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Abstract. Aim of this work is to provide a new insight into
the physical basis of the meteorological-radar theory in at-
tenuating media. Starting form the general integral form of
the weather radar equation, a modified form of the classi-
cal weather radar equation at attenuating wavelength is de-
rived. This modified radar equation includes a new param-
eter, called the range-bin extinction factor, taking into ac-
count the rainfall path attenuation within each range bin. It
is shown that, only in the case of low-to-moderate attenuat-
ing media, the classical radar equation at attenuating wave-
length can be used. These theoretical results are corroborated
by using the radiative transfer theory where multiple scatter-
ing phenomena can be quantified. From a new definition of
the radar reflectivity, in terms of backscattered specific inten-
sity, a generalised radar equation is deduced. Within the as-
sumption of first-order backscattering, the generalised radar
equation is reduced to the modified radar equation, previ-
ously obtained. This analysis supports the conclusion that
the description of radar observations at attenuating wave-
length should include, in principle, first-order scattering ef-
fects. Numerical simulations are performed by using statis-
tical relationships among the radar reflectivity, rain rate and
specific attenuation, derived from literature. Results confirm
that the effect of the range-bin extinction factor, depending
on the considered frequency and range resolution, can be
significant at X band for intense rain, while at Ka band and
above it can become appreciable even for moderate rain. A
discussion on the impact of these theoretical and numerical
results is finally included.
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1 Introduction

A well established technique to retrieve rainfall structure
and microphysics (Atlas et al., 1990) is based on the use
of weather radars. Optimal frequency bands for rain radar
meteorology are generally chosen, on one hand, to enhance
the sensitivity of microwave backscattering to hydrometeor
volumetric distribution and, on the other hand, to reduce the
effects of path attenuation (Bringi and Chandrasekar, 2001).
In this respect, S band is probably one of the best choices
and is typically used for ground-based installations. How-
ever, due to constraints on the component sizes and high
power requested at S band, higher radar frequencies have
been also considered for operational purposes (Sauvageot,
1992). For ground-based radar systems, C-band frequency
has been widely adopted for the operational case, while for
space-based sensors frequency bands from Ku to W have
been taken into consideration for cloud and rain retrieval
(e.g., Delrieu et al., 2000; Meneghini et al., 1983).

When operating a radar at attenuating wavelength, path
attenuation needs to be included in the equation govern-
ing the quantitative analysis of backscattering measurements
(Meneghini, 1978; Sauvageot, 1992). The classical radar
equation in an attenuating medium, as generally stated, takes
into account the single scattering due to raindrops, weighted
by the two-way path attenuation from the considered range
gate to the radar antenna. As known, hydrometeor path at-
tenuation increases as the frequency increases beyond S band
(Sauvageot, 1992). Any radar technique above S band should
take into account, and possibly remove, path attenuation ef-
fects in order to correctly convert measured reflectivity into
rain rate. To this aim, iterative and constrained methods have
been proposed to process radar data both from ground-based
and from space-based systems (e.g., Meneghini, 1978; Aydin
et al., 1989; Marzano et al., 1999; Serrar et al., 2000; Testud
et al., 2000).
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Nevertheless, the validity of the classical radar equation in
attenuating media is not clearly asserted in literature. The
theoretical framework behind the classical radar equation
generally resorts to the Friis equation considering, in the far-
field zone, a locally uniform plane-wave propagation atten-
uated along the path following an inverse-exponential law
(e.g., Bogush, 1989). For frequencies higher than S band
and depending on the rainfall intensity, the increase of path
attenuation is also related to the increase of the volumetric
albedo and scattering asymmetry of hydrometeors (Ishimaru,
1978; Marzano et al., 2000; de Wolf et al., 2000). This means
that the contribution of first and successive orders of scat-
tering can be appreciable in determining the radar received
power. A careful analysis of the validity of the classical radar
equation could be obtained only if the radar equation itself is
framed within a more general theory which can include the
effects of incoherent scattering phenomena (Marzano et al.,
2003).

