 -2 _-2\?2
x%/ {(0_1_;12_> _(0_1_2_?2_) 005229} "
0

= 250+8D (g + 1) + 2) 5155 T/
1 [ 1
X — 7340
27 Jo {(S% +4S5;) — (S% — 455) cos 46}
= 250481 (q + 1) (a + 2)S, S HE/?
1 2 1
X — 573d0
2 Jo {(S% + 4S2) — (5% — 453) cos B}

Applying Lemma, 1 from the Appendix to the last integral, we have
(2.10) S22 ()

a+(3/2)
24a+ﬁr(a+1)r(a+2)(52) 21«"1(1 a+2;1;1— S§>
52 2’ S
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= 223D (o + DD (e + 2)(1 — )2+ /2Ry (% a+21; y)

S92
yEl—4—>.
(v=1-15;

Consequently, from (2.7), (2.10) and the well-known formula

1 m I'(22 ’
(211) r <z + 5) S ?((Z)")

we have

(2.12) Ry(5, %) = A(61,62) + (61— 62)*(k — 1)(1.— y)*/?
+2v/m(61 — 62){ (61 + 62)(k + 1) — 1}
k+1

r(5°)
1 k+1
X 2_J(1-y)%R ( '1;y>,

k 2 9
F(a)

A(81,62) = (62 + 62)(k + 1)? + 26162(k — 1) — 2(61 + b2)k + 2.

where

We use the following formulas in the calculation of supg<,«; Ry(3, X) noting
that 0 <y < 1.

(2.13) aciy{(l — )" % Fi(a, by c;y) }
_(c=a)(c—b)

(1 —y)*** = Fi(a, b ¢+ 1;y)
(2.14) (1 —14)* % Fi(a,b;c;y) = 2Fi(c — a,c — b;c; y)

@19, ahlbad = g Gre

See e.g. p. 45 (10), p. 67 (2) and p. 99 (1) in Luke (1969).
Using formula (2.13), we have

%Rg(ﬁ, 2) = _2—1(51 _ 52)(k _ 1)(1 _ y)(k/Q)—l

*(55)

x | (61— 82)k + VT {(61 4+ 62)(k +1) — 1} ——F~

(2

1 k+1
ol R}
X2 1(27 9 ’2ay>
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Now suppose 6; and 62 are given by (1.4). Then, we have
-2k

9. 6y =
(2.16) = e ek
kS + k2 4 2k
2.1 S +6)(k+1)—1= .
(2.17) (Br+6)(k+1) o 1 6h+d 0
Since \
(k+1)
7
(E) VE > 2,
3
and LktL,
( sl )>1, 0<Wy<1,
we have
d

@32(202,2)
> —271(68; — &) (k — 1)(1 — y)*/D=1{(6, — ba)k + (61 + 62)(k + 1) — 1}

~ 1 k(K —k+2)
_ _o-lig _ _ — y)(k/2)-1
2B =8k =D =) e e ek 1 4
>0 Vk2>2.

Therefore, we have

sup Rg(ﬁ,ﬂ, )
0<y<1

= lim RQ(EOQ, 2)
y—1

From (2.12), the general estimators given by (1.7) have the limiting risk value
given by

(2.18) lim Ry(3%, %)
y—>
= A(61,62) + 2v/7(61 — 82){(61 + 82) (k +1) — 1}
r (k + 1)
. 1 k+1
2 - (1A )

r(3)
= A(61,62) + 2v/m(61 — 82){(61 + 2)(k + 1) — 1}
r(55), R (L)
F(g) yo1 271\ Ty Y

= A(61,62) +2(61 — 62){(61 + 62)(k + 1) — 1}.

X
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The second and the third equalities are derived using the formulas (2.14) and
(2.15), respectively. For the specific case of (1.4), we have

, - _ 2(3K* 45k +4)
(2.19) lim By(¥e2, %) = 3 e ek v d

= Ry(355, %).

For the value of Ry(32, X), see p. 25 of Sharma and Krishnamoorthy (1983). O
Next we prove the uniqueness of 3.2 being minimax among the estimators
given by (1.7).

THEOREM 2. Suppose p = 2. 3,0 is the only minimaz estimator w.r.t.
Lo(X, ) among the estimators given by (1.7).

PROOF. From (2.18) in the proof of Theorem 1, we have

geri Ra(2,X) = ga(61, 62),

where

(2.20)  go(61,60) = (k+1)(k+3)6% + (k+ 1)(k — 1)63 + 26162(k — 1)
—261(k 4+ 1) — 26a(k — 1) + 2.

We calculate the minimum value of g2(61, 82). Generally speaking, the quadratic

function defined by
6'B6+2c'6+d

with 8’ = (61, 62), ¢/ = (c1,¢c2), B = (b;;)1 < i, j < 2 attains its minimum value

1

— (—bgsc? + 2by9cics — b1 2) + d
b11b22—b%2( 22C1 12¢1¢2 — b1163)

at
8t L (“baser + bizca)
= —{ — C
1

5*

- (Chuca+b
2 bnbzg—b%?( 1162 + bizcy),

if b1 > 0 and by1bgy — b2, > 0. As for the specific go(61, 82) given by (2.20), we
have

b1y = (k+1)(k+3) >0,

and
biiboy — b2y = (k — 1) (k3 + 5k% + 6k + 4)(= M (k)) > 0.