In this work, a new insight into the physical basis of radar
observation theory in attenuating media is proposed. Starting
form the general integral form of the weather radar equation,
a modified form of the classical weather radar equation at
attenuating wavelength is derived. This modified radar equa-
tion includes a new parameter, called the range-bin extinction
factor, taking into account the rainfall path attenuation within
each range bin. These theoretical results are also obtained
by using a microwave radiative transfer approach, described
by means of an integro-differential equation. It is demon-
strated that, in strong attenuating media, the radar equation
should include first-order scattering effects. In the last sec-
tion numerical simulations of the range-bin extinction factor
are presented by using statistical relations between reflectiv-
ity, rain rate and specific attenuation, derived from literature,
together with a discussion of the possible impact of the ob-
tained results. Practical applications, such effects on radar
inversion algorithms and spatial average of measured reflec-
tivities at attenuating wavelengths, are eventually addressed.

2 Modified radar equation at attenuating wavelength

In the present and following section, we refer to the classical
radar equation at attenuating wavelength as an equation hav-
ing the following expression (e.g., Bogush, 1989; Sauvageot,
1992):

< PR(r, �0) >= C
Ze(r, �0)

r2
L2(r) = C

Zm(r, �0)

r2
, (1)

where< PR(r, �0) > is the mean received power, obtained
from averaging radar echoes due to the scattering volume
1Vr at a ranger in the pointing direction indicated by the
solid angle�0, C is the instrumental constant. In (1)Ze is
the equivalent reflectivity factor,L is the one-way path atten-
uation at ranger andZm is the measured reflectivity factor
such that, in this case,Zm = ZeL

2.

In this paper the classical radar equation in attenuating
media, given by (1), is derived by using two different ap-
proaches. On one hand, the integral radar equation is here in-
tegrated to obtain first the modified radar equation and, then,
the classical radar equation. On the other hand, the same
modified radar equation is obtained using the first-order scat-
tering solution within the radiative transfer theory by using a
generalised definition of the radar reflectivity.

The integral equation of a pulsed weather radar, operat-
ing in an attenuating medium, basically relates the mean re-
ceived power< PR(r, �0) > to the transmitted peak power
PT . Let us suppose an observation geometry, where the radar
is placed in the origin. For simplicity of notation, besides
the spherical coordinates(r, θ, φ) with respect to thez-axis,
we introduce a slant reference coordinate system(r ′, θr , φr)

with the corresponding solid angle�r = (θr , φr). The lat-
ter is such that its vertical coordinatezr coincides with the
radar ranger along the pointing angle�0 = (θ0, φ0) so that
θr stands for the angle betweenr andr ′. Of course, when
θ0 = 0 andφ0 = 0, �0 = (0, 0) indicates a zenith (or
nadir) observation alongz and the coordinates(r, θ, φ) co-
incide with(r ′, θr , φr).

In the presence of an inhomogeneous attenuating medium,
the integral radar equation can be stated as follows (Menegh-
ini et al., 1983; Savaugeot, 1992):

< PR(r, �0) >=
PT λ2

(4π)3

∫
1Vr

η(r ′,�r)
G2(�r)

r ′2
e−2τr (r

′)d3r ′, (2)

whereλ is the radar wavelength (in vacuum),1Vr is the
radar resolution volume or cell (spanned by coordinatesr ′,
θr and φr ), η is the volumetric radar reflectivity,τr is the
optical thickness (or path attenuationA) along the ranger,
d3r ′ is the elementary volume within the radar bin. The an-
tenna gain functionG(�r) along�r is such thatG(�r) =

G0|fn(�r)|
2, with G0 = G(�0) the maximum gain in the

pointing direction�0 and|fn(�r)|
2 the one-way normalized

radiation pattern. The volumetric radar reflectivityη in (2)
can be related to the equivalent reflectivity factorZe by the
well-known relation (Sauvageot, 1992):

η(r, �r) ≡
π5

|K|
2

λ4
Ze(r, �r), (3)

whereK is the medium polarizability complex factor.
It is worth mentioning that a path attenuation factor ap-

pears in (2) as a term of the integral expression and includes
both the extinction within the considered range bin and from
the range bin to the radar antenna (Meneghini et al., 1983).
The one-way path attenuation factor from the radar antenna
to the considered range binL can be expressed as:

L(r, �r) ∼= L(r,�0) ≡ L(r) = e−τr (r) = e−
∫ r

0 k(r ′)dr ′

, (4)

beingk the volumetric specific attenuation (or extinction co-
efficient). Note that we prefer here to indicate the path at-
tenuation withτr to be consistent with the radiative transfer
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notation, used in the next section, even thoughτ generally
stands for the radar pulse length in radar theory. Equation (4)
is derived under the assumption of a weak dependence ofL

on the observation angle�r within the radar beam.
The validity of (2) is, of course, limited to scalar radiation

(e.g., single polarization radar), even though the theoretical
arguments discussed below can be modified by considering
a polarimetric form of (2) (e.g., Bringi and Chandrasekar,
2001).

If the integration in (2) is modified to the finite range
bin 1r (i.e., range resolution) and to the antenna main-lobe
beamwidth�M (defined as either the−3 dB or the−6 dB
solid angle), (2) can be readily expressed in a simplified
form. Moreover, if the radar antenna is sufficiently direc-
tive such that the scattering volume1Vr can be assumed
to be uniformly filled by randomly-distributed scatterers, the
equivalent reflectivity factorZe and specific attenuationk be-
come independent on the angle�r and ranger ′ within the
radar volume. In these circumstances, (2) can be simplified
as follows:

< PR(r, �0) >∼=
PT λ2

(4π)3

π5
|K|

2

λ4
(5)

G2
0Ze(r, �0)�2A

r+1r∫
r

e−2kr ′

r ′2
dr ′, (6)

where�2A is the antenna two-way radiation solid angle, de-
fined by:

�2A ≡

∫
�M

|fn(�r)|
4d�r . (7)

If the antenna power pattern is assumed to be Gaussian, the
expression of�2A in (6) yields the well-known Probert-Jones
correction factor to the radar equation (Sauvageot, 1992).

The last integral in (5) can be easily calculated. Assuming
1r << r, that is for ranges much larger than the range reso-
lution, the mean received power from an arbitrary range bin
can be, thus, re-arranged as follows:

< PR(r, �0) >∼= (8)

PT π2
|K|

2G2
0�2A1r

64λ2

Ze(r, �0)fb(1r)

r2
L2(r), (9)

wherefb(r) is the range-bin extinction factor, defined by:

fb(1r) ≡
1

2k1r

(
1 − e−2k1r

)
=

1

21τr(r)

(
1 − e−21τr (r)

)
(10)

with 1τr the range-bin optical thickness. Equation (8) ex-
presses the effect of specific attenuation and/or range resolu-
tion within the considered radar scattering volume.

A comparison of (7) with the classical radar equation
in (1) suggests a bin-averaged equivalent reflectivity factor
Zeb(r, �0) at a range r can be defined as:

Zeb(r, �0) ≡ Ze(r,�0)fb(1r). (11)

so that the mean received power can be put into the following
modified radar equation:

< PR(r, �0) >∼= C
Zeb(r, �0)

r2
L2(r). (12)

The radar instrumental constantC in (10) is given by:

C ≡
PT π2

|K|
2G2

0�2A1r

64λ2
, (13)

being1r = c1t/2 the radar range resolution, with1t the
pulse width andc the speed of light (in vacuum). When
the output signal is characterised at the receiver output port,
the instrumental constantC can include receiver process-
ing effects as well, such as the finite bandwidth power loss,
matched filter weighting and receiver insertion losses (e.g.,
Sauvageot, 1992). The receiver noise power is here not con-
sidered being not essential to explain the core of our thesis.

It is worth mentioning that, if either the specific attenua-
tion k is small or the range resolution1r is small so that the
range-bin optical thickness1τr is much less than 1, then the
range-bin extinction factor in (8) reduces to:

fb(1r) ∼=
1

21τr(r)
[1 − (1 − 21τr(r))] ∼= 1. (14)

Under these conditions, the modified radar equation becomes
identical to the classical radar equation in attenuating media,
given by (1). We can conclude that the classical radar equa-
tion is a particular case of the modified radar Eq. (10) when
extinction effects within each range bin are not significant.

3 Weather radar equation within radiative
transfer theory

Scattering and propagation characteristics of electromagnetic
waves through a random medium can be profitably studied by
using the radiative transfer theory (Tsang et al., 1985). The
radiative transfer theory (RTT) is diffusely applied in passive
and active remote sensing, even though not generally consid-
ered in classical radar meteorology approaches (Atlas et al.,
1990). One of the reasons is probably due to the negligibil-
ity of multiple scattering phenomena in most applications of
weather radars at frequencies below 10 GHz.

The need to consider higher operating frequencies has re-
cently raised the issue of quantifying incoherent backscat-
tered radiation in radar meteorology problems (Marzano et
al., 2000; de Wolf et al., 2000; Marzano and Ferrauto, 2002).
In this section our goal is to demonstrate that the modified
radar equation, deduced from the integral radar equation and
slightly extending the classical radar equation, has the same
form of the first-order backscattering solution of the radiative
transfer equation.