Hence, we have

min g2(61, 62)
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= W{—(k —Dk+1)3 - (k-1%Kk+1)(k+3)
+2(k —1)2(k + 1)} +2
_ 2(3k%+5k+4)
k3 + 5k2 + 6k + 4
= R(f]l%z)‘

67 and 63 are given by

1

& =

8 = m—){(k -D(k+1)(k+3)—=(k—1)(k+1)},

which turn out to be the §’s in (1.4) as is obvious from Theorem 1. Consequently,
for any 3; other than ¥,

lim R(E,%) > R(Zp, 2). O
y——>

3. Case of L,

In this section, we consider the estimation of ¥ using Ll(fl ¥). The mini-
maxity of the estimator 3,1 was proved in Dey and Srinivasan (1985) for general
p. We prove that a similar result to Theorem 2 also holds true for Ll(E ).

THEOREM 3. Suppose p=2. 3,1 is the only minimaz estimator w.r.t. Ly
among the estimators given by (1.7).

PRrROOF. We use the same notations as in the proof of Theorem 1. First
we calculate limy_; R;(3, X) = lim,_,; E[L; (%, X)]. We use the result of Stein
(1977) and Haff (1977, 1979) on the unbiased estimator of the risk. Let

R(E,3) = (k- p—1)zﬁ+2zzl Z%lf"
i=1 B

11’ i=1 j#i

- Zlog%' +log |XZ| -
i=1

Then, we have ) )
E[R*(3,X)] = Ri(3,X) V.

In the case when p = 2 and v; = 6;l;, we have

(3.1) R*(£,%)

11y — 63l
= 2171_73—2 + (k — 1)(81 + 82) — log lylo — log 6165 + log || — 2
= k‘(51 + 52) —log 6160 — 2
+§1 + ;2 (61 — 63) — log |~ (/AW xn-1/2),
1 — 2
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From (2.2), (2.3), (2.10), (2.11) and (2.14), we have

it +12]
B [11 L)

K /L (11 + )IE=I2F=D G al

_ 1 k2, (k—3 '
_4(k—2)!S2 I( 2 )

ok—2 k-1 kE+1 1 k+1 :
F( )F( >(1—y)k/22F1 (5,—5—;1;31)

T k-2 \ 2 2

k-2 k-1 E+1 11—k
= r Fi(z =1
(k_2)'1“( 2 > ( 2 )2 1(2, 9 3 ay>
k+1
r(550)
= Vi Ry (1 . k;l;y>-

k 2’ 2
r{Z
)

Using (2.15), we have

F(k+1)
. L+ 2 . (1 1—-k% )
= N 4 /7 et 1.
(3.2) ?}LmlE [ll — lg] NZs 1mle1 D) Ly

= 1.

From (3.1) and (3.2), we have

lim R(E,%) = (k+ 1)1 + (k = 1)82 ~ log 6182 ~ Eflog |W| | 5 = ] -2
y—)

(= 91(61, 62)).
g1(61, 82) attains its minimum value when

1 1

6= ——
1 k+1’

These are the é’s given by (1.2). The attained minimum value is
log(k + 1) + log(k — 1) — E[log |W| | = I],

which is equal to Ry (31, %). (See p. 377 of James and Stein (1961).)
Consequently, we have

lim Ri(3,%) > Ri(211, D)
y—b

for any 3 of the form (1.7) other than 3,;. 0

205
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Appendix

LEMMA 1.

1 (2 1 1 1 2b
— dé = F 2;1;, ——
27r/0 (@ — bcos §)+2 (a-}-b)"‘+22 ! (2 at s ’a+b)’

where oF} is the hypergeometric function.

PROOF.
2m
(2m)1 / (a— beos8)~*2df
0
2w
= (2n)7! (a + bcos8) 249
0

T
=qx1 / (a+ bcos8) > 2d0
0

2Lt 2 g ;
=T [) a+ m mdt (t—tan( /2))

lo o]
— 95! / {(a—b)2 +a+b}*2(1 + 2)°Hdt
0

0
=1 / {la=bz+a+b " 2A+z)* V24  (z=17)
0

_ __}ﬁ_/w (1 M bx)_a—Q (14 z)ot? -1/2 4,
T w(a+b)t2? Jo a+b T

1 2b
—a-—2
(a+b) 2F1(2 a+2;1; +b)

f

For the last equation, we use the integral representation of the hypergeometric
function,

I'(a+b+c—1)

o0
tatdtel)  [Pe1(q 4 pye-a1(1426)bdt.
NaT(t1=c) Jo | AT (1+=1)

oFi(a,b;a+b+1—c;1—2)=
See e.g. p. 57 (3) in Luke (1969). 0
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