The fundamental quantity in the radiative transfer theory
is the specific intensityI , also called radiance (Ishimaru,
1978). The specific intensity of a radiation of frequencyν
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is defined as the average power flux density within a unit fre-
quency band, centred atν, and within a unit solid angle. The
specific intensityI is, consequently, measured in [W m−2

sr−1 Hz−1]. Under the assumption of unpolarized radiation,
the specific intensity of the scattered radiation is the solution
of a scalar differential-integral equation, known as the radia-
tive transfer equation (Ishimaru, 1978; Tsang et al., 1985;
Marzano et al., 1999).

Before dealing with the solution of the radiative transfer
equation (RTE), it is opportune to deduce a generalised ver-
sion of the radar equation expressed in terms of the received
specific intensity, possibly due to multiple scattering. In or-
der to do this, the backscattered specific intensity, incident on
the radar antenna, can be expressed by means of the apparent
radar reflectivity of the considered range bin (Marzano et al.,
2000; Marzano et al., 2003).

3.1 Generalised radar equation at attenuating wavelength

If 1r is the radial resolution andPT is the transmitted power
along the direction�0 = (θ0, φ0), then the transmitted power
flux density at ranger in a given direction, opposite to the
receiving one�r , can be related toPT through the antenna
gain definition:

FT (r) =
PT G(�r)

4πr2
(15)

where, again,G(�r) is the antenna gain function. The trans-
mitted powerPT is partially reflected backwards by each par-
ticle intercepting the radar beam within the scattering vol-
ume.

The apparent radar reflectivityηa , defined as the ensem-
ble average of backscattering cross sections of all particles
within a unit volume, can be related to the average value of
the backscattered specific intensityIR(r, �r) by means of the
following relationship (Marzano et al., 2000, 2002):

ηa(r,�r) =
4π

1r

< IR(r, �r) >

FT (r)
. (16)

In analogy to (3), the apparent reflectivityηa can be ex-
pressed through the apparent equivalent reflectivity factor
Za :

Za(r, �r) ≡
λ4

π5|K|2
ηa(r,�r) = (17)

λ4

π5|K|2

[
4π

1r

< IR(r, �r) >

FT (r)

]
. (18)

Given the mean value< IR(r, �r) > of the apparent re-
ceived specific intensity, the apparent backscattered received
power< PRa(r, �0) > can be expressed as (Ishimaru, 1978;
Tsang et al., 1985):

< PRa(r, �0) >=
λ2

4π

∫
4π

G(�r) < IR(r, �r) > d�r , (19)

where the directive gainG has been related to the antenna
equivalent areaAe through the reciprocity formulaG0 =

(4π/λ2)Ae0.
Thus, substituting (13) and (14) into (16), we have:

< PRa(r, �0) >= (20)

λ21r

(4π)2

∫
4π

G(�r)ηa(r, �r)
G(�r)

4π

PT

r2
d�r . (21)

If < IR(r, �r) >, and thusηa(r, �r), can be assumed
constant within the radar scattering volume, it is straightfor-
ward to re-express the mean apparent received power. Fi-
nally, from (17) we can obtain a generalised radar equation:

< PRa(r, �0) >∼= C
Za(r, �0)

r2
, (22)

where the radar constantC is given by:

C =
G2

0�2A1rπ2
|K|

2

64λ2
(23)

Equation (18) is formally identical to the classical radar
equation in (1). In particular, this equivalence is readily ob-
tained when the measured reflectivity factorZm(r, �0) in
(1) is expressed by means of the apparent reflectivity factor
Za(r,�0). However, the generalised radar equation (18) has
a different physical meaning and a more general validity with
respect to the classical and modified radar equations since:

1. it can take into account multiple scattering effects to any
order of scattering, being the apparent radar reflectiv-
ity related to specific intensity solution of the radiative
transfer equation (Marzano et al., 2000, 2003);

2. it includes, as a particular case, the modified radar equa-
tion if the apparent reflectivity factor is expressed in
terms of the equivalent reflectivity factorZe and the bin-
averaged extinction factorfb, i.e.:

Za(r, �0) ≡ Zeb(r, �0)L
2(r) = (24)

Ze(r, �0)fb(1r)L2(r). (25)

3. it includes, as a particular case, the classical radar equa-
tion if Za(r, �0) = Ze(r, �0)L

2(r) in (18).

3.2 Apparent equivalent reflectivity and first-order
backscattering

The aim of this section is to derived an explicit expression of
Za , given in (15), from the radiative transfer equation. In a
way, we would like to answer to the following questions:

– under what assumptions the RTT solution can give an
expression ofZa which reduces the generalised radar
equation to the modified one?
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– to this scope, can we limit our analysis to the first-
order backscattering theory following an iterative solu-
tion method?

Let us consider a simple atmospheric model consisting of a
single homogeneous atmospheric slab whose bounds are, in
terms of optical thickness,τ = 0 andτ = 1τr . If the specific
attenuationk is constant, then the geometrical thickness of
the slab is1r = τr/k. The radar antenna is placed inτ = 0.
Note that the analysis of a single homogeneous slab of optical
thickness1τr is equivalent to consider, in a classical radar
context, a range bin of resolution1r with L(r) = 0.

Under the above mentioned assumptions and by applying
proper boundary conditions, the diffuse specific intensity in
the first-order scattering (FOS) approximation for backward
directions is given by (Ishimaru, 1978; Tsang et al., 1985) :

I (1)(0, �0) =< IR(r, �0) >FOS= (26)
wF0

8π
p(�0, −�0)

(
1 − e−21τr

)
, (27)

wherep(�0, −�) is the phase function in the backward di-
rection,w = ks/k is the single scattering albedo withks the
volumetric scattering coefficient andFT (r) = F0. Notice
that the FOS backward radianceI (1) has been interpreted as
the mean received specific intensity< IR(r, �0) >, due to
the ensemble averaging of backscattered radiation from the
polydispersion of particles within the rain slab when first-
order scattering is the dominant contribution (Marzano et al.,
2003).

The above expression, substituted in (14), allows one to
calculate the apparent radar reflectivity, due to a resolution
volume of slant depth1r, within the FOS approximation:

ηa FOS(r, �0) =
4π

1r

< IR(r, �0) >FOS

F0
= (28)

ksp(�0, −�0)

2k1r

(
1 − e−21τr

)
. (29)

This equation can also be written as:

ηa FOS(r, �0) = η(r, �0)
1

21τr

(
1 − e−21τr

)
, (30)

being1τr = k1r for the slab geometry considered. By def-
inition, the radar reflectivityη in (23) is given by (Ishimaru,
1978; Marzano et al., 2000):

η(r, �0) = p(�0, −�0)ks . (31)

Converting (24) into the analogous expression in terms of
the equivalent reflectivity factor using (3), we obtain the fun-
damental result:

Za FOS(r, �0) = Ze(r,�0)

(
1 − e−21τr

)
21τr

. (32)

In the second member of (25) we recognize the range-bin
extinction factorfb(r), defined in (8). Thus, an identical ex-
pression has been found for both the FOS apparent equivalent

reflectivity factorZa FOS and the bin-averaged equivalent re-
flectivity factorZeb, given in (9) whenL = 0, that is:

Za FOS(r, �0) ≡ Ze(r, �0)fb(1r) = (33)

Zeb(r, �0). (34)

Previous results have been obtained for a single homoge-
neous slab such thatL = 0. The expression of the backscat-
tered radiance can be further generalised in a straightforward
manner to a relationship valid for the any range bin of a lay-
ered atmosphere at distancer, that is:

< PR(r, �0) >∼= C
Za FOS(r, �o)

r2
= (35)

C
Zeb(r, �0)

r2
L2(r) ≡ C

Zm(r,�0)

r2
, (36)

obtaining an equation formally similar to the classical radar
equation (1), but with a measured reflectivity factorZm in-
cluding both the two-way path attenuationL and the range-
bin extinction factorfb.

4 Impact of range-bin extinction on rain radar observa-
tions

In this section, some numerical results of the theoretical anal-
ysis, illustrated above, will be shown. Examples are based on
the use of statistical-empirical relationships, available for mi-
crowave and millimetre-wave radar observations of rainfall.

The relations among the equivalent reflectivity factorZe,
the specific attenuationk and the rain rateR are well docu-
mented in literature. These relations are generally assumed
to have a power-law form (e.g, Atlas et al., 1990):{

Ze = aRb

k = cRd (37)

wherea, b, c and d are regression coefficients. The latter are
usually derived from the statistical analysis of in situ data,
acquired by rain gauges, disdrometers and aircraft probes
(e.g., Sauvageot, 1992; Bringi and Chandrasekar, 2001). An
impressive large set of power-law relationships is available
from literature – a variability which mainly depends (apart
from observational effects) on the influence of raindrop size
distributions related not only to the rain type and ambient
temperature, but also raindrop terminal velocity and precipi-
tation microphysical processes.

We have considered here various operational frequencies
to evaluate the first-order scattering effects through the anal-
ysis of the range-bin extinction factor. As previously men-
tioned, ground- based applications are generally focused on
the use of C, X and Ka band, while airborne and spaceborne
radars have been deployed at Ku and Ka band. For sake of
completeness we show the numerical results for rainrate val-
ues up to 100 mm/h, even though the radar sensitivity will
significantly decrease with the increase of frequency. For in-
stance, a Ka-band spaceborne radar will be limited to about
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Fig. 1. Statistical power laws relating the equivalent reflectivity factorZe and the specific attenuationk to rain rateR, derived from Delrieu
et al. (2000) at C and X band for orographic rainfall and from Haddad et al. (1997) at Ku and Ka band for tropical rainfall.

10–20 mm/h for acceptable signal-to-noise ratios (Meneghini
et al., 1983).

4.1 Numerical results

From open literature, we have selectedZe − R andk − R

relations relative to orographic rainfall at C and X band, de-
rived by Delrieu et al., 2000 (i.e., their Table 2 at 0◦C for
“Cévennes” model). At Ku and Ka band, we have resorted to
tropical rainfall scenarios by usingZe − R andk − R from
Haddad et al., 1997 (their Tables IX-XII for D”=1.0). Fig-
ure 1 shows the behaviour of these power-law relations for
the four frequency bands as a function of the rain rateR.

By definition,fb is dependent on the optical thickness (or
total attenuation)1τr of the range bin. Thus, for a givenR,
k being determined by (28) (see Fig. 1), we need to specify
the range bin resolution1r. The latter, in accordance with
common operational requirements, has been set to 125, 250,
500 and 1000 m, respectively.

Figure 2 illustrates the behaviour of the range-bin extinc-
tion factorfb as a function ofR for the same frequency bands
of Fig. 1, setting1r as a parameter. It should be noted that,
in the case of negligible range bin extinction,fb = 1 (or
fb = 0 dB).

As expected, for a given rain rate, the range-bin extinction
factor fb is less than 1 (or less than 0 dB) as the frequency
and range resolution increase. While at C band,fb is always

higher than−1 dB up to 100 mm/h, at Ka bandfb < −1 dB
for R > 20 mm/h and1r > 250 m. These results, thus, con-
firm that the effect of the range-bin extinction factor, depend-
ing on the frequency and range resolution, can be significant
for intense rain and, at Ka band and above, even for moderate
rain.

In order to show the impact of rainfall regime on the evalu-
ation of the range-bin extinction factor, Fig. 3 shows the same
as in Fig. 2, but for ak−R relation typical of widespread rain
and thunderstorm rain at C and X band, as derived by Delrieu
et al., 2000 (i.e., their Table 2 at 0◦C for “widespread” and
“thunderstorm” models).

From the comparison of Fig. 3 with Fig. 2, it emerges that
values offb for widespread rain are less than those relative
to orographic rainfall, as reasonable. On the contrary, for
thunderstorm rain at C bandfb can be less than−0.7 dB at
100 mm/h and1r = 1000 m, while at X bandfb can be less
than−0.5 dB at 50 mm/h and for a range resolution of 500 m.

4.2 Discussion

The theoretical and numerical analysis, illustrated so far, has
evidenced a possible impact of the range-bin extinction on
radar observations of rainfall at attenuating wavelength. In-
deed, as shown elsewhere, graupel and hail back scattering in
convective systems can cause a significant albedo thus con-
tributing to increase of the specific attenuation within range
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Fig. 2. Range-bin extinction factorfb as a function of the rain rateR, derived using the relationships plotted in Fig. 1, with the range-bin
resolution1r as a parameter (ranging from 125 m to 1000 m).
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Fig. 3. Same as in Fig. 2, but fork − R relations typical of widespread rain and thunderstorm rain at C and X band, as derived by Delrieu et
al., 2000.
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bins where rain is not present such as above the freezing
level (Marzano et al., 2003). This is especially important,
of course, for airborne and spaceborne rain radars.

Secondly, if the range-bin extinction factor is less than 1
for various reasons (i.e., large bins and/or high attenuation),
it emerges that the retrieval algorithms to estimate rainfall
from radar observations at attenuating wavelength can be af-
fected as well. In fact, by assuming at each range bin the
validity of (28), from (27) and (4) the general form of the
integral equation to be inverted to retrieve the equivalent re-
flectivity factorZe from a measured oneZm(r) at a ranger
is:

Zm(r,�0) = (38)

Ze(r,�0)fb(r)e
−2

r∫
0

α[Ze(r,�0)]
βdr ′

, (39)

where, eliminatingR from (28), it holds:

k = αZβ
e , (40)

beingα andβ are related toa, b, c andd coefficients of (28).
From (29) it is clear that, only iffb = 1, well-known phys-

ical inversion techniques can be applied to retrieveZe, and
by (28), rainfall rateR (e.g., Meneghini et al., 1983; Aydin
et al., 1989; Testud et al., 2000). In all other cases, the role
of the range-bin extinction should be considered at least as
a multiplicative noise which inevitably deteriorates the final
accuracy of the rain estimate (Marzano et al., 2003). When
assuming (28) as in Fig. 1 and1r = 250 m, numerical tests
(not shown here for brevity) indicate that this error may range
from 15% at X band at 100 mm/h to 15% at Ku at 50 mm/h
and 20% at Ka band at 10 mm/h. Note that ifr refers to the
range bin centre (and not to its edge), these potential errors
can be empirically reduced.

The final consideration is related to the impact of range-
bin extinction when performing a spatial averaging of radar
reflectivity data in strong attenuation conditions. In order
to illustrate this point, let us suppose for simplicity to oper-
ate at X band observing a uniform rain slab with 50 mm/h,
characterized by a constantZe0. From Fig. 2, we see that,
for 1r = 125 m,fb=0.98 (i.e., about−0.1 dB), while for
1r=1 kmfb is about 0.79 (i.e., about−1.0 dB). This means
that, if the measured reflectivity is averaged usingN range
bins, for its spatial average it holds:

Zeb = Ze0fb(r; N1r) 6= (41)

Ze0

N∑
i=1

f
(i)
b (r; 1r)

N
∼= Ze0 (42)

The difference between the left and right-hand side of in-
equality (31) is, in the above mentioned conditions, about
−1 dB.

Even though−1 dB seems to be a negligible effect, it is
worth noting that, due to the power-law relation betweenZe

and R in (28), it can correspond to an underestimation of
about 7 mm/h over 50 mm/h, that is an error of 15%. Since
it is operationally fairly common to provide products at a
degraded range resolution, the last inequality should be kept
in mind when processing radar data in attenuating media.

5 Summary and conclusions

The meteorological radar equation in its classical form takes
into account two-way path attenuation from each range bin
to the radar antenna. Indeed, for strong attenuating media,
such as intense rainfall at microwaves, hydrometeor extinc-
tion within each range bin can be significant as well. A mod-
ified radar equation has been here derived from the integral
radar equation to include such a range-bin extinction effect.
It has been shown that, only in the case of low-to-moderate
attenuating media, the derived range-bin extinction factor is,
by definition, closed to one so that the classical radar equa-
tion can be used.

These theoretical results have also been obtained by using
a microwave radiative transfer approach, taking into account
the multiple scattering effects. It has been shown that a new
definition of the radar reflectivity, in terms of backscattered
specific intensity, yields a generalised radar equation. The
latter, under the assumption of first-order scattering, reduces
to the modified radar equation, previously obtained. These
theoretical results have supported the conclusion that radar
analysis in strong attenuating media should include, in gen-
eral, first-order scattering effects. On the other hand, they
prove that the classical radar equation takes into account first-
order backscattering in the limit of negligible range-bin ex-
tinction.

Numerical simulations have been performed by using sta-
tistical power laws relating the radar reflectivity to rain rate
and specific attenuation, derived from experimental data and
available in the open literature. Results confirm that the ef-
fect of the range-bin extinction factor, depending on the con-
sidered frequency and range resolution, can be relevant at
X band for intense rain, while at Ka band and above can
be appreciable even for moderate rain. These errors, even
though small in some observational circumstances, can have
a strong impact in determining the accuracy of radar retrieval
algorithms, aimed at correcting two-way rainfall path atten-
uation, and on spatial averaging procedures applied to radar
reflectivity data in relevant attenuation conditions.

Acknowledgements.This work has been partially supported by the
Italian Space Agency (ASI), the Italian National Research Council
(CNR) through GNDCI project and the Italian Ministry of Educa-
tion, University and Research (MIUR).

Atmos. Chem. Phys., 3, 813–821, 2003 www.atmos-chem-phys.org/acp/3/813/



F. S. Marzano and G. Ferrauto: Weather radar equation and first-order backscattering theory 821

References

Atlas, D. (Ed): Radar in Meteorology, American Meteorological
Society, Boston, 1990.

Aydin, K., Zhao, Y., and Seliga, T. A.: Rain-Induced Attenuation
Effects on C-Band Dual-Polarization Meteorological Radars,
IEEE Trans. on Geosci. Remote Sens., 27, 1, 57–66, 1989.

Bogush, A. J.: Radar and the atmosphere, Artech House, Norwood
(MA), 1989.

Bringi, V. N. and Chandrasekar, V.: Polarimetric Doppler Weather
Radar: principles and applications, Cambridge University Press,
Cambridge (MA), 2001.

Delrieu, G., Andrieu, H., and Creutin,J. D.: Quantification of Path-
Integrated Attenuation for X- and C-Band Weather Radar Sys-
tems Operating in Mediterranean Heavy Rainfall, J. Appl. Me-
teor., 39, 840–850, 2000.

de Wolf, D. A., Russchenberg, H. W. J., and Ligthart, L. P.: Radar
reflection from clouds: Gigahertz backscatter cross sections and
Doppler spectra, IEEE Trans. Antennas Propagat., 48, 254–259,
2000.

Haddad, Z. S., Short, D. A., Durden, S. L., Im, E., Hensley, S.,
Grable, M. B., and Black, R. A.: A new raindrop parametrization
of the raindrop size distribution, IEEE Trans. Geosci. Remote
Sens., 35, 532–539, 1997.

Ishimaru, A.: Wave propagation and scattering in random media,
Vol. 1 e 2, Academic Press, New York (NY), 1978.

Marzano, F. S., Mugnai, A., Panegrossi, G., Pierdicca, N., Smith,
E. A., and Turk, J.: Bayesian estimation of precipitating cloud
parameters from combined measurements of spaceborne mi-
crowave radiometer and radar, IEEE Trans. Geosci. Remote
Sens., 37, 596–613, 1999.

Marzano F. S., Fionda, E., and Ciotti, P.: Simulation of radiometric
and attenuation measurements along earth-satellite links in the
10- to 50-GHz band through horizontally-finite convective rain-
cells”, Radio Sci., 34, 841–858, 1999.

Marzano, F. S., Roberti, L., and Mugnai, A.: Impact of Rainfall
Incoherent Backscattering Upon Radar Echoes Above 10 GHz,
Phys.Chem. Earth (B), 25, No. 10–12, 943–948, 2000.

Marzano, F. S. and Ferrauto, G.: Investigation on the meteorolog-
ical radar equation at attenuating wavelength, Proc. ERAD’02,
Delft (NL), 18–21 Nov. 2002.

Marzano F. S., Roberti, L., Di Michele, S., Tassa, A., and
Mugnai, A.: Modeling of apparent radar reflectivity due to
convective clouds at attenuating wavelengths, Radio Sci., 38,
10.1029/2002RS002613, 2003.

Meneghini, R.: Rain-rate Estimates for an Attenuating Radar, Radio
Science, 13, 459–470, 1978.

Meneghini, R., Eckerman, J., and Atlas, D.: Determination of Rain
Rate from a Space-borne Radar Using Measurement of Total
Attenuation, IEEE Trans. on Geosci. Remote Sens., 21, 34–43,
1983.

Sauvageot, H.: Radar Meteorology, Artech House, Norwood (MA),
1992.

Serrar, S., Delrieu, G., Creutin, J. D., and Uijlenhoet, R.: Moun-
tain reference technique: Use of mountain returns to calibrate
weather radars operating at attenuating wavelengths, J. of Geo-
phys. Research, 105, No. D2, 2281–2290, 2000.

Testud, J., Le Bouar, E., Obligis, E., and Ali-Mehenni, M.: The
Rain Profiling Algorithm Applied to Polarimetric Weather Radar,
J. Atmospheric and Oceanic Techn., 17, 332–356, 2000.

Tsang, L., Kong, J. A., and Shin, R. T.: Theory of microwave re-
mote sensing, J. Wiley & Sons, New York (NY), 1985.

www.atmos-chem-phys.org/acp/3/813/ Atmos. Chem. Phys., 3, 813–821, 2003


